Merge branch 'master' into revarbat_dev

This commit is contained in:
Garth Minette 2020-12-12 20:29:00 -08:00
commit ea88aa8ac2
6 changed files with 45 additions and 10 deletions

View file

@ -101,6 +101,15 @@ function select(list, start, end=undef) =
// last(l); // Returns 9.
function last(list) = list[len(list)-1];
// Function: delete_last()
// Description:
// Returns a list of all but the last entry. If input is empty, returns empty list.
// Usage:
// delete_last(list)
function delete_last(list) =
assert(is_list(list))
list==[] ? [] : slice(list,0,-2);
// Function: slice()
// Description:
// Returns a slice of a list. The first item is index 0.
@ -281,7 +290,7 @@ function list_range(n=undef, s=0, e=undef, step=undef) =
// Example:
// reverse([3,4,5,6]); // Returns [6,5,4,3]
function reverse(x) =
assert(is_list(x)||is_string(x))
assert(is_list(x)||is_string(x), "Input to reverse must be a list or string")
let (elems = [ for (i = [len(x)-1 : -1 : 0]) x[i] ])
is_string(x)? str_join(elems) : elems;

View file

@ -349,11 +349,16 @@ function _rounding_offsets(edgespec,z_dir=1) =
chamf_angle = struct_val(edgespec, "angle"),
cheight = struct_val(edgespec, "chamfer_height"),
cwidth = struct_val(edgespec, "chamfer_width"),
chamf_width = first_defined([cut/cos(chamf_angle), cwidth, cheight*tan(chamf_angle)]),
chamf_height = first_defined([cut/sin(chamf_angle),cheight, cwidth/tan(chamf_angle)]),
chamf_width = first_defined([!all_defined([cut,chamf_angle]) ? undef : cut/cos(chamf_angle),
cwidth,
!all_defined([cheight,chamf_angle]) ? undef : cheight*tan(chamf_angle)]),
chamf_height = first_defined([
!all_defined([cut,chamf_angle]) ? undef : cut/sin(chamf_angle),
cheight,
!all_defined([cwidth, chamf_angle]) ? undef : cwidth/tan(chamf_angle)]),
joint = first_defined([
struct_val(edgespec,"joint"),
16*cut/sqrt(2)/(1+4*k)
all_defined([cut,k]) ? 16*cut/sqrt(2)/(1+4*k) : undef
]),
points = struct_val(edgespec, "points"),
argsOK = in_list(edgetype,["circle","teardrop"])? is_def(radius) :
@ -365,7 +370,7 @@ function _rounding_offsets(edgespec,z_dir=1) =
assert(argsOK,str("Invalid specification with type ",edgetype))
let(
offsets =
edgetype == "profile"? scale([-1,z_dir], slice(points,1,-1)) :
edgetype == "profile"? scale([-1,z_dir], p=slice(points,1,-1)) :
edgetype == "chamfer"? chamf_width==0 && chamf_height==0? [] : [[-chamf_width,z_dir*abs(chamf_height)]] :
edgetype == "teardrop"? (
radius==0? [] : concat(
@ -380,6 +385,7 @@ function _rounding_offsets(edgespec,z_dir=1) =
1, -1
)
)
quant(extra > 0? concat(offsets, [select(offsets,-1)+[0,z_dir*extra]]) : offsets, 1/1024);

View file

@ -350,7 +350,7 @@ module stroke(
// N = Number of vertices to form the arc curve from.
// r = Radius of the arc.
// d = Diameter of the arc.
// angle = If a scalar, specifies the end angle in degrees. If a vector of two scalars, specifies start and end angles.
// angle = If a scalar, specifies the end angle in degrees (relative to start parameter). If a vector of two scalars, specifies start and end angles.
// cp = Centerpoint of arc.
// points = Points on the arc.
// long = if given with cp and points takes the long arc instead of the default short arc. Default: false
@ -360,6 +360,7 @@ module stroke(
// thickness = If given with `width`, arc starts and ends on X axis, to make a circle segment.
// start = Start angle of arc.
// wedge = If true, include centerpoint `cp` in output to form pie slice shape.
// endpoint = If false exclude the last point (function only). Default: true
// Examples(2D):
// arc(N=4, r=30, angle=30, wedge=true);
// arc(r=30, angle=30, wedge=true);
@ -378,7 +379,10 @@ module stroke(
// Example(FlatSpin):
// path = arc(points=[[0,30,0],[0,0,30],[30,0,0]]);
// trace_path(path, showpts=true, color="cyan");
function arc(N, r, angle, d, cp, points, width, thickness, start, wedge=false, long=false, cw=false, ccw=false) =
function arc(N, r, angle, d, cp, points, width, thickness, start, wedge=false, long=false, cw=false, ccw=false, endpoint=true) =
assert(is_bool(endpoint))
!endpoint ? assert(!wedge, "endpoint cannot be false if wedge is true")
slice(arc(N,r,angle,d,cp,points,width,thickness,start,wedge,long,cw,ccw,true),0,-2) :
// First try for 2D arc specified by width and thickness
is_def(width) && is_def(thickness)? (
assert(!any_defined([r,cp,points]) && !any([cw,ccw,long]),"Conflicting or invalid parameters to arc")
@ -472,7 +476,7 @@ function _normal_segment(p1,p2) =
// Function: turtle()
// Usage:
// turtle(commands, [state], [full_state], [repeat])
// turtle(commands, [state], [full_state], [repeat], [endpoint])
// Description:
// Use a sequence of turtle graphics commands to generate a path. The parameter `commands` is a list of
// turtle commands and optional parameters for each command. The turtle state has a position, movement direction,

View file

@ -27,6 +27,21 @@ module test_select() {
}
test_select();
module test_last() {
list = [1,2,3,4];
assert(last(list)==4);
assert(last([])==undef);
}
test_last();
module test_delete_last() {
list = [1,2,3,4];
assert(delete_last(list) == [1,2,3]);
assert(delete_last([1]) == []);
assert(delete_last([]) == []);
}
test_delete_last();
module test_slice() {
assert(slice([3,4,5,6,7,8,9], 3, 5) == [6,7]);

View file

@ -40,6 +40,7 @@ test_turtle();
module test_arc() {
assert_approx(arc(N=8, d=100, angle=135, cp=[10,10]), [[60,10],[57.1941665154,26.5139530978],[49.0915741234,41.1744900929],[36.6016038258,52.3362099614],[21.1260466978,58.7463956091],[4.40177619483,59.6856104947],[-11.6941869559,55.0484433951],[-25.3553390593,45.3553390593]]);
assert_approx(arc(N=8, d=100, angle=135, cp=[10,10],endpoint=false), [[60,10],[57.1941665154,26.5139530978],[49.0915741234,41.1744900929],[36.6016038258,52.3362099614],[21.1260466978,58.7463956091],[4.40177619483,59.6856104947],[-11.6941869559,55.0484433951]]);
assert_approx(arc(N=8, d=100, angle=[45,225], cp=[10,10]), [[45.3553390593,45.3553390593],[26.5139530978,57.1941665154],[4.40177619483,59.6856104947],[-16.6016038258,52.3362099614],[-32.3362099614,36.6016038258],[-39.6856104947,15.5982238052],[-37.1941665154,-6.51395309776],[-25.3553390593,-25.3553390593]]);
assert_approx(arc(N=8, d=100, start=45, angle=135, cp=[10,10]), [[45.3553390593,45.3553390593],[31.6941869559,55.0484433951],[15.5982238052,59.6856104947],[-1.12604669782,58.7463956091],[-16.6016038258,52.3362099614],[-29.0915741234,41.1744900929],[-37.1941665154,26.5139530978],[-40,10]]);
assert_approx(arc(N=8, d=100, start=45, angle=-90, cp=[10,10]), [[45.3553390593,45.3553390593],[52.3362099614,36.6016038258],[57.1941665154,26.5139530978],[59.6856104947,15.5982238052],[59.6856104947,4.40177619483],[57.1941665154,-6.51395309776],[52.3362099614,-16.6016038258],[45.3553390593,-25.3553390593]]);

View file

@ -362,7 +362,7 @@ function _rotpart(T) = [for(i=[0:3]) [for(j=[0:3]) j<3 || i==3 ? T[i][j] : 0]];
// ["move", seg1_len, "grow", seg1_bot_ID/seg2_bot_ID]
// ],
// state=UP, transforms=true);
// zrot(90)back_half() // Remove this to get a usable part
// back_half() // Remove this to get a usable part
// sweep(circle(d=seg1_bot_OD, $fn=128), trans, closed=true);
// Example(3D): Closed spiral
// include<BOSL2/skin.scad>