mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-04 03:09:45 +00:00
Merge branch 'master' into master
This commit is contained in:
commit
e9fe501652
4 changed files with 342 additions and 102 deletions
225
attachments.scad
225
attachments.scad
|
@ -1731,33 +1731,48 @@ module face_profile(faces=[], r, d, excess=0.01, convexity=10) {
|
|||
module edge_profile(edges=EDGES_ALL, except=[], excess=0.01, convexity=10) {
|
||||
req_children($children);
|
||||
check1 = assert($parent_geom != undef, "No object to attach to!");
|
||||
edges = _edges(edges, except=except);
|
||||
vecs = [
|
||||
for (i = [0:3], axis=[0:2])
|
||||
if (edges[axis][i]>0)
|
||||
EDGE_OFFSETS[axis][i]
|
||||
];
|
||||
conoid = $parent_geom[0] == "conoid";
|
||||
edges = !conoid? _edges(edges, except=except) :
|
||||
edges==EDGES_ALL? [TOP,BOT] :
|
||||
assert(all([for (e=edges) in_list(e,[TOP,BOT])]), "Invalid conoid edge spec.")
|
||||
edges;
|
||||
vecs = conoid
|
||||
? [for (e=edges) e+FWD]
|
||||
: [
|
||||
for (i = [0:3], axis=[0:2])
|
||||
if (edges[axis][i]>0)
|
||||
EDGE_OFFSETS[axis][i]
|
||||
];
|
||||
all_vecs_are_edges = all([for (vec = vecs) sum(v_abs(vec))==2]);
|
||||
check2 = assert(all_vecs_are_edges, "All vectors must be edges.");
|
||||
default_tag("remove")
|
||||
for ($idx = idx(vecs)) {
|
||||
vec = vecs[$idx];
|
||||
anch = _find_anchor(vec, $parent_geom);
|
||||
path_angs_T = _attach_geom_edge_path($parent_geom, vec);
|
||||
path = path_angs_T[0];
|
||||
vecs = path_angs_T[1];
|
||||
post_T = path_angs_T[2];
|
||||
$attach_to = undef;
|
||||
$attach_anchor = anch;
|
||||
$attach_norot = true;
|
||||
$profile_type = "edge";
|
||||
psize = point3d($parent_size);
|
||||
length = [for (i=[0:2]) if(!vec[i]) psize[i]][0] + excess;
|
||||
rotang =
|
||||
vec.z<0? [90,0,180+v_theta(vec)] :
|
||||
vec.z==0 && sign(vec.x)==sign(vec.y)? 135+v_theta(vec) :
|
||||
vec.z==0 && sign(vec.x)!=sign(vec.y)? [0,180,45+v_theta(vec)] :
|
||||
[-90,0,180+v_theta(vec)];
|
||||
translate(anch[1]) {
|
||||
rot(rotang) {
|
||||
linear_extrude(height=length, center=true, convexity=convexity) {
|
||||
if ($tag=="") tag("remove") children();
|
||||
else children();
|
||||
multmatrix(post_T) {
|
||||
for (i = idx(path,e=-2)) {
|
||||
pt1 = select(path,i);
|
||||
pt2 = select(path,i+1);
|
||||
cp = (pt1 + pt2) / 2;
|
||||
v1 = vecs[i][0];
|
||||
v2 = vecs[i][1];
|
||||
$edge_angle = 180 - vector_angle(v1,v2);
|
||||
if (!approx(pt1,pt2)) {
|
||||
seglen = norm(pt2-pt1) + 2 * excess;
|
||||
move(cp) {
|
||||
frame_map(y=-v1, z=unit(pt2-pt1)) {
|
||||
linear_extrude(height=seglen, center=true, convexity=convexity)
|
||||
children();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1787,6 +1802,7 @@ module edge_profile(edges=EDGES_ALL, except=[], excess=0.01, convexity=10) {
|
|||
// convexity = Max number of times a line could intersect the perimeter of the mask shape. Default: 10
|
||||
// flip = If true, reverses the orientation of any external profile parts at each edge. Default false
|
||||
// corner_type = Specifies how exterior corners should be formed. Must be one of `"none"`, `"chamfer"`, `"round"`, or `"sharp"`. Default: `"none"`
|
||||
// size = If given the width and height of the 2D profile, will enable rounding and chamfering of internal corners when given a negative profile.
|
||||
// Side Effects:
|
||||
// Tags the children with "remove" (and hence sets `$tag`) if no tag is already set.
|
||||
// `$idx` is set to the index number of each edge.
|
||||
|
@ -1837,17 +1853,43 @@ module edge_profile(edges=EDGES_ALL, except=[], excess=0.01, convexity=10) {
|
|||
// Example: More complicated edge sets
|
||||
// cuboid(50) {
|
||||
// edge_profile_asym(
|
||||
// "ALL", except=[TOP+FWD+RIGHT, BOT+BACK+LEFT],
|
||||
// corner_type="chamfer"
|
||||
// [FWD,BACK,BOT+RIGHT], except=[FWD+RIGHT,BOT+BACK],
|
||||
// corner_type="round"
|
||||
// ) xflip() mask2d_roundover(10);
|
||||
// }
|
||||
// Example: Mixing it up a bit.
|
||||
// diff()
|
||||
// cuboid(60) {
|
||||
// tag("keep") edge_profile_asym(LEFT, flip=true, corner_type="chamfer")
|
||||
// xflip() mask2d_chamfer(10);
|
||||
// edge_profile_asym(RIGHT)
|
||||
// mask2d_roundover(10);
|
||||
// }
|
||||
// Example: Chamfering internal corners.
|
||||
// cuboid(40) {
|
||||
// edge_profile_asym(
|
||||
// [FWD+DOWN,FWD+LEFT],
|
||||
// corner_type="chamfer", size=[7,10]
|
||||
// ) xflip() mask2d_chamfer(10);
|
||||
// }
|
||||
// Example: Rounding internal corners.
|
||||
// cuboid(40) {
|
||||
// edge_profile_asym(
|
||||
// [FWD+DOWN,FWD+LEFT],
|
||||
// corner_type="round", size=[10,10]
|
||||
// ) xflip() mask2d_roundover(10);
|
||||
// }
|
||||
|
||||
module edge_profile_asym(edges=EDGES_ALL, except=[], excess=0.01, convexity=10, flip=false, corner_type="none") {
|
||||
module edge_profile_asym(
|
||||
edges=EDGES_ALL, except=[],
|
||||
excess=0.01, convexity=10,
|
||||
flip=false, corner_type="none",
|
||||
size=[0,0]
|
||||
) {
|
||||
function _corner_orientation(pos,pvec) =
|
||||
let(
|
||||
j = [for (i=[0:2]) if (pvec[i]) i][0],
|
||||
T =
|
||||
(pos.x>0? xflip() : ident(4)) *
|
||||
T = (pos.x>0? xflip() : ident(4)) *
|
||||
(pos.y>0? yflip() : ident(4)) *
|
||||
(pos.z>0? zflip() : ident(4)) *
|
||||
rot(-120*(2-j), v=[1,1,1])
|
||||
|
@ -1989,6 +2031,7 @@ module edge_profile_asym(edges=EDGES_ALL, except=[], excess=0.01, convexity=10,
|
|||
check2 = assert(all_vecs_are_edges, "All vectors must be edges.");
|
||||
edge_corners = [for (vec = vecs) [vec, _edge_corner_numbers(vec)]];
|
||||
edge_strings = _gather_contiguous_edges(edge_corners);
|
||||
default_tag("remove")
|
||||
for (edge_string = edge_strings) {
|
||||
inverts = _edge_transition_inversions(edge_string);
|
||||
flipverts = [for (x = inverts) flip? !x : x];
|
||||
|
@ -2006,11 +2049,37 @@ module edge_profile_asym(edges=EDGES_ALL, except=[], excess=0.01, convexity=10,
|
|||
vp2 = select(vecpairs,i);
|
||||
pvec = _edge_pair_perp_vec(e1,e2);
|
||||
pos = [for (i=[0:2]) e1[i]? e1[i] : e2[i]];
|
||||
if (vp1.y == vp2.y) {
|
||||
default_tag("remove")
|
||||
position(pos) {
|
||||
mirT = _corner_orientation(pos, pvec);
|
||||
multmatrix(mirT) {
|
||||
mirT = _corner_orientation(pos, pvec);
|
||||
$attach_to = undef;
|
||||
$attach_anchor = _find_anchor(pos, $parent_geom);
|
||||
$attach_norot = true;
|
||||
$profile_type = "corner";
|
||||
position(pos) {
|
||||
multmatrix(mirT) {
|
||||
if (vp1.x == vp2.x && size.y > 0) {
|
||||
zflip() {
|
||||
if (corner_type=="chamfer") {
|
||||
fn = $fn;
|
||||
move([size.y,size.y]) {
|
||||
rotate_extrude(angle=90, $fn=4)
|
||||
left_half(planar=true, $fn=fn)
|
||||
zrot(-90) fwd(size.y) children();
|
||||
}
|
||||
linear_extrude(height=size.x) {
|
||||
mask2d_roundover(size.y, inset=0.01, $fn=4);
|
||||
}
|
||||
} else if (corner_type=="round") {
|
||||
move([size.y,size.y]) {
|
||||
rotate_extrude(angle=90)
|
||||
left_half(planar=true)
|
||||
zrot(-90) fwd(size.y) children();
|
||||
}
|
||||
linear_extrude(height=size.x) {
|
||||
mask2d_roundover(size.y, inset=0.01);
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (vp1.y == vp2.y) {
|
||||
if (corner_type=="chamfer") {
|
||||
fn = $fn;
|
||||
rotate_extrude(angle=90, $fn=4)
|
||||
|
@ -2038,6 +2107,10 @@ module edge_profile_asym(edges=EDGES_ALL, except=[], excess=0.01, convexity=10,
|
|||
}
|
||||
}
|
||||
for (i = idx(edge_string)) {
|
||||
$attach_to = undef;
|
||||
$attach_anchor = _find_anchor(edge_string[i], $parent_geom);
|
||||
$attach_norot = true;
|
||||
$profile_type = "edge";
|
||||
edge_profile(edge_string[i], excess=excess, convexity=convexity) {
|
||||
if (flipverts[i]) {
|
||||
mirror([-1,1]) children();
|
||||
|
@ -2050,6 +2123,7 @@ module edge_profile_asym(edges=EDGES_ALL, except=[], excess=0.01, convexity=10,
|
|||
}
|
||||
|
||||
|
||||
|
||||
// Module: corner_profile()
|
||||
// Synopsis: Rotationally extrudes a 2d edge profile into corner mask on the given corners of the parent.
|
||||
// SynTags: Geom
|
||||
|
@ -2886,6 +2960,101 @@ function _attach_geom_size(geom) =
|
|||
assert(false, "Unknown attachment geometry type.");
|
||||
|
||||
|
||||
|
||||
/// Internal Function: _attach_geom_edge_path()
|
||||
/// Usage:
|
||||
/// angle = _attach_geom_edge_path(geom, edge);
|
||||
/// Topics: Attachments
|
||||
/// See Also: reorient(), attachable()
|
||||
/// Description:
|
||||
/// Returns the path and post-transform matrix of the indicated edge.
|
||||
/// If the edge is invalid for the geometry, returns `undef`.
|
||||
function _attach_geom_edge_path(geom, edge) =
|
||||
assert(is_vector(edge),str("Invalid edge: edge=",edge))
|
||||
let(
|
||||
type = geom[0],
|
||||
cp = _get_cp(geom),
|
||||
offset_raw = select(geom,-2),
|
||||
offset = [for (i=[0:2]) edge[i]==0? 0 : offset_raw[i]], // prevents bad centering.
|
||||
edge = point3d(edge)
|
||||
)
|
||||
type == "prismoid"? ( //size, size2, shift, axis
|
||||
let(all_comps_good = [for (c=edge) if (c!=sign(c)) 1]==[])
|
||||
assert(all_comps_good, "All components of an edge for a cuboid/prismoid must be -1, 0, or 1")
|
||||
let(edge_good = len([for (c=edge) if(c) 1])==2)
|
||||
assert(edge_good, "Invalid edge.")
|
||||
let(
|
||||
size = geom[1],
|
||||
size2 = geom[2],
|
||||
shift = point2d(geom[3]),
|
||||
axis = point3d(geom[4]),
|
||||
edge = rot(from=axis, to=UP, p=edge),
|
||||
offset = rot(from=axis, to=UP, p=offset),
|
||||
h = size.z,
|
||||
cpos = function(vec) let(
|
||||
u = (vec.z + 1) / 2,
|
||||
siz = lerp(point2d(size), size2, u) / 2,
|
||||
z = vec.z * h / 2,
|
||||
pos = point3d(v_mul(siz, point2d(vec)) + shift * u, z)
|
||||
) pos,
|
||||
ep1 = cpos([for (c=edge) c? c : -1]),
|
||||
ep2 = cpos([for (c=edge) c? c : 1]),
|
||||
cp = (ep1 + ep2) / 2,
|
||||
axy = point2d(edge),
|
||||
bot = point3d(v_mul(point2d(size )/2, axy), -h/2),
|
||||
top = point3d(v_mul(point2d(size2)/2, axy) + shift, h/2),
|
||||
xang = atan2(h,(top-bot).x),
|
||||
yang = atan2(h,(top-bot).y),
|
||||
vecs = [
|
||||
if (edge.x) yrot(90-xang, p=sign(axy.x)*RIGHT),
|
||||
if (edge.y) xrot(yang-90, p=sign(axy.y)*BACK),
|
||||
if (edge.z) [0,0,sign(edge.z)]
|
||||
],
|
||||
segvec = cross(unit(vecs[1]), unit(vecs[0])),
|
||||
seglen = norm(ep2 - ep1),
|
||||
path = [
|
||||
cp - segvec * seglen/2,
|
||||
cp + segvec * seglen/2
|
||||
],
|
||||
m = rot(from=UP,to=axis) * move(offset)
|
||||
) [path, [vecs], m]
|
||||
) : type == "conoid"? ( //r1, r2, l, shift, axis
|
||||
assert(edge.z && edge.z == sign(edge.z), "The Z component of an edge for a cylinder/cone must be -1 or 1")
|
||||
let(
|
||||
rr1 = geom[1],
|
||||
rr2 = geom[2],
|
||||
l = geom[3],
|
||||
shift = point2d(geom[4]),
|
||||
axis = point3d(geom[5]),
|
||||
r1 = is_num(rr1)? [rr1,rr1] : point2d(rr1),
|
||||
r2 = is_num(rr2)? [rr2,rr2] : point2d(rr2),
|
||||
edge = rot(from=axis, to=UP, p=edge),
|
||||
offset = rot(from=axis, to=UP, p=offset),
|
||||
maxr = max([each r1, each r2]),
|
||||
sides = segs(maxr),
|
||||
top = path3d(move(shift, p=ellipse(r=r2, $fn=sides)), l/2),
|
||||
bot = path3d(ellipse(r=r1, $fn=sides), -l/2),
|
||||
path = edge.z < 0 ? bot : top,
|
||||
path2 = edge.z < 0 ? top : bot,
|
||||
zed = edge.z<0? [0,0,-l/2] : point3d(shift,l/2),
|
||||
vecs = [
|
||||
for (i = idx(top)) let(
|
||||
pt1 = (path[i] + select(path,i+1)) /2,
|
||||
pt2 = (path2[i] + select(path2,i+1)) /2,
|
||||
v1 = unit(zed - pt1),
|
||||
v2 = unit(pt2 - pt1),
|
||||
v3 = unit(cross(v1,v2)),
|
||||
v4 = cross(v3,v2),
|
||||
v5 = cross(v1,v3)
|
||||
) [v4, v5]
|
||||
],
|
||||
m = rot(from=UP,to=axis) * move(offset)
|
||||
) edge.z>0
|
||||
? [reverse(list_wrap(path)), reverse(vecs), m]
|
||||
: [list_wrap(path), vecs, m]
|
||||
) : undef;
|
||||
|
||||
|
||||
/// Internal Function: _attach_transform()
|
||||
/// Usage: To Get a Transformation Matrix
|
||||
/// mat = _attach_transform(anchor, spin, orient, geom);
|
||||
|
|
23
gears.scad
23
gears.scad
|
@ -284,6 +284,29 @@ module spur_gear(
|
|||
// spur_gear2d(pitch=5, teeth=20, pressure_angle=20);
|
||||
// Example(2D): Partial Gear
|
||||
// spur_gear2d(pitch=5, teeth=20, hide=15, pressure_angle=20);
|
||||
// Example(2D): Planetary Gear Assembly
|
||||
// rteeth=56; pteeth=16; cteeth=24;
|
||||
// pitch=5; pa=20;
|
||||
// prad = (pitch_radius(pitch,rteeth) +
|
||||
// pitch_radius(pitch,cteeth)) / 2;
|
||||
// rrad = outer_radius(pitch,rteeth,interior=true) + 5;
|
||||
// difference() {
|
||||
// circle(r=rrad);
|
||||
// spur_gear2d(
|
||||
// pitch=pitch, teeth=rteeth,
|
||||
// pressure_angle=pa, interior=true);
|
||||
// }
|
||||
// for (a=[0:3]) {
|
||||
// zrot(a*90) back(prad) {
|
||||
// color("green")
|
||||
// spur_gear2d(
|
||||
// pitch=pitch, teeth=pteeth,
|
||||
// pressure_angle=pa);
|
||||
// }
|
||||
// }
|
||||
// color("orange")
|
||||
// zrot(180/cteeth)
|
||||
// spur_gear2d(pitch=pitch, teeth=cteeth, pressure_angle=pa);
|
||||
// Example(2D): Called as a Function
|
||||
// path = spur_gear2d(pitch=8, teeth=16);
|
||||
// polygon(path);
|
||||
|
|
156
masks2d.scad
156
masks2d.scad
|
@ -15,22 +15,23 @@
|
|||
// Section: 2D Masking Shapes
|
||||
|
||||
// Function&Module: mask2d_roundover()
|
||||
// Synopsis: Creates a 2D beading mask shape useful for rounding 90° edges.
|
||||
// Synopsis: Creates a 2D beading mask shape useful for rounding edges.
|
||||
// SynTags: Geom, Path
|
||||
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable, Masks (2D)
|
||||
// See Also: corner_profile(), edge_profile(), face_profile(), fillet()
|
||||
// Usage: As module
|
||||
// mask2d_roundover(r|d=, [inset], [excess]) [ATTACHMENTS];
|
||||
// mask2d_roundover(r|d=, [inset], [mask_angle], [excess]) [ATTACHMENTS];
|
||||
// Usage: As function
|
||||
// path = mask2d_roundover(r|d=, [inset], [excess]);
|
||||
// path = mask2d_roundover(r|d=, [inset], [mask_angle], [excess]);
|
||||
// Description:
|
||||
// Creates a 2D roundover/bead mask shape that is useful for extruding into a 3D mask for a 90° edge.
|
||||
// Conversely, you can use that same extruded shape to make an interior fillet between two walls at a 90º angle.
|
||||
// Creates a 2D roundover/bead mask shape that is useful for extruding into a 3D mask for an edge.
|
||||
// Conversely, you can use that same extruded shape to make an interior fillet between two walls.
|
||||
// As a 2D mask, this is designed to be differenced away from the edge of a shape that is in the first (X+Y+) quadrant.
|
||||
// If called as a function, this just returns a 2D path of the outline of the mask shape.
|
||||
// Arguments:
|
||||
// r = Radius of the roundover.
|
||||
// inset = Optional bead inset size. Default: 0
|
||||
// mask_angle = Number of degrees in the corner angle to mask. Default: 90
|
||||
// excess = Extra amount of mask shape to creates on the X- and Y- sides of the shape. Default: 0.01
|
||||
// ---
|
||||
// d = Diameter of the roundover.
|
||||
|
@ -40,6 +41,10 @@
|
|||
// mask2d_roundover(r=10);
|
||||
// Example(2D): 2D Bead Mask
|
||||
// mask2d_roundover(r=10,inset=2);
|
||||
// Example(2D): 2D Bead Mask for a Non-Right Edge.
|
||||
// mask2d_roundover(r=10, inset=2, mask_angle=75);
|
||||
// Example(2D): Increasing the Excess
|
||||
// mask2d_roundover(r=10, inset=2, mask_angle=75, excess=2);
|
||||
// Example: Masking by Edge Attachment
|
||||
// diff()
|
||||
// cube([50,60,70],center=true)
|
||||
|
@ -53,29 +58,36 @@
|
|||
// xrot(90)
|
||||
// linear_extrude(height=30, center=true)
|
||||
// mask2d_roundover(r=10);
|
||||
module mask2d_roundover(r, inset=0, excess=0.01, d, anchor=CENTER,spin=0) {
|
||||
path = mask2d_roundover(r=r,d=d,excess=excess,inset=inset);
|
||||
module mask2d_roundover(r, inset=0, mask_angle=90, excess=0.01, d, anchor=CENTER,spin=0) {
|
||||
path = mask2d_roundover(r=r, d=d, inset=inset, mask_angle=mask_angle, excess=excess);
|
||||
attachable(anchor,spin, two_d=true, path=path) {
|
||||
polygon(path);
|
||||
children();
|
||||
}
|
||||
}
|
||||
|
||||
function mask2d_roundover(r, inset=0, excess=0.01, d, anchor=CENTER,spin=0) =
|
||||
function mask2d_roundover(r, inset=0, mask_angle=90, excess=0.01, d, anchor=CENTER, spin=0) =
|
||||
assert(is_finite(r)||is_finite(d))
|
||||
assert(is_finite(excess))
|
||||
assert(is_finite(mask_angle) && mask_angle>0 && mask_angle<180)
|
||||
assert(is_finite(inset)||(is_vector(inset)&&len(inset)==2))
|
||||
let(
|
||||
inset = is_list(inset)? inset : [inset,inset],
|
||||
r = get_radius(r=r,d=d,dflt=1),
|
||||
steps = quantup(segs(r),4)/4,
|
||||
step = 90/steps,
|
||||
path = [
|
||||
[r+inset.x,-excess],
|
||||
avec = polar_to_xy(inset.x,mask_angle-90),
|
||||
line1 = [[0,inset.y], [100,inset.y]],
|
||||
line2 = [avec, polar_to_xy(100,mask_angle)+avec],
|
||||
corner = line_intersection(line1,line2),
|
||||
arcpts = arc(r=r, corner=[line2.y, corner, line1.y]),
|
||||
ipath = [
|
||||
arcpts[0] + polar_to_xy(inset.x+excess, mask_angle+90),
|
||||
each arcpts,
|
||||
last(arcpts) + polar_to_xy(inset.y+excess, -90),
|
||||
[0,-excess],
|
||||
[-excess,-excess],
|
||||
[-excess, r+inset.y],
|
||||
for (i=[0:1:steps]) [r,r] + inset + polar_to_xy(r,180+i*step)
|
||||
]
|
||||
[-excess,0]
|
||||
],
|
||||
path = deduplicate(ipath)
|
||||
) reorient(anchor,spin, two_d=true, path=path, extent=false, p=path);
|
||||
|
||||
|
||||
|
@ -85,17 +97,18 @@ function mask2d_roundover(r, inset=0, excess=0.01, d, anchor=CENTER,spin=0) =
|
|||
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable, Masks (2D)
|
||||
// See Also: corner_profile(), edge_profile(), face_profile()
|
||||
// Usage: As module
|
||||
// mask2d_cove(r|d=, [inset], [excess]) [ATTACHMENTS];
|
||||
// mask2d_cove(r|d=, [inset], [mask_angle], [excess]) [ATTACHMENTS];
|
||||
// Usage: As function
|
||||
// path = mask2d_cove(r|d=, [inset], [excess]);
|
||||
// path = mask2d_cove(r|d=, [inset], [mask_angle], [excess]);
|
||||
// Description:
|
||||
// Creates a 2D cove mask shape that is useful for extruding into a 3D mask for a 90° edge.
|
||||
// Conversely, you can use that same extruded shape to make an interior rounded shelf decoration between two walls at a 90º angle.
|
||||
// Creates a 2D cove mask shape that is useful for extruding into a 3D mask for an edge.
|
||||
// Conversely, you can use that same extruded shape to make an interior rounded shelf decoration between two walls.
|
||||
// As a 2D mask, this is designed to be differenced away from the edge of a shape that is in the first (X+Y+) quadrant.
|
||||
// If called as a function, this just returns a 2D path of the outline of the mask shape.
|
||||
// Arguments:
|
||||
// r = Radius of the cove.
|
||||
// inset = Optional amount to inset code from corner. Default: 0
|
||||
// mask_angle = Number of degrees in the corner angle to mask. Default: 90
|
||||
// excess = Extra amount of mask shape to creates on the X- and Y- sides of the shape. Default: 0.01
|
||||
// ---
|
||||
// d = Diameter of the cove.
|
||||
|
@ -105,6 +118,10 @@ function mask2d_roundover(r, inset=0, excess=0.01, d, anchor=CENTER,spin=0) =
|
|||
// mask2d_cove(r=10);
|
||||
// Example(2D): 2D Inset Cove Mask
|
||||
// mask2d_cove(r=10,inset=3);
|
||||
// Example(2D): 2D Inset Cove Mask for a Non-Right Edge
|
||||
// mask2d_cove(r=10,inset=3,mask_angle=75);
|
||||
// Example(2D): Increasing the Excess
|
||||
// mask2d_cove(r=10,inset=3,mask_angle=75, excess=2);
|
||||
// Example: Masking by Edge Attachment
|
||||
// diff()
|
||||
// cube([50,60,70],center=true)
|
||||
|
@ -118,29 +135,36 @@ function mask2d_roundover(r, inset=0, excess=0.01, d, anchor=CENTER,spin=0) =
|
|||
// xrot(90)
|
||||
// linear_extrude(height=30, center=true)
|
||||
// mask2d_cove(r=5, inset=5);
|
||||
module mask2d_cove(r, inset=0, excess=0.01, d, anchor=CENTER,spin=0) {
|
||||
path = mask2d_cove(r=r,d=d,excess=excess,inset=inset);
|
||||
module mask2d_cove(r, inset=0, mask_angle=90, excess=0.01, d, anchor=CENTER, spin=0) {
|
||||
path = mask2d_cove(r=r, d=d, inset=inset, mask_angle=mask_angle, excess=excess);
|
||||
attachable(anchor,spin, two_d=true, path=path) {
|
||||
polygon(path);
|
||||
children();
|
||||
}
|
||||
}
|
||||
|
||||
function mask2d_cove(r, inset=0, excess=0.01, d, anchor=CENTER,spin=0) =
|
||||
function mask2d_cove(r, inset=0, mask_angle=90, excess=0.01, d, anchor=CENTER, spin=0) =
|
||||
assert(is_finite(r)||is_finite(d))
|
||||
assert(is_finite(mask_angle) && mask_angle>0 && mask_angle<180)
|
||||
assert(is_finite(excess))
|
||||
assert(is_finite(inset)||(is_vector(inset)&&len(inset)==2))
|
||||
let(
|
||||
inset = is_list(inset)? inset : [inset,inset],
|
||||
r = get_radius(r=r,d=d,dflt=1),
|
||||
steps = quantup(segs(r),4)/4,
|
||||
step = 90/steps,
|
||||
path = [
|
||||
[r+inset.x,-excess],
|
||||
avec = polar_to_xy(inset.x,mask_angle-90),
|
||||
line1 = [[0,inset.y], [100,inset.y]],
|
||||
line2 = [avec, polar_to_xy(100,mask_angle)+avec],
|
||||
corner = line_intersection(line1,line2),
|
||||
arcpts = arc(r=r, cp=corner, start=mask_angle, angle=-mask_angle),
|
||||
ipath = [
|
||||
arcpts[0] + polar_to_xy(inset.x+excess, mask_angle+90),
|
||||
each arcpts,
|
||||
last(arcpts) + polar_to_xy(inset.y+excess, -90),
|
||||
[0,-excess],
|
||||
[-excess,-excess],
|
||||
[-excess, r+inset.y],
|
||||
for (i=[0:1:steps]) inset + polar_to_xy(r,90-i*step)
|
||||
]
|
||||
[-excess,0]
|
||||
],
|
||||
path = deduplicate(ipath)
|
||||
) reorient(anchor,spin, two_d=true, path=path, p=path);
|
||||
|
||||
|
||||
|
@ -230,16 +254,17 @@ function mask2d_chamfer(edge, angle=45, inset=0, excess=0.01, x, y, anchor=CENTE
|
|||
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable, Masks (2D)
|
||||
// See Also: corner_profile(), edge_profile(), face_profile()
|
||||
// Usage: As Module
|
||||
// mask2d_rabbet(size, [excess]) [ATTACHMENTS];
|
||||
// mask2d_rabbet(size, [mask_angle], [excess]) [ATTACHMENTS];
|
||||
// Usage: As Function
|
||||
// path = mask2d_rabbet(size, [excess]);
|
||||
// path = mask2d_rabbet(size, [mask_angle], [excess]);
|
||||
// Description:
|
||||
// Creates a 2D rabbet mask shape that is useful for extruding into a 3D mask for a 90° edge.
|
||||
// Conversely, you can use that same extruded shape to make an interior shelf decoration between two walls at a 90º angle.
|
||||
// Creates a 2D rabbet mask shape that is useful for extruding into a 3D mask for an edge.
|
||||
// Conversely, you can use that same extruded shape to make an interior shelf decoration between two walls.
|
||||
// As a 2D mask, this is designed to be differenced away from the edge of a shape that is in the first (X+Y+) quadrant.
|
||||
// If called as a function, this just returns a 2D path of the outline of the mask shape.
|
||||
// Arguments:
|
||||
// size = The size of the rabbet, either as a scalar or an [X,Y] list.
|
||||
// mask_angle = Number of degrees in the corner angle to mask. Default: 90
|
||||
// excess = Extra amount of mask shape to creates on the X- and Y- sides of the shape. Default: 0.01
|
||||
// ---
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
|
||||
|
@ -248,6 +273,8 @@ function mask2d_chamfer(edge, angle=45, inset=0, excess=0.01, x, y, anchor=CENTE
|
|||
// mask2d_rabbet(size=10);
|
||||
// Example(2D): 2D Asymmetrical Rabbet Mask
|
||||
// mask2d_rabbet(size=[5,10]);
|
||||
// Example(2D): 2D Mask for a Non-Right Edge
|
||||
// mask2d_rabbet(size=10,mask_angle=75);
|
||||
// Example: Masking by Edge Attachment
|
||||
// diff()
|
||||
// cube([50,60,70],center=true)
|
||||
|
@ -261,24 +288,31 @@ function mask2d_chamfer(edge, angle=45, inset=0, excess=0.01, x, y, anchor=CENTE
|
|||
// xrot(90)
|
||||
// linear_extrude(height=30, center=true)
|
||||
// mask2d_rabbet(size=[5,10]);
|
||||
module mask2d_rabbet(size, excess=0.01, anchor=CENTER,spin=0) {
|
||||
path = mask2d_rabbet(size=size, excess=excess);
|
||||
module mask2d_rabbet(size, mask_angle=90, excess=0.01, anchor=CTR, spin=0) {
|
||||
path = mask2d_rabbet(size=size, mask_angle=mask_angle, excess=excess);
|
||||
attachable(anchor,spin, two_d=true, path=path, extent=false) {
|
||||
polygon(path);
|
||||
children();
|
||||
}
|
||||
}
|
||||
|
||||
function mask2d_rabbet(size, excess=0.01, anchor=CENTER,spin=0) =
|
||||
function mask2d_rabbet(size, mask_angle=90, excess=0.01, anchor=CTR, spin=0) =
|
||||
assert(is_finite(size)||(is_vector(size)&&len(size)==2))
|
||||
assert(is_finite(mask_angle) && mask_angle>0 && mask_angle<180)
|
||||
assert(is_finite(excess))
|
||||
let(
|
||||
size = is_list(size)? size : [size,size],
|
||||
avec = polar_to_xy(size.x,mask_angle-90),
|
||||
line1 = [[0,size.y], [100,size.y]],
|
||||
line2 = [avec, polar_to_xy(100,mask_angle)+avec],
|
||||
cp = line_intersection(line1,line2),
|
||||
path = [
|
||||
[size.x, -excess],
|
||||
[-excess, -excess],
|
||||
[-excess, size.y],
|
||||
size
|
||||
cp + polar_to_xy(size.x+excess, mask_angle+90),
|
||||
cp,
|
||||
cp + polar_to_xy(size.y+excess, -90),
|
||||
[0,-excess],
|
||||
[-excess,-excess],
|
||||
[-excess,0]
|
||||
]
|
||||
) reorient(anchor,spin, two_d=true, path=path, extent=false, p=path);
|
||||
|
||||
|
@ -368,18 +402,19 @@ function mask2d_dovetail(edge, angle=30, inset=0, shelf=0, excess=0.01, x, y, an
|
|||
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable, Masks (2D), FDM Optimized
|
||||
// See Also: corner_profile(), edge_profile(), face_profile()
|
||||
// Usage: As Module
|
||||
// mask2d_teardrop(r|d=, [angle], [excess]) [ATTACHMENTS];
|
||||
// mask2d_teardrop(r|d=, [angle], [mask_angle], [excess]) [ATTACHMENTS];
|
||||
// Usage: As Function
|
||||
// path = mask2d_teardrop(r|d=, [angle], [excess]);
|
||||
// path = mask2d_teardrop(r|d=, [angle], [mask_angle], [excess]);
|
||||
// Description:
|
||||
// Creates a 2D teardrop mask shape that is useful for extruding into a 3D mask for a 90° edge.
|
||||
// Conversely, you can use that same extruded shape to make an interior teardrop fillet between two walls at a 90º angle.
|
||||
// Creates a 2D teardrop mask shape that is useful for extruding into a 3D mask for an edge.
|
||||
// Conversely, you can use that same extruded shape to make an interior teardrop fillet between two walls.
|
||||
// As a 2D mask, this is designed to be differenced away from the edge of a shape that is in the first (X+Y+) quadrant.
|
||||
// If called as a function, this just returns a 2D path of the outline of the mask shape.
|
||||
// This is particularly useful to make partially rounded bottoms, that don't need support to print.
|
||||
// Arguments:
|
||||
// r = Radius of the rounding.
|
||||
// angle = The maximum angle from vertical.
|
||||
// mask_angle = Number of degrees in the corner angle to mask. Default: 90
|
||||
// excess = Extra amount of mask shape to creates on the X- and Y- sides of the shape. Default: 0.01
|
||||
// ---
|
||||
// d = Diameter of the rounding.
|
||||
|
@ -387,6 +422,10 @@ function mask2d_dovetail(edge, angle=30, inset=0, shelf=0, excess=0.01, x, y, an
|
|||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
|
||||
// Example(2D): 2D Teardrop Mask
|
||||
// mask2d_teardrop(r=10);
|
||||
// Example(2D): 2D Teardrop Mask for a Non-Right Edge
|
||||
// mask2d_teardrop(r=10, mask_angle=75);
|
||||
// Example(2D): Increasing Excess
|
||||
// mask2d_teardrop(r=10, mask_angle=75, excess=2);
|
||||
// Example(2D): Using a Custom Angle
|
||||
// mask2d_teardrop(r=10,angle=30);
|
||||
// Example: Masking by Edge Attachment
|
||||
|
@ -402,25 +441,34 @@ function mask2d_dovetail(edge, angle=30, inset=0, shelf=0, excess=0.01, x, y, an
|
|||
// xrot(90)
|
||||
// linear_extrude(height=30, center=true)
|
||||
// mask2d_teardrop(r=10);
|
||||
function mask2d_teardrop(r, angle=45, excess=0.01, d, anchor=CENTER, spin=0) =
|
||||
function mask2d_teardrop(r, angle=45, mask_angle=90, excess=0.01, d, anchor=CENTER, spin=0) =
|
||||
assert(is_finite(angle))
|
||||
assert(angle>0 && angle<90)
|
||||
assert(is_finite(mask_angle) && mask_angle>0 && mask_angle<180)
|
||||
assert(is_finite(excess))
|
||||
let(
|
||||
r = get_radius(r=r, d=d, dflt=1),
|
||||
n = ceil(segs(r) * angle/360),
|
||||
cp = [r,r],
|
||||
avec = polar_to_xy(r,mask_angle-90),
|
||||
line1 = [[0,r], [100,r]],
|
||||
line2 = [avec, polar_to_xy(100,mask_angle)+avec],
|
||||
cp = line_intersection(line1,line2),
|
||||
tp = cp + polar_to_xy(r,180+angle),
|
||||
bp = [tp.x+adj_ang_to_opp(tp.y,angle), 0],
|
||||
step = angle/n,
|
||||
path = [
|
||||
bp, bp-[0,excess], [-excess,-excess], [-excess,r],
|
||||
for (i=[0:1:n]) cp+polar_to_xy(r,180+i*step)
|
||||
]
|
||||
arcpts = arc(r=r, cp=cp, angle=[mask_angle+90,180+angle]),
|
||||
ipath = [
|
||||
arcpts[0] + polar_to_xy(excess, mask_angle+90),
|
||||
each arcpts,
|
||||
bp,
|
||||
bp + [0,-excess],
|
||||
[0,-excess],
|
||||
[-excess,-excess],
|
||||
[-excess,0]
|
||||
],
|
||||
path = deduplicate(ipath)
|
||||
) reorient(anchor,spin, two_d=true, path=path, p=path);
|
||||
|
||||
module mask2d_teardrop(r, angle=45, excess=0.01, d, anchor=CENTER, spin=0) {
|
||||
path = mask2d_teardrop(r=r, d=d, angle=angle, excess=excess);
|
||||
module mask2d_teardrop(r, angle=45, mask_angle=90, excess=0.01, d, anchor=CENTER, spin=0) {
|
||||
path = mask2d_teardrop(r=r, d=d, angle=angle, mask_angle=mask_angle, excess=excess);
|
||||
attachable(anchor,spin, two_d=true, path=path) {
|
||||
polygon(path);
|
||||
children();
|
||||
|
|
|
@ -19,24 +19,24 @@ test_mask2d_chamfer();
|
|||
|
||||
module test_mask2d_cove() {
|
||||
$fn = 24;
|
||||
assert_approx(mask2d_cove(r=10),[[10,-0.01],[-0.01,-0.01],[-0.01,10],[0,10],[2.58819045103,9.65925826289],[5,8.66025403784],[7.07106781187,7.07106781187],[8.66025403784,5],[9.65925826289,2.58819045103],[10,0]]);
|
||||
assert_approx(mask2d_cove(d=20),[[10,-0.01],[-0.01,-0.01],[-0.01,10],[0,10],[2.58819045103,9.65925826289],[5,8.66025403784],[7.07106781187,7.07106781187],[8.66025403784,5],[9.65925826289,2.58819045103],[10,0]]);
|
||||
assert_approx(mask2d_cove(r=10,inset=1),[[11,-0.01],[-0.01,-0.01],[-0.01,11],[1,11],[3.58819045103,10.6592582629],[6,9.66025403784],[8.07106781187,8.07106781187],[9.66025403784,6],[10.6592582629,3.58819045103],[11,1]]);
|
||||
assert_approx(mask2d_cove(d=20,inset=1),[[11,-0.01],[-0.01,-0.01],[-0.01,11],[1,11],[3.58819045103,10.6592582629],[6,9.66025403784],[8.07106781187,8.07106781187],[9.66025403784,6],[10.6592582629,3.58819045103],[11,1]]);
|
||||
assert_approx(mask2d_cove(r=10,inset=1,excess=1),[[11,-1],[-1,-1],[-1,11],[1,11],[3.58819045103,10.6592582629],[6,9.66025403784],[8.07106781187,8.07106781187],[9.66025403784,6],[10.6592582629,3.58819045103],[11,1]]);
|
||||
assert_approx(mask2d_cove(d=20,inset=1,excess=1),[[11,-1],[-1,-1],[-1,11],[1,11],[3.58819045103,10.6592582629],[6,9.66025403784],[8.07106781187,8.07106781187],[9.66025403784,6],[10.6592582629,3.58819045103],[11,1]]);
|
||||
assert_approx(mask2d_cove(r=10),[[-0.01,10],[0,10],[3.09016994375,9.51056516295],[5.87785252292,8.09016994375],[8.09016994375,5.87785252292],[9.51056516295,3.09016994375],[10,0],[10,-0.01],[0,-0.01],[-0.01,-0.01],[-0.01,0]]);
|
||||
assert_approx(mask2d_cove(d=20),[[-0.01,10],[0,10],[3.09016994375,9.51056516295],[5.87785252292,8.09016994375],[8.09016994375,5.87785252292],[9.51056516295,3.09016994375],[10,0],[10,-0.01],[0,-0.01],[-0.01,-0.01],[-0.01,0]]);
|
||||
assert_approx(mask2d_cove(r=10,inset=1),[[-0.01,11],[1,11],[4.09016994375,10.510565163],[6.87785252292,9.09016994375],[9.09016994375,6.87785252292],[10.510565163,4.09016994375],[11,1],[11,-0.01],[0,-0.01],[-0.01,-0.01],[-0.01,0]]);
|
||||
assert_approx(mask2d_cove(d=20,inset=1),[[-0.01,11],[1,11],[4.09016994375,10.510565163],[6.87785252292,9.09016994375],[9.09016994375,6.87785252292],[10.510565163,4.09016994375],[11,1],[11,-0.01],[0,-0.01],[-0.01,-0.01],[-0.01,0]]);
|
||||
assert_approx(mask2d_cove(r=10,inset=1,excess=1),[[-1,11],[1,11],[4.09016994375,10.510565163],[6.87785252292,9.09016994375],[9.09016994375,6.87785252292],[10.510565163,4.09016994375],[11,1],[11,-1],[0,-1],[-1,-1],[-1,0]]);
|
||||
assert_approx(mask2d_cove(d=20,inset=1,excess=1),[[-1,11],[1,11],[4.09016994375,10.510565163],[6.87785252292,9.09016994375],[9.09016994375,6.87785252292],[10.510565163,4.09016994375],[11,1],[11,-1],[0,-1],[-1,-1],[-1,0]]);
|
||||
}
|
||||
test_mask2d_cove();
|
||||
|
||||
|
||||
module test_mask2d_roundover() {
|
||||
$fn = 24;
|
||||
assert_approx(mask2d_roundover(r=10),[[10,-0.01],[-0.01,-0.01],[-0.01,10],[0,10],[0.340741737109,7.41180954897],[1.33974596216,5],[2.92893218813,2.92893218813],[5,1.33974596216],[7.41180954897,0.340741737109],[10,0]]);
|
||||
assert_approx(mask2d_roundover(d=20),[[10,-0.01],[-0.01,-0.01],[-0.01,10],[0,10],[0.340741737109,7.41180954897],[1.33974596216,5],[2.92893218813,2.92893218813],[5,1.33974596216],[7.41180954897,0.340741737109],[10,0]]);
|
||||
assert_approx(mask2d_roundover(r=10,inset=1),[[11,-0.01],[-0.01,-0.01],[-0.01,11],[1,11],[1.34074173711,8.41180954897],[2.33974596216,6],[3.92893218813,3.92893218813],[6,2.33974596216],[8.41180954897,1.34074173711],[11,1]]);
|
||||
assert_approx(mask2d_roundover(d=20,inset=1),[[11,-0.01],[-0.01,-0.01],[-0.01,11],[1,11],[1.34074173711,8.41180954897],[2.33974596216,6],[3.92893218813,3.92893218813],[6,2.33974596216],[8.41180954897,1.34074173711],[11,1]]);
|
||||
assert_approx(mask2d_roundover(r=10,inset=1,excess=1),[[11,-1],[-1,-1],[-1,11],[1,11],[1.34074173711,8.41180954897],[2.33974596216,6],[3.92893218813,3.92893218813],[6,2.33974596216],[8.41180954897,1.34074173711],[11,1]]);
|
||||
assert_approx(mask2d_roundover(d=20,inset=1,excess=1),[[11,-1],[-1,-1],[-1,11],[1,11],[1.34074173711,8.41180954897],[2.33974596216,6],[3.92893218813,3.92893218813],[6,2.33974596216],[8.41180954897,1.34074173711],[11,1]]);
|
||||
assert_approx(mask2d_roundover(r=10),[[-0.01,10],[-1.7763568394e-15,10],[0.489434837048,6.90983005625],[1.90983005625,4.12214747708],[4.12214747708,1.90983005625],[6.90983005625,0.489434837048],[10,-1.7763568394e-15],[10,-0.01],[0,-0.01],[-0.01,-0.01],[-0.01,0]]);
|
||||
assert_approx(mask2d_roundover(d=20),[[-0.01,10],[-1.7763568394e-15,10],[0.489434837048,6.90983005625],[1.90983005625,4.12214747708],[4.12214747708,1.90983005625],[6.90983005625,0.489434837048],[10,-1.7763568394e-15],[10,-0.01],[0,-0.01],[-0.01,-0.01],[-0.01,0]]);
|
||||
assert_approx(mask2d_roundover(r=10,inset=1),[[-0.01,11],[1,11],[1.48943483705,7.90983005625],[2.90983005625,5.12214747708],[5.12214747708,2.90983005625],[7.90983005625,1.48943483705],[11,1],[11,-0.01],[0,-0.01],[-0.01,-0.01],[-0.01,0]]);
|
||||
assert_approx(mask2d_roundover(d=20,inset=1),[[-0.01,11],[1,11],[1.48943483705,7.90983005625],[2.90983005625,5.12214747708],[5.12214747708,2.90983005625],[7.90983005625,1.48943483705],[11,1],[11,-0.01],[0,-0.01],[-0.01,-0.01],[-0.01,0]]);
|
||||
assert_approx(mask2d_roundover(r=10,inset=1,excess=1),[[-1,11],[1,11],[1.48943483705,7.90983005625],[2.90983005625,5.12214747708],[5.12214747708,2.90983005625],[7.90983005625,1.48943483705],[11,1],[11,-1],[0,-1],[-1,-1],[-1,0]]);
|
||||
assert_approx(mask2d_roundover(d=20,inset=1,excess=1),[[-1,11],[1,11],[1.48943483705,7.90983005625],[2.90983005625,5.12214747708],[5.12214747708,2.90983005625],[7.90983005625,1.48943483705],[11,1],[11,-1],[0,-1],[-1,-1],[-1,0]]);
|
||||
}
|
||||
test_mask2d_roundover();
|
||||
|
||||
|
@ -59,20 +59,20 @@ test_mask2d_dovetail();
|
|||
|
||||
|
||||
module test_mask2d_rabbet() {
|
||||
assert_approx(mask2d_rabbet(10), [[10,-0.01],[-0.01,-0.01],[-0.01,10],[10,10]]);
|
||||
assert_approx(mask2d_rabbet(size=10), [[10,-0.01],[-0.01,-0.01],[-0.01,10],[10,10]]);
|
||||
assert_approx(mask2d_rabbet(size=[10,15]), [[10,-0.01],[-0.01,-0.01],[-0.01,15],[10,15]]);
|
||||
assert_approx(mask2d_rabbet(size=[10,15],excess=1), [[10,-1],[-1,-1],[-1,15],[10,15]]);
|
||||
assert_approx(mask2d_rabbet(10), [[-0.01,10],[10,10],[10,-0.01],[0,-0.01],[-0.01,-0.01],[-0.01,0]]);
|
||||
assert_approx(mask2d_rabbet(size=10), [[-0.01,10],[10,10],[10,-0.01],[0,-0.01],[-0.01,-0.01],[-0.01,0]]);
|
||||
assert_approx(mask2d_rabbet(size=[10,15]), [[-0.01,15],[10,15],[10,-0.01],[0,-0.01],[-0.01,-0.01],[-0.01,0]]);
|
||||
assert_approx(mask2d_rabbet(size=[10,15],excess=1), [[-1,15],[10,15],[10,-1],[0,-1],[-1,-1],[-1,0]]);
|
||||
}
|
||||
test_mask2d_rabbet();
|
||||
|
||||
|
||||
module test_mask2d_teardrop() {
|
||||
$fn=24;
|
||||
assert_approx(mask2d_teardrop(r=10), [[5.85786437627,0],[5.85786437627,-0.01],[-0.01,-0.01],[-0.01,10],[0,10],[0.340741737109,7.41180954897],[1.33974596216,5],[2.92893218813,2.92893218813]]);
|
||||
assert_approx(mask2d_teardrop(d=20), [[5.85786437627,0],[5.85786437627,-0.01],[-0.01,-0.01],[-0.01,10],[0,10],[0.340741737109,7.41180954897],[1.33974596216,5],[2.92893218813,2.92893218813]]);
|
||||
assert_approx(mask2d_teardrop(r=10,angle=30), [[4.2264973081,0],[4.2264973081,-0.01],[-0.01,-0.01],[-0.01,10],[0,10],[0.340741737109,7.41180954897],[1.33974596216,5]]);
|
||||
assert_approx(mask2d_teardrop(r=10,angle=30,excess=1), [[4.2264973081,0],[4.2264973081,-1],[-1,-1],[-1,10],[0,10],[0.340741737109,7.41180954897],[1.33974596216,5]]);
|
||||
assert_approx(mask2d_teardrop(r=10), [[-0.01,10],[0,10],[0.761204674887,6.17316567635],[2.92893218813,2.92893218813],[5.85786437627,0],[5.85786437627,-0.01],[0,-0.01],[-0.01,-0.01],[-0.01,0]]);
|
||||
assert_approx(mask2d_teardrop(d=20), [[-0.01,10],[0,10],[0.761204674887,6.17316567635],[2.92893218813,2.92893218813],[5.85786437627,0],[5.85786437627,-0.01],[0,-0.01],[-0.01,-0.01],[-0.01,0]]);
|
||||
assert_approx(mask2d_teardrop(r=10,angle=30), [[-0.01,10],[0,10],[0.340741737109,7.41180954897],[1.33974596216,5],[4.2264973081,0],[4.2264973081,-0.01],[0,-0.01],[-0.01,-0.01],[-0.01,0]]);
|
||||
assert_approx(mask2d_teardrop(r=10,angle=30,excess=1), [[-1,10],[0,10],[0.340741737109,7.41180954897],[1.33974596216,5],[4.2264973081,0],[4.2264973081,-1],[0,-1],[-1,-1],[-1,0]]);
|
||||
}
|
||||
test_mask2d_teardrop();
|
||||
|
||||
|
|
Loading…
Reference in a new issue