Added some affine matrix generation optimizations.

This commit is contained in:
Revar Desmera 2020-03-22 01:11:06 -07:00
parent b8e5171e3d
commit e550909726
2 changed files with 70 additions and 54 deletions

View file

@ -202,17 +202,19 @@ function affine3d_zrot(ang) = [
// Arguments: // Arguments:
// u = 3D axis vector to rotate around. // u = 3D axis vector to rotate around.
// ang = number of degrees to rotate. // ang = number of degrees to rotate.
function affine3d_rot_by_axis(u, ang) = let( function affine3d_rot_by_axis(u, ang) =
approx(ang,0)? affine3d_identity() :
let(
u = unit(u), u = unit(u),
c = cos(ang), c = cos(ang),
c2 = 1-c, c2 = 1-c,
s = sin(ang) s = sin(ang)
) [ ) [
[u[0]*u[0]*c2+c , u[0]*u[1]*c2-u[2]*s, u[0]*u[2]*c2+u[1]*s, 0], [u.x*u.x*c2+c , u.x*u.y*c2-u.z*s, u.x*u.z*c2+u.y*s, 0],
[u[1]*u[0]*c2+u[2]*s, u[1]*u[1]*c2+c , u[1]*u[2]*c2-u[0]*s, 0], [u.y*u.x*c2+u.z*s, u.y*u.y*c2+c , u.y*u.z*c2-u.x*s, 0],
[u[2]*u[0]*c2-u[1]*s, u[2]*u[1]*c2+u[0]*s, u[2]*u[2]*c2+c , 0], [u.z*u.x*c2-u.y*s, u.z*u.y*c2+u.x*s, u.z*u.z*c2+c , 0],
[ 0, 0, 0, 1] [ 0, 0, 0, 1]
]; ];
// Function: affine3d_rot_from_to() // Function: affine3d_rot_from_to()
@ -223,18 +225,23 @@ function affine3d_rot_by_axis(u, ang) = let(
// Arguments: // Arguments:
// from = 3D axis vector to rotate from. // from = 3D axis vector to rotate from.
// to = 3D axis vector to rotate to. // to = 3D axis vector to rotate to.
function affine3d_rot_from_to(from, to) = let( function affine3d_rot_from_to(from, to) =
let(
from = unit(point3d(from)),
to = unit(point3d(to))
) approx(from,to)? affine3d_identity() :
let(
u = vector_axis(from,to), u = vector_axis(from,to),
ang = vector_angle(from,to), ang = vector_angle(from,to),
c = cos(ang), c = cos(ang),
c2 = 1-c, c2 = 1-c,
s = sin(ang) s = sin(ang)
) [ ) [
[u[0]*u[0]*c2+c , u[0]*u[1]*c2-u[2]*s, u[0]*u[2]*c2+u[1]*s, 0], [u.x*u.x*c2+c , u.x*u.y*c2-u.z*s, u.x*u.z*c2+u.y*s, 0],
[u[1]*u[0]*c2+u[2]*s, u[1]*u[1]*c2+c , u[1]*u[2]*c2-u[0]*s, 0], [u.y*u.x*c2+u.z*s, u.y*u.y*c2+c , u.y*u.z*c2-u.x*s, 0],
[u[2]*u[0]*c2-u[1]*s, u[2]*u[1]*c2+u[0]*s, u[2]*u[2]*c2+c , 0], [u.z*u.x*c2-u.y*s, u.z*u.y*c2+u.x*s, u.z*u.z*c2+c , 0],
[ 0, 0, 0, 1] [ 0, 0, 0, 1]
]; ];
// Function: affine_frame_map() // Function: affine_frame_map()
@ -246,7 +253,7 @@ function affine3d_rot_from_to(from, to) = let(
// Returns a transformation that maps one coordinate frame to another. You must specify two or three of `x`, `y`, and `z`. The specified // Returns a transformation that maps one coordinate frame to another. You must specify two or three of `x`, `y`, and `z`. The specified
// axes are mapped to the vectors you supplied. If you give two inputs, the third vector is mapped to the appropriate normal to maintain a right hand coordinate system. // axes are mapped to the vectors you supplied. If you give two inputs, the third vector is mapped to the appropriate normal to maintain a right hand coordinate system.
// If the vectors you give are orthogonal the result will be a rotation and the `reverse` parameter will supply the inverse map, which enables you // If the vectors you give are orthogonal the result will be a rotation and the `reverse` parameter will supply the inverse map, which enables you
// to map two arbitrary coordinate systems two each other by using the canonical coordinate system as an intermediary. You cannot use the `reverse` option // to map two arbitrary coordinate systems to each other by using the canonical coordinate system as an intermediary. You cannot use the `reverse` option
// with non-orthogonal inputs. // with non-orthogonal inputs.
// Arguments: // Arguments:
// x = Destination vector for x axis // x = Destination vector for x axis
@ -269,20 +276,25 @@ function affine_frame_map(x,y,z, reverse=false) =
assert(yvalid,"Input y must be a length 3 vector") assert(yvalid,"Input y must be a length 3 vector")
assert(zvalid,"Input z must be a length 3 vector") assert(zvalid,"Input z must be a length 3 vector")
let( let(
x = is_def(x) ? unit(x) : undef, x = is_undef(x)? undef : unit(x),
y = is_def(y) ? unit(y) : undef, y = is_undef(y)? undef : unit(y),
z = is_def(z) ? unit(z) : undef, z = is_undef(z)? undef : unit(z),
map = is_undef(x) ? [cross(y,z), y, z] : map = is_undef(x)? [cross(y,z), y, z] :
is_undef(y) ? [x, cross(z,x), z] : is_undef(y)? [x, cross(z,x), z] :
is_undef(z) ? [x, y, cross(x,y)] : is_undef(z)? [x, y, cross(x,y)] :
[x, y, z] [x, y, z]
) )
reverse ? reverse? (
let( ocheck = approx(map[0]*map[1],0) && approx(map[0]*map[2],0) && approx(map[1]*map[2],0)) let(
ocheck = (
approx(map[0]*map[1],0) &&
approx(map[0]*map[2],0) &&
approx(map[1]*map[2],0)
)
)
assert(ocheck, "Inputs must be orthogonal when reverse==true") assert(ocheck, "Inputs must be orthogonal when reverse==true")
affine2d_to_3d(map) affine2d_to_3d(map)
: ) : affine2d_to_3d(transpose(map));
affine2d_to_3d(transpose(map));
@ -294,8 +306,10 @@ function affine_frame_map(x,y,z, reverse=false) =
// Arguments: // Arguments:
// v = The normal vector of the plane to reflect across. // v = The normal vector of the plane to reflect across.
function affine3d_mirror(v) = function affine3d_mirror(v) =
let(v=unit(point3d(v)), a=v.x, b=v.y, c=v.z) let(
[ v=unit(point3d(v)),
a=v.x, b=v.y, c=v.z
) [
[1-2*a*a, -2*a*b, -2*a*c, 0], [1-2*a*a, -2*a*b, -2*a*c, 0],
[ -2*b*a, 1-2*b*b, -2*b*c, 0], [ -2*b*a, 1-2*b*b, -2*b*c, 0],
[ -2*c*a, -2*c*b, 1-2*c*c, 0], [ -2*c*a, -2*c*b, 1-2*c*c, 0],
@ -437,8 +451,10 @@ function apply_list(points,transform_list) =
// Function: is_2d_transform() // Function: is_2d_transform()
// Usage: is_2d_transform(t) // Usage:
// Description: Checks if the input is a 3d transform that does not act on the z coordinate, except // is_2d_transform(t)
// Description:
// Checks if the input is a 3d transform that does not act on the z coordinate, except
// possibly for a simple scaling of z. Note that an input which is only a zscale returns false. // possibly for a simple scaling of z. Note that an input which is only a zscale returns false.
function is_2d_transform(t) = // z-parameters are zero, except we allow t[2][2]!=1 so scale() works function is_2d_transform(t) = // z-parameters are zero, except we allow t[2][2]!=1 so scale() works
t[2][0]==0 && t[2][1]==0 && t[2][3]==0 && t[0][2] == 0 && t[1][2]==0 && t[2][0]==0 && t[2][1]==0 && t[2][3]==0 && t[0][2] == 0 && t[1][2]==0 &&

View file

@ -8,7 +8,7 @@
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////
BOSL_VERSION = [2,0,210]; BOSL_VERSION = [2,0,211];
// Section: BOSL Library Version Functions // Section: BOSL Library Version Functions