From e649991e566d44c596c9ce34b491dc50819efdb5 Mon Sep 17 00:00:00 2001 From: Revar Desmera Date: Sun, 12 May 2019 18:10:15 -0700 Subject: [PATCH] Merged functions&modules docs in shapes2d.scad --- shapes2d.scad | 326 ++++++++++++++++---------------------------------- 1 file changed, 101 insertions(+), 225 deletions(-) diff --git a/shapes2d.scad b/shapes2d.scad index 9cf3f53..cf63764 100644 --- a/shapes2d.scad +++ b/shapes2d.scad @@ -80,20 +80,23 @@ module stroke(path, width=1, endcaps=true, close=false) // Section: 2D Shapes -// Function: pie_slice2d() +// Function&Module: pie_slice2d() // Usage: // pie_slice2d(r|d, ang); // Description: -// Returns the 2D path for a "pie" slice of a circle. +// When called as a function, returns the 2D path for a "pie" slice of a circle. +// When called as a module, creates a 2D "pie" slice of a circle. // Arguments: // r = The radius of the circle to get a slice of. // d = The diameter of the circle to get a slice of. // ang = The angle of the arc of the pie slice. // Examples(2D): +// pie_slice2d(r=50,ang=30); +// pie_slice2d(d=100,ang=45); +// pie_slice2d(d=40,ang=120); +// pie_slice2d(d=40,ang=240); +// Example(2D): Called as Function // stroke(close=true, pie_slice2d(r=50,ang=30)); -// stroke(close=true, pie_slice2d(d=100,ang=45)); -// stroke(close=true, pie_slice2d(d=40,ang=120)); -// stroke(close=true, pie_slice2d(d=40,ang=240)); function pie_slice2d(r=undef, d=undef, ang=30) = let( r = get_radius(r=r, d=d, dflt=10), @@ -104,48 +107,18 @@ function pie_slice2d(r=undef, d=undef, ang=30) = ); -// Module: pie_slice2d() -// Usage: -// pie_slice2d(r|d, ang); -// Description: -// Creates a 2D "pie" slice of a circle. -// Arguments: -// r = The radius of the circle to get a slice of. -// d = The diameter of the circle to get a slice of. -// ang = The angle of the arc of the pie slice. -// Examples(2D): -// pie_slice2d(r=50,ang=30); -// pie_slice2d(d=100,ang=45); -// pie_slice2d(d=40,ang=120); -// pie_slice2d(d=40,ang=240); module pie_slice2d(r=undef, d=undef, ang=30) { pts = pie_slice2d(r=r, d=d, ang=ang); polygon(pts); } -// Function: trapezoid() +// Function&Module: trapezoid() // Usage: // trapezoid(h, w1, w2); // Description: -// Returns a 2D path for a trapezoid with parallel front and back sides. -// Arguments: -// h = The Y axis height of the trapezoid. -// w1 = The X axis width of the front end of the trapezoid. -// w2 = The X axis width of the back end of the trapezoid. -// Examples(2D): -// stroke(close=true, trapezoid(h=30, w1=40, w2=20)); -// stroke(close=true, trapezoid(h=30, w1=20, w2=30)); -// stroke(close=true, trapezoid(h=30, w1=30, w2=0)); -function trapezoid(h, w1, w2) = - [[-w1/2,-h/2], [-w2/2,h/2], [w2/2,h/2], [w1/2,-h/2]]; - - -// Module: trapezoid() -// Usage: -// trapezoid(h, w1, w2); -// Description: -// Returns a 2D trapezoid with parallel front and back sides. +// When called as a function, returns a 2D path for a trapezoid with parallel front and back sides. +// When called as a module, creates a 2D trapezoid with parallel front and back sides. // Arguments: // h = The Y axis height of the trapezoid. // w1 = The X axis width of the front end of the trapezoid. @@ -154,17 +127,24 @@ function trapezoid(h, w1, w2) = // trapezoid(h=30, w1=40, w2=20); // trapezoid(h=25, w1=20, w2=35); // trapezoid(h=20, w1=40, w2=0); +// Example(2D): Called as Function +// stroke(close=true, trapezoid(h=30, w1=40, w2=20)); +function trapezoid(h, w1, w2) = + [[-w1/2,-h/2], [-w2/2,h/2], [w2/2,h/2], [w1/2,-h/2]]; + + module trapezoid(h, w1, w2) polygon(trapezoid(h=h, w1=w1, w2=w2)); -// Function: regular_ngon(); +// Function&Module: regular_ngon() // Usage: // regular_ngon(n, or|od, [realign]); // regular_ngon(n, ir|id, [realign]); // regular_ngon(n, side, [realign]); // Description: -// Returns a 2D path for a regular N-sided polygon. +// When called as a function, returns a 2D path for a regular N-sided polygon. +// When called as a module, creates a 2D regular N-sided polygon. // Arguments: // n = The number of sides. // or = Outside radius, at points. @@ -173,14 +153,18 @@ module trapezoid(h, w1, w2) // id = Inside diameter, at center of sides. // side = Length of each side. // realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false -// Example(2D): Hexagons by Outer Size +// Example(2D): by Outer Size +// regular_ngon(n=5, or=30); +// regular_ngon(n=5, od=60); +// Example(2D): by Inner Size +// regular_ngon(n=5, ir=30); +// regular_ngon(n=5, id=60); +// Example(2D): by Side Length +// regular_ngon(n=8, side=20); +// Example(2D): Realigned +// regular_ngon(n=8, side=20, realign=true); +// Example(2D): Called as Function // stroke(close=true, regular_ngon(n=6, or=30)); -// stroke(close=true, regular_ngon(n=6, od=60)); -// Example(2D): Pentagon by Inner Size -// stroke(close=true, regular_ngon(n=5, ir=30)); -// stroke(close=true, regular_ngon(n=5, id=60)); -// Examples(2D): Octagon by Side Length -// stroke(close=true, regular_ngon(n=8, side=20)); function regular_ngon(n=6, or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false) = let( sc = 1/cos(180/n), @@ -189,40 +173,18 @@ function regular_ngon(n=6, or=undef, od=undef, ir=undef, id=undef, side=undef, r ) [for (a=[0:360/n:360-EPSILON]) r*[cos(a+offset),sin(a+offset)]]; -// Module: regular_ngon(); -// Usage: -// regular_ngon(n, or|od, [realign]); -// regular_ngon(n, ir|id, [realign]); -// regular_ngon(n, side, [realign]); -// Description: -// Created a 2D regular N-sided polygon. -// Arguments: -// n = The number of sides. -// or = Outside radius, at points. -// od = Outside diameter, at points. -// ir = Inside radius, at center of sides. -// id = Inside diameter, at center of sides. -// side = Length of each side. -// realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false -// Example(2D): Hexagons by Outer Size -// regular_ngon(n=6, or=30); -// regular_ngon(n=6, od=60); -// Example(2D): Pentagon by Inner Size -// regular_ngon(n=5, ir=30); -// regular_ngon(n=5, id=60); -// Examples(2D): Octagon by Side Length -// regular_ngon(n=8, side=20); module regular_ngon(n=6, or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false) polygon(regular_ngon(n=n,or=or,od=od,ir=ir,id=id,side=side,realign=realign)); -// Function: pentagon(); +// Function&Module: pentagon() // Usage: // pentagon(or|od, [realign]); // pentagon(ir|id, [realign]; // pentagon(side, [realign]; // Description: -// Returns a 2D path for a regular pentagon. +// When called as a function, returns a 2D path for a regular pentagon. +// When called as a module, creates a 2D regular pentagon. // Arguments: // or = Outside radius, at points. // od = Outside diameter, at points. @@ -230,47 +192,32 @@ module regular_ngon(n=6, or=undef, od=undef, ir=undef, id=undef, side=undef, rea // id = Inside diameter, at center of sides. // side = Length of each side. // realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false -// Example(2D): By Outer Size +// Example(2D): by Outer Size +// pentagon(or=30); +// pentagon(od=60); +// Example(2D): by Inner Size +// pentagon(ir=30); +// pentagon(id=60); +// Example(2D): by Side Length +// pentagon(side=20); +// Example(2D): Realigned +// pentagon(side=20, realign=true); +// Example(2D): Called as Function // stroke(close=true, pentagon(or=30)); -// stroke(close=true, pentagon(od=60)); -// Example(2D): By Inner Size -// stroke(close=true, pentagon(ir=30)); -// stroke(close=true, pentagon(id=60)); -// Examples(2D): Pentagon by Side Length -// stroke(close=true, pentagon(side=20)); function pentagon(or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false) = regular_ngon(n=5, or=or, od=od, ir=ir, id=id, side=side, realign=realign); -// Module: pentagon(); -// Usage: -// pentagon(or, od, ir, id, side); -// Description: -// Creates a 2D regular pentagon. -// Arguments: -// or = Outside radius, at points. -// od = Outside diameter, at points. -// ir = Inside radius, at center of sides. -// id = Inside diameter, at center of sides. -// side = Length of each side. -// realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false -// Example(2D): By Outer Size -// pentagon(or=30); -// pentagon(od=60); -// Example(2D): By Inner Size -// pentagon(ir=30); -// pentagon(id=60); -// Examples(2D): Pentagon by Side Length -// pentagon(side=20); module pentagon(or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false) polygon(pentagon(or=or, od=od, ir=ir, id=id, side=side, realign=realign)); -// Function: hexagon(); +// Function&Module: hexagon() // Usage: // hexagon(or, od, ir, id, side); // Description: -// Returns a 2D path for a regular hexagon. +// When called as a function, returns a 2D path for a regular hexagon. +// When called as a module, creates a 2D regular hexagon. // Arguments: // or = Outside radius, at points. // od = Outside diameter, at points. @@ -278,47 +225,32 @@ module pentagon(or=undef, od=undef, ir=undef, id=undef, side=undef, realign=fals // id = Inside diameter, at center of sides. // side = Length of each side. // realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false -// Example(2D): By Outer Size +// Example(2D): by Outer Size +// hexagon(or=30); +// hexagon(od=60); +// Example(2D): by Inner Size +// hexagon(ir=30); +// hexagon(id=60); +// Example(2D): by Side Length +// hexagon(side=20); +// Example(2D): Realigned +// hexagon(side=20, realign=true); +// Example(2D): Called as Function // stroke(close=true, hexagon(or=30)); -// stroke(close=true, hexagon(od=60)); -// Example(2D): By Inner Size -// stroke(close=true, hexagon(ir=30)); -// stroke(close=true, hexagon(id=60)); -// Examples(2D): Pentagon by Side Length -// stroke(close=true, hexagon(side=20)); function hexagon(or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false) = regular_ngon(n=6, or=or, od=od, ir=ir, id=id, side=side, realign=realign); -// Module: hexagon(); -// Usage: -// hexagon(or, od, ir, id, side); -// Description: -// Creates a regular 2D hexagon. -// Arguments: -// or = Outside radius, at points. -// od = Outside diameter, at points. -// ir = Inside radius, at center of sides. -// id = Inside diameter, at center of sides. -// side = Length of each side. -// realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false -// Example(2D): By Outer Size -// hexagon(or=30); -// hexagon(od=60); -// Example(2D): By Inner Size -// hexagon(ir=30); -// hexagon(id=60); -// Examples(2D): Pentagon by Side Length -// hexagon(side=20); module hexagon(or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false) polygon(hexagon(or=or, od=od, ir=ir, id=id, side=side, realign=realign)); -// Function: octagon(); +// Function&Module: octagon() // Usage: // octagon(or, od, ir, id, side); // Description: -// Returns a 2D path for a regular octagon. +// When called as a function, returns a 2D path for a regular octagon. +// When called as a module, creates a 2D regular octagon. // Arguments: // or = Outside radius, at points. // od = Outside diameter, at points. @@ -326,59 +258,44 @@ module hexagon(or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false // id = Inside diameter, at center of sides. // side = Length of each side. // realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false -// Example(2D): By Outer Size +// Example(2D): by Outer Size +// octagon(or=30); +// octagon(od=60); +// Example(2D): by Inner Size +// octagon(ir=30); +// octagon(id=60); +// Example(2D): by Side Length +// octagon(side=20); +// Example(2D): Realigned +// octagon(side=20, realign=true); +// Example(2D): Called as Function // stroke(close=true, octagon(or=30)); -// stroke(close=true, octagon(od=60)); -// Example(2D): By Inner Size -// stroke(close=true, octagon(ir=30)); -// stroke(close=true, octagon(id=60)); -// Examples(2D): Pentagon by Side Length -// stroke(close=true, octagon(side=20)); function octagon(or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false) = regular_ngon(n=8, or=or, od=od, ir=ir, id=id, side=side, realign=realign); -// Module: octagon(); -// Usage: -// octagon(or, od, ir, id, side); -// Description: -// Creates a 2D regular octagon. -// Arguments: -// or = Outside radius, at points. -// od = Outside diameter, at points. -// ir = Inside radius, at center of sides. -// id = Inside diameter, at center of sides. -// side = Length of each side. -// realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false -// Example(2D): By Outer Size -// octagon(or=30); -// octagon(od=60); -// Example(2D): By Inner Size -// octagon(ir=30); -// octagon(id=60); -// Examples(2D): By Side Length -// octagon(side=20); -// Examples(2D): Realigned -// octagon(side=20, realign=false); module octagon(or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false) polygon(octagon(or=or, od=od, ir=ir, id=id, side=side, realign=realign)); -// Function: glued_circles() +// Function&Module: glued_circles() // Usage: // glued_circles(r|d, spread, tangent); // Description: -// Returns a 2D path forming a shape of two circles joined by curved waist. +// When called as a function, returns a 2D path forming a shape of two circles joined by curved waist. +// When called as a module, creates a 2D shape of two circles joined by curved waist. // Arguments: // r = The radius of the end circles. // d = The diameter of the end circles. // spread = The distance between the centers of the end circles. // tangent = The angle in degrees of the tangent point for the joining arcs, measured away from the Y axis. // Examples(2D): +// glued_circles(r=15, spread=40, tangent=45); +// glued_circles(d=30, spread=30, tangent=30); +// glued_circles(d=30, spread=30, tangent=15); +// glued_circles(d=30, spread=30, tangent=-30); +// Example(2D): Called as Function // stroke(close=true, glued_circles(r=15, spread=40, tangent=45)); -// stroke(close=true, glued_circles(d=30, spread=30, tangent=30)); -// stroke(close=true, glued_circles(d=30, spread=30, tangent=15)); -// stroke(close=true, glued_circles(d=30, spread=30, tangent=-30)); function glued_circles(r=undef, d=undef, spread=10, tangent=30) = let( r = get_radius(r=r, d=d, dflt=10), @@ -403,30 +320,16 @@ function glued_circles(r=undef, d=undef, spread=10, tangent=30) = ); -// Module: glued_circles() -// Usage: -// glued_circles(r|d, spread, tangent); -// Description: -// Creates a 2D shape of two circles joined by curved waist. -// Arguments: -// r = The radius of the end circles. -// d = The diameter of the end circles. -// spread = The distance between the centers of the end circles. -// tangent = The angle in degrees of the tangent point for the joining arcs, measured away from the Y axis. -// Examples(2D): -// glued_circles(r=15, spread=40, tangent=45); -// glued_circles(d=30, spread=30, tangent=30); -// glued_circles(d=30, spread=30, tangent=15); -// glued_circles(d=30, spread=30, tangent=-30); module glued_circles(r=undef, d=undef, spread=10, tangent=30) polygon(glued_circles(r=r, d=d, spread=spread, tangent=tangent)); -// Function: star() +// Function&Module: star() // Usage: // star(n, r|d, ir|id|step, [realign]); // Description: -// Returns the path needed to create a star polygon with N points. +// When called as a function, returns the path needed to create a star polygon with N points. +// When called as a module, creates a star polygon with N points. // Arguments: // n = The number of stellate tips on the star. // r = The radius to the tips of the star. @@ -436,10 +339,14 @@ module glued_circles(r=undef, d=undef, spread=10, tangent=30) // step = Calculates the radius of the inner star corners by virtually drawing a straight line `step` tips around the star. 2 <= step < n/2 // realign = If false, a tip is aligned with the Y+ axis. If true, an inner corner is aligned with the Y+ axis. Default: false // Examples(2D): +// star(n=5, r=50, ir=25); +// star(n=5, r=50, step=2); +// star(n=7, r=50, step=2); +// star(n=7, r=50, step=3); +// Example(2D): Realigned +// star(n=7, r=50, step=3, realign=true); +// Example(2D): Called as Function // stroke(close=true, star(n=5, r=50, ir=25)); -// stroke(close=true, star(n=5, r=50, step=2)); -// stroke(close=true, star(n=7, r=50, step=2)); -// stroke(close=true, star(n=7, r=50, step=3)); function star(n, r, d, ir, id, step, realign=false) = let( r = get_radius(r=r, d=d), @@ -456,24 +363,6 @@ function star(n, r, d, ir, id, step, realign=false) = [for(i=[0:2*n-1]) let(theta=180*i/n+offset, radius=(i%2)?ir:r) radius*[cos(theta), sin(theta)]]; -// Module: star() -// Usage: -// star(n, r|d, ir|id|step, [realign]); -// Description: -// Creates a star polygon with N points. -// Arguments: -// n = The number of stellate tips on the star. -// r = The radius to the tips of the star. -// d = The diameter to the tips of the star. -// ir = The radius to the inner corners of the star. -// id = The diameter to the inner corners of the star. -// step = Calculates the radius of the inner star corners by virtually drawing a straight line `step` tips around the star. 2 <= step < n/2 -// realign = If false, a tip is aligned with the Y+ axis. If true, an inner corner is aligned with the Y+ axis. Default: false -// Examples(2D): -// star(n=5, r=50, ir=25); -// star(n=5, r=50, step=2); -// star(n=7, r=50, step=2); -// star(n=7, r=50, step=3); module star(n, r, d, ir, id, step, realign=false) polygon(star(n=n, r=r, d=d, ir=ir, id=id, step=step, realign=realign)); @@ -481,32 +370,13 @@ module star(n, r, d, ir, id, step, realign=false) function _superformula(theta,m1,m2,n1,n2=1,n3=1,a=1,b=1) = pow(pow(abs(cos(m1*theta/4)/a),n2)+pow(abs(sin(m2*theta/4)/b),n3),-1/n1); -// Function: superformula_shape() + +// Function&Module: superformula_shape() // Usage: // superformula_shape(step,m1,m2,n1,n2,n3,[a],[b]); // Description: -// Returns a 2D path for the outline of the [Superformula](https://en.wikipedia.org/wiki/Superformula) shape. -// Arguments: -// step = The angle step size for sampling the superformula shape. Smaller steps are slower but more accurate. -// scale = The scaling multiplier for the size of the shape. -// m1 = The m1 argument for the superformula. -// m2 = The m2 argument for the superformula. -// n1 = The n1 argument for the superformula. -// n2 = The n2 argument for the superformula. -// n3 = The n3 argument for the superformula. -// a = The a argument for the superformula. -// b = The b argument for the superformula. -// Example(2D): -// stroke(close=true, superformula_shape(step=0.5,scale=100,m1=16,m2=16,n1=0.5,n2=0.5,n3=16)); -function superformula_shape(step=0.5,scale=1,m1,m2,n1,n2=1,n3=1,a=1,b=1) = - [for (a=[0:step:360]) let(r=scale*_superformula(theta=a,m1=m1,m2=m2,n1=n1,n2=n2,n3=n3)) r*[cos(a),sin(a)]]; - - -// Module: superformula_shape() -// Usage: -// superformula_shape(step,m1,m2,n1,n2,n3,[a],[b]); -// Description: -// Creates a 2D object for the [Superformula](https://en.wikipedia.org/wiki/Superformula) shape. +// When called as a function, returns a 2D path for the outline of the [Superformula](https://en.wikipedia.org/wiki/Superformula) shape. +// When called as a module, creates a 2D [Superformula](https://en.wikipedia.org/wiki/Superformula) shape. // Arguments: // step = The angle step size for sampling the superformula shape. Smaller steps are slower but more accurate. // scale = The scaling multiplier for the size of the shape. @@ -519,6 +389,12 @@ function superformula_shape(step=0.5,scale=1,m1,m2,n1,n2=1,n3=1,a=1,b=1) = // b = The b argument for the superformula. // Example(2D): // superformula_shape(step=0.5,scale=100,m1=16,m2=16,n1=0.5,n2=0.5,n3=16); +// Example(2D): Called as Function +// stroke(close=true, superformula_shape(step=0.5,scale=100,m1=16,m2=16,n1=0.5,n2=0.5,n3=16)); +function superformula_shape(step=0.5,scale=1,m1,m2,n1,n2=1,n3=1,a=1,b=1) = + [for (a=[0:step:360]) let(r=scale*_superformula(theta=a,m1=m1,m2=m2,n1=n1,n2=n2,n3=n3)) r*[cos(a),sin(a)]]; + + module superformula_shape(step=0.5,scale=1,m1,m2,n1,n2=1,n3=1,a=1,b=1) polygon(superformula_shape(step=step,scale=scale,m1=m1,m2=m2,n1=n1,n2=n2,n3=n3,a=a,b=b));