mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
Added some affine matrix generation optimizations.
This commit is contained in:
parent
b8e5171e3d
commit
e550909726
2 changed files with 70 additions and 54 deletions
120
affine.scad
120
affine.scad
|
@ -202,17 +202,19 @@ function affine3d_zrot(ang) = [
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// u = 3D axis vector to rotate around.
|
// u = 3D axis vector to rotate around.
|
||||||
// ang = number of degrees to rotate.
|
// ang = number of degrees to rotate.
|
||||||
function affine3d_rot_by_axis(u, ang) = let(
|
function affine3d_rot_by_axis(u, ang) =
|
||||||
u = unit(u),
|
approx(ang,0)? affine3d_identity() :
|
||||||
c = cos(ang),
|
let(
|
||||||
c2 = 1-c,
|
u = unit(u),
|
||||||
s = sin(ang)
|
c = cos(ang),
|
||||||
) [
|
c2 = 1-c,
|
||||||
[u[0]*u[0]*c2+c , u[0]*u[1]*c2-u[2]*s, u[0]*u[2]*c2+u[1]*s, 0],
|
s = sin(ang)
|
||||||
[u[1]*u[0]*c2+u[2]*s, u[1]*u[1]*c2+c , u[1]*u[2]*c2-u[0]*s, 0],
|
) [
|
||||||
[u[2]*u[0]*c2-u[1]*s, u[2]*u[1]*c2+u[0]*s, u[2]*u[2]*c2+c , 0],
|
[u.x*u.x*c2+c , u.x*u.y*c2-u.z*s, u.x*u.z*c2+u.y*s, 0],
|
||||||
[ 0, 0, 0, 1]
|
[u.y*u.x*c2+u.z*s, u.y*u.y*c2+c , u.y*u.z*c2-u.x*s, 0],
|
||||||
];
|
[u.z*u.x*c2-u.y*s, u.z*u.y*c2+u.x*s, u.z*u.z*c2+c , 0],
|
||||||
|
[ 0, 0, 0, 1]
|
||||||
|
];
|
||||||
|
|
||||||
|
|
||||||
// Function: affine3d_rot_from_to()
|
// Function: affine3d_rot_from_to()
|
||||||
|
@ -223,18 +225,23 @@ function affine3d_rot_by_axis(u, ang) = let(
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// from = 3D axis vector to rotate from.
|
// from = 3D axis vector to rotate from.
|
||||||
// to = 3D axis vector to rotate to.
|
// to = 3D axis vector to rotate to.
|
||||||
function affine3d_rot_from_to(from, to) = let(
|
function affine3d_rot_from_to(from, to) =
|
||||||
u = vector_axis(from,to),
|
let(
|
||||||
ang = vector_angle(from,to),
|
from = unit(point3d(from)),
|
||||||
c = cos(ang),
|
to = unit(point3d(to))
|
||||||
c2 = 1-c,
|
) approx(from,to)? affine3d_identity() :
|
||||||
s = sin(ang)
|
let(
|
||||||
) [
|
u = vector_axis(from,to),
|
||||||
[u[0]*u[0]*c2+c , u[0]*u[1]*c2-u[2]*s, u[0]*u[2]*c2+u[1]*s, 0],
|
ang = vector_angle(from,to),
|
||||||
[u[1]*u[0]*c2+u[2]*s, u[1]*u[1]*c2+c , u[1]*u[2]*c2-u[0]*s, 0],
|
c = cos(ang),
|
||||||
[u[2]*u[0]*c2-u[1]*s, u[2]*u[1]*c2+u[0]*s, u[2]*u[2]*c2+c , 0],
|
c2 = 1-c,
|
||||||
[ 0, 0, 0, 1]
|
s = sin(ang)
|
||||||
];
|
) [
|
||||||
|
[u.x*u.x*c2+c , u.x*u.y*c2-u.z*s, u.x*u.z*c2+u.y*s, 0],
|
||||||
|
[u.y*u.x*c2+u.z*s, u.y*u.y*c2+c , u.y*u.z*c2-u.x*s, 0],
|
||||||
|
[u.z*u.x*c2-u.y*s, u.z*u.y*c2+u.x*s, u.z*u.z*c2+c , 0],
|
||||||
|
[ 0, 0, 0, 1]
|
||||||
|
];
|
||||||
|
|
||||||
|
|
||||||
// Function: affine_frame_map()
|
// Function: affine_frame_map()
|
||||||
|
@ -246,7 +253,7 @@ function affine3d_rot_from_to(from, to) = let(
|
||||||
// Returns a transformation that maps one coordinate frame to another. You must specify two or three of `x`, `y`, and `z`. The specified
|
// Returns a transformation that maps one coordinate frame to another. You must specify two or three of `x`, `y`, and `z`. The specified
|
||||||
// axes are mapped to the vectors you supplied. If you give two inputs, the third vector is mapped to the appropriate normal to maintain a right hand coordinate system.
|
// axes are mapped to the vectors you supplied. If you give two inputs, the third vector is mapped to the appropriate normal to maintain a right hand coordinate system.
|
||||||
// If the vectors you give are orthogonal the result will be a rotation and the `reverse` parameter will supply the inverse map, which enables you
|
// If the vectors you give are orthogonal the result will be a rotation and the `reverse` parameter will supply the inverse map, which enables you
|
||||||
// to map two arbitrary coordinate systems two each other by using the canonical coordinate system as an intermediary. You cannot use the `reverse` option
|
// to map two arbitrary coordinate systems to each other by using the canonical coordinate system as an intermediary. You cannot use the `reverse` option
|
||||||
// with non-orthogonal inputs.
|
// with non-orthogonal inputs.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// x = Destination vector for x axis
|
// x = Destination vector for x axis
|
||||||
|
@ -259,30 +266,35 @@ function affine3d_rot_from_to(from, to) = let(
|
||||||
// // The next map sends [1,1,0] to [0,1,1] and [-1,1,0] to [0,-1,1]
|
// // The next map sends [1,1,0] to [0,1,1] and [-1,1,0] to [0,-1,1]
|
||||||
// T = affine_frame_map(x=[0,1,1], y=[0,-1,1]) * affine_frame_map(x=[1,1,0], y=[-1,1,0],reverse=true);
|
// T = affine_frame_map(x=[0,1,1], y=[0,-1,1]) * affine_frame_map(x=[1,1,0], y=[-1,1,0],reverse=true);
|
||||||
function affine_frame_map(x,y,z, reverse=false) =
|
function affine_frame_map(x,y,z, reverse=false) =
|
||||||
assert(num_defined([x,y,z])>=2, "Must define at least two inputs")
|
assert(num_defined([x,y,z])>=2, "Must define at least two inputs")
|
||||||
let(
|
let(
|
||||||
xvalid = is_undef(x) || (is_vector(x) && len(x)==3),
|
xvalid = is_undef(x) || (is_vector(x) && len(x)==3),
|
||||||
yvalid = is_undef(y) || (is_vector(y) && len(y)==3),
|
yvalid = is_undef(y) || (is_vector(y) && len(y)==3),
|
||||||
zvalid = is_undef(z) || (is_vector(z) && len(z)==3)
|
zvalid = is_undef(z) || (is_vector(z) && len(z)==3)
|
||||||
)
|
)
|
||||||
assert(xvalid,"Input x must be a length 3 vector")
|
assert(xvalid,"Input x must be a length 3 vector")
|
||||||
assert(yvalid,"Input y must be a length 3 vector")
|
assert(yvalid,"Input y must be a length 3 vector")
|
||||||
assert(zvalid,"Input z must be a length 3 vector")
|
assert(zvalid,"Input z must be a length 3 vector")
|
||||||
let(
|
let(
|
||||||
x = is_def(x) ? unit(x) : undef,
|
x = is_undef(x)? undef : unit(x),
|
||||||
y = is_def(y) ? unit(y) : undef,
|
y = is_undef(y)? undef : unit(y),
|
||||||
z = is_def(z) ? unit(z) : undef,
|
z = is_undef(z)? undef : unit(z),
|
||||||
map = is_undef(x) ? [cross(y,z), y, z] :
|
map = is_undef(x)? [cross(y,z), y, z] :
|
||||||
is_undef(y) ? [x, cross(z,x), z] :
|
is_undef(y)? [x, cross(z,x), z] :
|
||||||
is_undef(z) ? [x, y, cross(x,y)] :
|
is_undef(z)? [x, y, cross(x,y)] :
|
||||||
[x, y, z]
|
[x, y, z]
|
||||||
)
|
)
|
||||||
reverse ?
|
reverse? (
|
||||||
let( ocheck = approx(map[0]*map[1],0) && approx(map[0]*map[2],0) && approx(map[1]*map[2],0))
|
let(
|
||||||
assert(ocheck, "Inputs must be orthogonal when reverse==true")
|
ocheck = (
|
||||||
affine2d_to_3d(map)
|
approx(map[0]*map[1],0) &&
|
||||||
:
|
approx(map[0]*map[2],0) &&
|
||||||
affine2d_to_3d(transpose(map));
|
approx(map[1]*map[2],0)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
assert(ocheck, "Inputs must be orthogonal when reverse==true")
|
||||||
|
affine2d_to_3d(map)
|
||||||
|
) : affine2d_to_3d(transpose(map));
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -294,8 +306,10 @@ function affine_frame_map(x,y,z, reverse=false) =
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// v = The normal vector of the plane to reflect across.
|
// v = The normal vector of the plane to reflect across.
|
||||||
function affine3d_mirror(v) =
|
function affine3d_mirror(v) =
|
||||||
let(v=unit(point3d(v)), a=v.x, b=v.y, c=v.z)
|
let(
|
||||||
[
|
v=unit(point3d(v)),
|
||||||
|
a=v.x, b=v.y, c=v.z
|
||||||
|
) [
|
||||||
[1-2*a*a, -2*a*b, -2*a*c, 0],
|
[1-2*a*a, -2*a*b, -2*a*c, 0],
|
||||||
[ -2*b*a, 1-2*b*b, -2*b*c, 0],
|
[ -2*b*a, 1-2*b*b, -2*b*c, 0],
|
||||||
[ -2*c*a, -2*c*b, 1-2*c*c, 0],
|
[ -2*c*a, -2*c*b, 1-2*c*c, 0],
|
||||||
|
@ -437,8 +451,10 @@ function apply_list(points,transform_list) =
|
||||||
|
|
||||||
|
|
||||||
// Function: is_2d_transform()
|
// Function: is_2d_transform()
|
||||||
// Usage: is_2d_transform(t)
|
// Usage:
|
||||||
// Description: Checks if the input is a 3d transform that does not act on the z coordinate, except
|
// is_2d_transform(t)
|
||||||
|
// Description:
|
||||||
|
// Checks if the input is a 3d transform that does not act on the z coordinate, except
|
||||||
// possibly for a simple scaling of z. Note that an input which is only a zscale returns false.
|
// possibly for a simple scaling of z. Note that an input which is only a zscale returns false.
|
||||||
function is_2d_transform(t) = // z-parameters are zero, except we allow t[2][2]!=1 so scale() works
|
function is_2d_transform(t) = // z-parameters are zero, except we allow t[2][2]!=1 so scale() works
|
||||||
t[2][0]==0 && t[2][1]==0 && t[2][3]==0 && t[0][2] == 0 && t[1][2]==0 &&
|
t[2][0]==0 && t[2][1]==0 && t[2][3]==0 && t[0][2] == 0 && t[1][2]==0 &&
|
||||||
|
|
|
@ -8,7 +8,7 @@
|
||||||
//////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
|
||||||
BOSL_VERSION = [2,0,210];
|
BOSL_VERSION = [2,0,211];
|
||||||
|
|
||||||
|
|
||||||
// Section: BOSL Library Version Functions
|
// Section: BOSL Library Version Functions
|
||||||
|
|
Loading…
Reference in a new issue