Merge remote-tracking branch 'upstream/master'

This commit is contained in:
Richard Milewski 2023-03-27 14:45:31 -07:00
commit eb2f5944f9
6 changed files with 192 additions and 138 deletions

View file

@ -2080,10 +2080,7 @@ function reorient(
orient = default(orient, UP), orient = default(orient, UP),
region = !is_undef(region)? region : region = !is_undef(region)? region :
!is_undef(path)? [path] : !is_undef(path)? [path] :
undef undef,
)
(anchor==CENTER && spin==0 && orient==UP && p!=undef)? p :
let(
geom = is_def(geom)? geom : geom = is_def(geom)? geom :
attach_geom( attach_geom(
size=size, size2=size2, shift=shift, size=size, size2=size2, shift=shift,
@ -2597,12 +2594,25 @@ function _find_anchor(anchor, geom) =
bot = point3d(v_mul(point2d(size )/2, axy), -h/2), bot = point3d(v_mul(point2d(size )/2, axy), -h/2),
top = point3d(v_mul(point2d(size2)/2, axy) + shift, h/2), top = point3d(v_mul(point2d(size2)/2, axy) + shift, h/2),
pos = point3d(cp) + lerp(bot,top,u) + offset, pos = point3d(cp) + lerp(bot,top,u) + offset,
vecs = [ vecs = anchor==CENTER? [UP]
: [
if (anch.x!=0) unit(rot(from=UP, to=[(top-bot).x,0,h], p=[axy.x,0,0]), UP), if (anch.x!=0) unit(rot(from=UP, to=[(top-bot).x,0,h], p=[axy.x,0,0]), UP),
if (anch.y!=0) unit(rot(from=UP, to=[0,(top-bot).y,h], p=[0,axy.y,0]), UP), if (anch.y!=0) unit(rot(from=UP, to=[0,(top-bot).y,h], p=[0,axy.y,0]), UP),
if (anch.z!=0) anch==CENTER? UP : unit([0,0,anch.z],UP) if (anch.z!=0) unit([0,0,anch.z],UP)
], ],
vec = anchor==CENTER? UP : rot(from=UP, to=axis, p=unit(sum(vecs) / len(vecs))), vec2 = anchor==CENTER? UP
: len(vecs)==1? unit(vecs[0],UP)
: len(vecs)==2? vector_bisect(vecs[0],vecs[1])
: let(
v1 = vector_bisect(vecs[0],vecs[2]),
v2 = vector_bisect(vecs[1],vecs[2]),
p1 = plane_from_normal(yrot(90,p=v1)),
p2 = plane_from_normal(xrot(-90,p=v2)),
line = plane_intersection(p1,p2),
v3 = unit(line[1]-line[0],UP) * anch.z
)
unit(v3,UP),
vec = rot(from=UP, to=axis, p=vec2),
pos2 = rot(from=UP, to=axis, p=pos) pos2 = rot(from=UP, to=axis, p=pos)
) [anchor, pos2, vec, oang] ) [anchor, pos2, vec, oang]
) : type == "conoid"? ( //r1, r2, l, shift ) : type == "conoid"? ( //r1, r2, l, shift

View file

@ -11,11 +11,11 @@ xdistribute(50) {
recolor("#f77") recolor("#f77")
diff("hole") diff("hole")
cuboid([45,45,10], chamfer=10, edges=[RIGHT+BACK,RIGHT+FRONT], anchor=FRONT) { cuboid([45,45,10], chamfer=10, edges=[RIGHT+BACK,RIGHT+FRONT], anchor=FRONT) {
cuboid([30,30,11], chamfer=5, edges=[RIGHT+BACK,RIGHT+FRONT], $tags="hole"); tag("hole")cuboid([30,30,11], chamfer=5, edges=[RIGHT+BACK,RIGHT+FRONT]);
attach(FRONT,BACK, overlap=5) { attach(FRONT,BACK, overlap=5) {
diff("hole") diff("hole2")
cuboid([45,45,10], rounding=15, edges=[RIGHT+BACK,RIGHT+FRONT]) { cuboid([45,45,10], rounding=15, edges=[RIGHT+BACK,RIGHT+FRONT]) {
cuboid([30,30,11], rounding=10, edges=[RIGHT+BACK,RIGHT+FRONT], $tags="hole"); tag("hole2")cuboid([30,30,11], rounding=10, edges=[RIGHT+BACK,RIGHT+FRONT]);
} }
} }
} }
@ -50,4 +50,3 @@ xdistribute(50) {
nut("M12", thickness=10, diameter=20); nut("M12", thickness=10, diameter=20);
} }
} }

View file

@ -935,6 +935,30 @@ module right_triangle(size=[1,1], center, anchor, spin=0) {
// trapezoid(h=30, w1=100, ang=[66,44],rounding=-5, atype="perim",flip=true) show_anchors(); // trapezoid(h=30, w1=100, ang=[66,44],rounding=-5, atype="perim",flip=true) show_anchors();
// Example(2D): Called as Function // Example(2D): Called as Function
// stroke(closed=true, trapezoid(h=30, w1=40, w2=20)); // stroke(closed=true, trapezoid(h=30, w1=40, w2=20));
function _trapezoid_dims(h,w1,w2,shift,ang) =
let(
h = is_def(h)? h
: num_defined([w1,w2,each ang])==4 ? (w1-w2) * sin(ang[0]) * sin(ang[1]) / sin(ang[0]+ang[1])
: undef
)
is_undef(h) ? [h]
:
let(
x1 = is_undef(ang[0]) || ang[0]==90 ? 0 : h/tan(ang[0]),
x2 = is_undef(ang[1]) || ang[1]==90 ? 0 : h/tan(ang[1]),
w1 = is_def(w1)? w1
: is_def(w2) && is_def(ang[0]) ? w2 + x1 + x2
: undef,
w2 = is_def(w2)? w2
: is_def(w1) && is_def(ang[0]) ? w1 - x1 - x2
: undef,
shift = first_defined([shift,(x1-x2)/2])
)
[h,w1,w2,shift];
function trapezoid(h, w1, w2, ang, shift, chamfer=0, rounding=0, flip=false, anchor=CENTER, spin=0,atype="box", _return_override, angle) = function trapezoid(h, w1, w2, ang, shift, chamfer=0, rounding=0, flip=false, anchor=CENTER, spin=0,atype="box", _return_override, angle) =
assert(is_undef(angle), "The angle parameter has been replaced by ang, which specifies trapezoid interior angle") assert(is_undef(angle), "The angle parameter has been replaced by ang, which specifies trapezoid interior angle")
assert(is_undef(h) || is_finite(h)) assert(is_undef(h) || is_finite(h))
@ -948,17 +972,15 @@ function trapezoid(h, w1, w2, ang, shift, chamfer=0, rounding=0, flip=false, anc
assert(is_finite(rounding) || is_vector(rounding,4)) assert(is_finite(rounding) || is_vector(rounding,4))
let( let(
ang = force_list(ang,2), ang = force_list(ang,2),
angOK = ang==[undef,undef] || (all_positive(ang) && ang[0]<180 && ang[1]<180) angOK = len(ang)==2 && (ang==[undef,undef] || (all_positive(ang) && ang[0]<180 && ang[1]<180))
) )
assert(angOK, "trapezoid angles must be strictly between 0 and 180") assert(angOK, "trapezoid angles must be scalar or 2-vector, strictly between 0 and 180")
let( let(
simple = chamfer==0 && rounding==0, h_w1_w2_shift = _trapezoid_dims(h,w1,w2,shift,ang),
h = is_def(h)? h : (w1-w2) * sin(ang[0]) * sin(ang[1]) / sin(ang[0]+ang[1]), h = h_w1_w2_shift[0],
x1 = is_undef(ang[0]) || ang[0]==90 ? 0 : h/tan(ang[0]), w1 = h_w1_w2_shift[1],
x2 = is_undef(ang[1]) || ang[1]==90 ? 0 : h/tan(ang[1]), w2 = h_w1_w2_shift[2],
w1 = is_def(w1)? w1 : w2 + x1 + x2, shift = h_w1_w2_shift[3],
w2 = is_def(w2)? w2 : w1 - x1 - x2,
shift = first_defined([shift,(x1-x2)/2]),
chamfer = force_list(chamfer,4), chamfer = force_list(chamfer,4),
rounding = force_list(rounding,4) rounding = force_list(rounding,4)
) )
@ -1039,16 +1061,16 @@ function trapezoid(h, w1, w2, ang, shift, chamfer=0, rounding=0, flip=false, anc
module trapezoid(h, w1, w2, ang, shift, chamfer=0, rounding=0, flip=false, anchor=CENTER, spin=0, atype="box", angle) { module trapezoid(h, w1, w2, ang, shift, chamfer=0, rounding=0, flip=false, anchor=CENTER, spin=0, atype="box", angle) {
path_over = trapezoid(h=h, w1=w1, w2=w2, ang=ang, shift=shift, chamfer=chamfer, rounding=rounding, flip=flip, angle=angle,atype=atype,_return_override=true); path_over = trapezoid(h=h, w1=w1, w2=w2, ang=ang, shift=shift, chamfer=chamfer, rounding=rounding,
flip=flip, angle=angle,atype=atype,_return_override=true);
path=path_over[0]; path=path_over[0];
override = path_over[1]; override = path_over[1];
ang = force_list(ang,2); ang = force_list(ang,2);
h = is_def(h)? h : (w1-w2) * sin(ang[0]) * sin(ang[1]) / sin(ang[0]+ang[1]); h_w1_w2_shift = _trapezoid_dims(h,w1,w2,shift,ang);
x1 = is_undef(ang[0]) || ang[0]==90 ? 0 : h/tan(ang[0]); h = h_w1_w2_shift[0];
x2 = is_undef(ang[1]) || ang[1]==90 ? 0 : h/tan(ang[1]); w1 = h_w1_w2_shift[1];
w1 = is_def(w1)? w1 : w2 + x1 + x2; w2 = h_w1_w2_shift[2];
w2 = is_def(w2)? w2 : w1 - x1 - x2; shift = h_w1_w2_shift[3];
shift = first_defined([shift,(x1-x2)/2]);
attachable(anchor,spin, two_d=true, size=[w1,h], size2=w2, shift=shift, override=override) { attachable(anchor,spin, two_d=true, size=[w1,h], size2=w2, shift=shift, override=override) {
polygon(path); polygon(path);
children(); children();

View file

@ -581,21 +581,26 @@ function cuboid(
// prismoid(size1, size2, h|l, [rounding=], ...) [ATTACHMENTS]; // prismoid(size1, size2, h|l, [rounding=], ...) [ATTACHMENTS];
// prismoid(size1, size2, h|l, [rounding1=], [rounding2=], ...) [ATTACHMENTS]; // prismoid(size1, size2, h|l, [rounding1=], [rounding2=], ...) [ATTACHMENTS];
// Usage: As Function // Usage: As Function
// vnf = prismoid(size1, size2, h|l, [shift], [rounding], [chamfer]); // vnf = prismoid(...);
// vnf = prismoid(size1, size2, h|l, [shift], [rounding1], [rounding2], [chamfer1], [chamfer2]);
//
// Description: // Description:
// Creates a rectangular prismoid shape with optional roundovers and chamfering. // Creates a rectangular prismoid shape with optional roundovers and chamfering.
// You can only round or chamfer the vertical(ish) edges. For those edges, you can // You can only round or chamfer the vertical(ish) edges. For those edges, you can
// specify rounding and/or chamferring per-edge, and for top and bottom separately. // specify rounding and/or chamferring per-edge, and for top and bottom separately.
// If you want to round the bottom or top edges see {{rounded_prism()}}. // If you want to round the bottom or top edges see {{rounded_prism()}}.
// // .
// Specification of the prismoid is similar to specification for {{trapezoid()}}. You can specify the dimensions of the
// bottom and top and its height to get a symmetric prismoid. You can use the shift argument to shift the top face around.
// You can also specify base angles either in the X direction, Y direction or both. In order to avoid overspecification,
// you may need to specify a parameter such as size2 as a list of two values, one of which is undef. For example,
// specifying `size2=[100,undef]` sets the size in the X direction but allows the size in the Y direction to be computed based on yang.
// Arguments: // Arguments:
// size1 = [width, length] of the bottom end of the prism. // size1 = [width, length] of the bottom end of the prism.
// size2 = [width, length] of the top end of the prism. // size2 = [width, length] of the top end of the prism.
// h/l = Height of the prism. // h/l/height/length = Height of the prism.
// shift = [X,Y] amount to shift the center of the top end with respect to the center of the bottom end. // shift = [X,Y] amount to shift the center of the top end with respect to the center of the bottom end.
// --- // ---
// xang = base angle in the X direction. Can be a scalar or list of two values, one of which may be undef
// yang = base angle in the Y direction. Can be a scalar or list of two values, one of which may be undef
// rounding = The roundover radius for the vertical-ish edges of the prismoid. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no rounding) // rounding = The roundover radius for the vertical-ish edges of the prismoid. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no rounding)
// rounding1 = The roundover radius for the bottom of the vertical-ish edges of the prismoid. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. // rounding1 = The roundover radius for the bottom of the vertical-ish edges of the prismoid. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-].
// rounding2 = The roundover radius for the top of the vertical-ish edges of the prismoid. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. // rounding2 = The roundover radius for the top of the vertical-ish edges of the prismoid. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-].
@ -607,12 +612,12 @@ function cuboid(
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
// //
// //
// Example: Truncated Pyramid
// prismoid(size1=[35,50], size2=[20,30], h=20);
// Example: Rectangular Pyramid // Example: Rectangular Pyramid
// prismoid([40,40], [0,0], h=20); // prismoid([40,40], [0,0], h=20);
// Example: Prism // Example: Prism
// prismoid(size1=[40,40], size2=[0,40], h=20); // prismoid(size1=[40,40], size2=[0,40], h=20);
// Example: Truncated Pyramid
// prismoid(size1=[35,50], size2=[20,30], h=20);
// Example: Wedge // Example: Wedge
// prismoid(size1=[60,35], size2=[30,0], h=30); // prismoid(size1=[60,35], size2=[30,0], h=30);
// Example: Truncated Tetrahedron // Example: Truncated Tetrahedron
@ -623,9 +628,19 @@ function cuboid(
// prismoid(size1=[30,60], size2=[0,60], shift=[-15,0], h=30); // prismoid(size1=[30,60], size2=[0,60], shift=[-15,0], h=30);
// Example(FlatSpin,VPD=160,VPT=[0,0,10]): Shifting/Skewing // Example(FlatSpin,VPD=160,VPT=[0,0,10]): Shifting/Skewing
// prismoid(size1=[50,30], size2=[20,20], h=20, shift=[15,5]); // prismoid(size1=[50,30], size2=[20,20], h=20, shift=[15,5]);
// Example: Specifying bottom, height and angle
// prismoid(size1=[100,75], h=30, xang=50, yang=70);
// Example: Specifying top, height and angle, with asymmetric angles
// prismoid(size2=[100,75], h=30, xang=[50,60], yang=[70,40]);
// Example: Specifying top, bottom and angle for X and using that to define height. Note that giving yang here would likely give a conflicting height calculation, which is not allowed.
// prismoid(size1=[100,75], size2=[75,35], xang=50);
// Example: The same as the previous example but we give a shift in Y. Note that shift.x must be undef because you cannot give combine an angle with a shift, so a shift.x value would conflict with xang being defined.
// prismoid(size1=[100,75], size2=[75,35], xang=50, shift=[undef,20]);
// Example: The X dimensions defined by the base length, angle and height; the Y dimensions defined by the top length, angle, and height.
// prismoid(size1=[100,undef], size2=[undef,75], h=30, xang=[20,90], yang=30);
// Example: Rounding // Example: Rounding
// prismoid(100, 80, rounding=10, h=30); // prismoid(100, 80, rounding=10, h=30);
// Example: Outer Chamfer Only // Example: Chamfers
// prismoid(100, 80, chamfer=5, h=30); // prismoid(100, 80, chamfer=5, h=30);
// Example: Gradiant Rounding // Example: Gradiant Rounding
// prismoid(100, 80, rounding1=10, rounding2=0, h=30); // prismoid(100, 80, rounding1=10, rounding2=0, h=30);
@ -650,46 +665,26 @@ function cuboid(
// show_anchors(); // show_anchors();
module prismoid( module prismoid(
size1, size2, h, shift=[0,0], size1=undef, size2=undef, h, shift=[undef,undef],
xang, yang,
rounding=0, rounding1, rounding2, rounding=0, rounding1, rounding2,
chamfer=0, chamfer1, chamfer2, chamfer=0, chamfer1, chamfer2,
l, height, length, center, l, height, length, center,
anchor, spin=0, orient=UP anchor, spin=0, orient=UP
) { )
checks = {
assert(is_num(size1) || is_vector(size1,2)) vnf_s1_s2_shift = prismoid(
assert(is_num(size2) || is_vector(size2,2))
assert(is_num(h) || is_num(l))
assert(is_vector(shift,2))
assert(is_num(rounding) || is_vector(rounding,4), "Bad rounding argument.")
assert(is_undef(rounding1) || is_num(rounding1) || is_vector(rounding1,4), "Bad rounding1 argument.")
assert(is_undef(rounding2) || is_num(rounding2) || is_vector(rounding2,4), "Bad rounding2 argument.")
assert(is_num(chamfer) || is_vector(chamfer,4), "Bad chamfer argument.")
assert(is_undef(chamfer1) || is_num(chamfer1) || is_vector(chamfer1,4), "Bad chamfer1 argument.")
assert(is_undef(chamfer2) || is_num(chamfer2) || is_vector(chamfer2,4), "Bad chamfer2 argument.");
eps = pow(2,-14);
size1 = is_num(size1)? [size1,size1] : size1;
size2 = is_num(size2)? [size2,size2] : size2;
checks2 =
assert(all_nonnegative(size1))
assert(all_nonnegative(size2))
assert(size1.x + size2.x > 0)
assert(size1.y + size2.y > 0);
s1 = [max(size1.x, eps), max(size1.y, eps)];
s2 = [max(size2.x, eps), max(size2.y, eps)];
rounding1 = default(rounding1, rounding);
rounding2 = default(rounding2, rounding);
chamfer1 = default(chamfer1, chamfer);
chamfer2 = default(chamfer2, chamfer);
anchor = get_anchor(anchor, center, BOT, BOT);
vnf = prismoid(
size1=size1, size2=size2, h=h, shift=shift, size1=size1, size2=size2, h=h, shift=shift,
xang=xang, yang=yang,
rounding=rounding, chamfer=chamfer,
rounding1=rounding1, rounding2=rounding2, rounding1=rounding1, rounding2=rounding2,
chamfer1=chamfer1, chamfer2=chamfer2, chamfer1=chamfer1, chamfer2=chamfer2,
l=l, center=CENTER l=l, height=height, length=length, anchor=BOT, _return_dim=true
); );
attachable(anchor,spin,orient, size=[s1.x,s1.y,h], size2=s2, shift=shift) { anchor = get_anchor(anchor, center, BOT, BOT);
vnf_polyhedron(vnf, convexity=4); attachable(anchor,spin,orient, size=vnf_s1_s2_shift[1], size2=vnf_s1_s2_shift[2], shift=vnf_s1_s2_shift[3]) {
down(vnf_s1_s2_shift[1].z/2)
vnf_polyhedron(vnf_s1_s2_shift[0], convexity=4);
children(); children();
} }
} }
@ -699,78 +694,86 @@ function prismoid(
rounding=0, rounding1, rounding2, rounding=0, rounding1, rounding2,
chamfer=0, chamfer1, chamfer2, chamfer=0, chamfer1, chamfer2,
l, height, length, center, l, height, length, center,
anchor=DOWN, spin=0, orient=UP anchor=DOWN, spin=0, orient=UP, xang, yang,
_return_dim=false
) = ) =
assert(is_vector(size1,2)) assert(is_undef(shift) || is_num(shift) || len(shift)==2, "shift must be a number or list of length 2")
assert(is_vector(size2,2)) assert(is_undef(size1) || is_num(size1) || len(size1)==2, "size1 must be a number or list of length 2")
assert(is_num(h) || is_num(l)) assert(is_undef(size2) || is_num(size2) || len(size2)==2, "size2 must be a number or list of length 2")
assert(is_vector(shift,2)) let(
assert( xang = force_list(xang,2),
(is_num(rounding) && rounding>=0) || yang = force_list(yang,2),
(is_vector(rounding,4) && all_nonnegative(rounding)), yangOK = len(yang)==2 && (yang==[undef,undef] || (all_positive(yang) && yang[0]<180 && yang[1]<180)),
"Bad rounding argument." xangOK = len(xang)==2 && (xang==[undef,undef] || (all_positive(xang) && xang[0]<180 && xang[1]<180)),
size1=force_list(size1,2),
size2=force_list(size2,2),
h=first_defined([l,h,length,height]),
shift = force_list(shift,2)
) )
assert( assert(xangOK, "prismoid angles must be scalar or 2-vector, strictly between 0 and 180")
is_undef(rounding1) || (is_num(rounding1) && rounding1>=0) || assert(yangOK, "prismoid angles must be scalar or 2-vector, strictly between 0 and 180")
(is_vector(rounding1,4) && all_nonnegative(rounding1)), assert(xang==[undef,undef] || shift.x==undef, "Cannot specify xang and a shift.x value together")
"Bad rounding1 argument." assert(yang==[undef,undef] || shift.y==undef, "Cannot specify yang and a shift.y value together")
assert(all_positive([h]) || is_undef(h), "h must be a positive value")
let(
hx = _trapezoid_dims(h,size1.x,size2.x,shift.x,xang)[0],
hy = _trapezoid_dims(h,size1.y,size2.y,shift.y,yang)[0]
) )
assert( assert(num_defined([hx,hy])>0, "Height not given and specification does not determine prismoid height")
is_undef(rounding2) || (is_num(rounding2) && rounding2>=0) || assert(hx==undef || hy==undef || approx(hx,hy),
(is_vector(rounding2,4) && all_nonnegative(rounding2)), str("X and Y angle specifications give rise to conflicting height values ",hx," and ",hy))
"Bad rounding2 argument." let(
) h = first_defined([hx,hy]),
assert( x_h_w1_w2_shift = _trapezoid_dims(h,size1.x,size2.x,shift.x,xang),
(is_num(chamfer) && chamfer>=0) || y_h_w1_w2_shift = _trapezoid_dims(h,size1.y,size2.y,shift.y,yang)
(is_vector(chamfer,4) && all_nonnegative(chamfer)),
"Bad chamfer argument."
)
assert(
is_undef(chamfer1) || (is_num(chamfer1) && chamfer1>=0) ||
(is_vector(chamfer1,4) && all_nonnegative(chamfer1)),
"Bad chamfer1 argument."
)
assert(
is_undef(chamfer2) || (is_num(chamfer2) && chamfer2>=0) ||
(is_vector(chamfer2,4) && all_nonnegative(chamfer2)),
"Bad chamfer2 argument."
) )
let( let(
eps = pow(2,-14), s1 = [x_h_w1_w2_shift[1], y_h_w1_w2_shift[1]],
h = one_defined([h,l,length,height],"h,l,length,height",dflt=1), s2 = [x_h_w1_w2_shift[2], y_h_w1_w2_shift[2]],
shiftby = point3d(point2d(shift)), shift = [x_h_w1_w2_shift[3], y_h_w1_w2_shift[3]]
s1 = [max(size1.x, eps), max(size1.y, eps)], )
s2 = [max(size2.x, eps), max(size2.y, eps)], assert(is_vector(s1,2), "Insufficient information to define prismoid")
assert(is_vector(s2,2), "Insufficient information to define prismoid")
assert(all_nonnegative(concat(s1,s2)),"Degenerate prismoid geometry")
assert(s1.x+s2.x>0 && s1.y+s2.y>0, "Degenerate prismoid geometry")
assert(is_num(rounding) || is_vector(rounding,4), "rounding must be a number or 4-vector")
assert(is_undef(rounding1) || is_num(rounding1) || is_vector(rounding1,4), "rounding1 must be a number or 4-vector")
assert(is_undef(rounding2) || is_num(rounding2) || is_vector(rounding2,4), "rounding2 must be a number or 4-vector")
assert(is_num(chamfer) || is_vector(chamfer,4), "chamfer must be a number or 4-vector")
assert(is_undef(chamfer1) || is_num(chamfer1) || is_vector(chamfer1,4), "chamfer1 must be a number or 4-vector")
assert(is_undef(chamfer2) || is_num(chamfer2) || is_vector(chamfer2,4), "chamfer2 must be a number or 4-vector")
let(
chamfer1=force_list(default(chamfer1,chamfer),4),
chamfer2=force_list(default(chamfer2,chamfer),4),
rounding1=force_list(default(rounding1,rounding),4),
rounding2=force_list(default(rounding2,rounding),4)
)
assert(all_nonnegative(chamfer1), "chamfer/chamfer1 must be non-negative")
assert(all_nonnegative(chamfer2), "chamfer/chamfer2 must be non-negative")
assert(all_nonnegative(rounding1), "rounding/rounding1 must be non-negative")
assert(all_nonnegative(rounding2), "rounding/rounding2 must be non-negative")
assert(all_zero(v_mul(rounding1,chamfer1),0),
"rounding1 and chamfer1 (possibly inherited from rounding and chamfer) cannot both be nonzero at the same corner")
assert(all_zero(v_mul(rounding2,chamfer2),0),
"rounding2 and chamfer2 (possibly inherited from rounding and chamfer) cannot both be nonzero at the same corner")
let(
rounding1 = default(rounding1, rounding), rounding1 = default(rounding1, rounding),
rounding2 = default(rounding2, rounding), rounding2 = default(rounding2, rounding),
chamfer1 = default(chamfer1, chamfer), chamfer1 = default(chamfer1, chamfer),
chamfer2 = default(chamfer2, chamfer), chamfer2 = default(chamfer2, chamfer),
anchor = get_anchor(anchor, center, BOT, BOT), anchor = get_anchor(anchor, center, BOT, BOT),
vnf = (rounding1==0 && rounding2==0 && chamfer1==0 && chamfer2==0)? ( path1 = rect(s1, rounding=rounding1, chamfer=chamfer1, anchor=CTR),
let( path2 = rect(s2, rounding=rounding2, chamfer=chamfer2, anchor=CTR),
corners = [[1,1],[1,-1],[-1,-1],[-1,1]] * 0.5,
points = [
for (p=corners) point3d(v_mul(s2,p), +h/2) + shiftby,
for (p=corners) point3d(v_mul(s1,p), -h/2)
],
faces=[
[0,1,2], [0,2,3], [0,4,5], [0,5,1],
[1,5,6], [1,6,2], [2,6,7], [2,7,3],
[3,7,4], [3,4,0], [4,7,6], [4,6,5],
]
) [points, faces]
) : (
let(
path1 = rect(size1, rounding=rounding1, chamfer=chamfer1, anchor=CTR),
path2 = rect(size2, rounding=rounding2, chamfer=chamfer2, anchor=CTR),
points = [ points = [
each path3d(path1, -h/2), each path3d(path1, -h/2),
each path3d(move(shiftby, p=path2), +h/2), each path3d(move(shift, path2), +h/2),
], ],
faces = hull(points) faces = hull(points),
) [points, faces] vnf = [points, faces]
) )
) reorient(anchor,spin,orient, size=[s1.x,s1.y,h], size2=s2, shift=shift, p=vnf); _return_dim ? [reorient(anchor,spin,orient, size=[s1.x,s1.y,h], size2=s2, shift=shift, p=vnf),point3d(s1,h),s2,shift]
: reorient(anchor,spin,orient, size=[s1.x,s1.y,h], size2=s2, shift=shift, p=vnf);
// Function&Module: octahedron() // Function&Module: octahedron()
@ -1024,7 +1027,7 @@ module rect_tube(
assert(is_undef(ichamfer) || is_num(ichamfer) || (is_list(ichamfer) && len(ichamfer)==4), "ichamfer must be a number or 4-vector") assert(is_undef(ichamfer) || is_num(ichamfer) || (is_list(ichamfer) && len(ichamfer)==4), "ichamfer must be a number or 4-vector")
assert(is_undef(ichamfer1) || is_num(ichamfer1) || (is_list(ichamfer1) && len(ichamfer1)==4), "ichamfer1 must be a number or 4-vector") assert(is_undef(ichamfer1) || is_num(ichamfer1) || (is_list(ichamfer1) && len(ichamfer1)==4), "ichamfer1 must be a number or 4-vector")
assert(is_undef(ichamfer2) || is_num(ichamfer2) || (is_list(ichamfer2) && len(ichamfer2)==4), "ichamfer2 must be a number or 4-vector"); assert(is_undef(ichamfer2) || is_num(ichamfer2) || (is_list(ichamfer2) && len(ichamfer2)==4), "ichamfer2 must be a number or 4-vector");
chamfer1=force_list( is_def(chamfer1)?chamfer1 : default(chamfer1,chamfer),4); chamfer1=force_list(default(chamfer1,chamfer),4);
chamfer2=force_list(default(chamfer2,chamfer),4); chamfer2=force_list(default(chamfer2,chamfer),4);
rounding1=force_list(default(rounding1,rounding),4); rounding1=force_list(default(rounding1,rounding),4);
rounding2=force_list(default(rounding2,rounding),4); rounding2=force_list(default(rounding2,rounding),4);

View file

@ -34,12 +34,12 @@ test_sphere();
module test_prismoid() { module test_prismoid() {
$fn=24; $fn=24;
assert_approx(prismoid([100,80],[50,40],h=50), [[[25,20,50],[25,-20,50],[-25,-20,50],[-25,20,50],[50,40,0],[50,-40,0],[-50,-40,0],[-50,40,0]],[[0,1,2],[0,2,3],[0,4,5],[0,5,1],[1,5,6],[1,6,2],[2,6,7],[2,7,3],[3,7,4],[3,4,0],[4,7,6],[4,6,5]]]); assert_approx(prismoid([100,80],[50,40],h=50),[[[50,-40,0],[-50,-40,0],[-50,40,0],[50,40,0],[25,-20,50],[-25,-20,50],[-25,20,50],[25,20,50]],[[3,4,7],[4,6,7],[6,3,7],[4,5,6],[5,2,6],[2,3,6],[4,1,5],[1,2,5],[4,0,1],[0,2,1],[0,3,2],[4,3,0]]]);
assert_approx(prismoid([100,80],[50,40],h=50,anchor=BOT), [[[25,20,50],[25,-20,50],[-25,-20,50],[-25,20,50],[50,40,0],[50,-40,0],[-50,-40,0],[-50,40,0]],[[0,1,2],[0,2,3],[0,4,5],[0,5,1],[1,5,6],[1,6,2],[2,6,7],[2,7,3],[3,7,4],[3,4,0],[4,7,6],[4,6,5]]]); assert_approx(prismoid([100,80],[50,40],h=50,anchor=BOT),[[[50, -40, 0], [-50, -40, 0], [-50, 40, 0], [50, 40, 0], [25, -20, 50], [-25, -20, 50], [-25, 20, 50], [25, 20, 50]], [[3, 4, 7], [4, 6, 7], [6, 3, 7], [4, 5, 6], [5, 2, 6], [2, 3, 6], [4, 1, 5], [1, 2, 5], [4, 0, 1], [0, 2, 1], [0, 3, 2], [4, 3, 0]]]);
assert_approx(prismoid([100,80],[0,0],h=50,anchor=BOT), [[[0.000030517578125,0.000030517578125,50],[0.000030517578125,-0.000030517578125,50],[-0.000030517578125,-0.000030517578125,50],[-0.000030517578125,0.000030517578125,50],[50,40,0],[50,-40,0],[-50,-40,0],[-50,40,0]],[[0,1,2],[0,2,3],[0,4,5],[0,5,1],[1,5,6],[1,6,2],[2,6,7],[2,7,3],[3,7,4],[3,4,0],[4,7,6],[4,6,5]]]); assert_approx(prismoid([100,80],[0,0],h=50,anchor=BOT),[[[50, -40, 0], [-50, -40, 0], [-50, 40, 0], [50, 40, 0], [0, 0, 50], [0, 0, 50], [0, 0, 50], [0, 0, 50]], [[2, 4, 1], [4, 0, 1], [0, 2, 1], [0, 3, 2], [4, 3, 0], [3, 4, 2]]]);
assert_approx(prismoid([100,80],[40,50],h=50,anchor=BOT), [[[20,25,50],[20,-25,50],[-20,-25,50],[-20,25,50],[50,40,0],[50,-40,0],[-50,-40,0],[-50,40,0]],[[0,1,2],[0,2,3],[0,4,5],[0,5,1],[1,5,6],[1,6,2],[2,6,7],[2,7,3],[3,7,4],[3,4,0],[4,7,6],[4,6,5]]]); assert_approx(prismoid([100,80],[40,50],h=50,anchor=BOT),[[[50, -40, 0], [-50, -40, 0], [-50, 40, 0], [50, 40, 0], [20, -25, 50], [-20, -25, 50], [-20, 25, 50], [20, 25, 50]], [[3, 4, 7], [4, 6, 7], [6, 3, 7], [4, 5, 6], [5, 2, 6], [2, 3, 6], [4, 1, 5], [1, 2, 5], [4, 0, 1], [0, 2, 1], [0, 3, 2], [4, 3, 0]]]);
assert_approx(prismoid([100,80],[40,50],h=50,anchor=TOP+RIGHT), [[[0,25,0],[0,-25,0],[-40,-25,0],[-40,25,0],[30,40,-50],[30,-40,-50],[-70,-40,-50],[-70,40,-50]],[[0,1,2],[0,2,3],[0,4,5],[0,5,1],[1,5,6],[1,6,2],[2,6,7],[2,7,3],[3,7,4],[3,4,0],[4,7,6],[4,6,5]]]); assert_approx(prismoid([100,80],[40,50],h=50,anchor=TOP+RIGHT), [[[30, -40, -50], [-70, -40, -50], [-70, 40, -50], [30, 40, -50], [0, -25, 0], [-40, -25, 0], [-40, 25, 0], [0, 25, 0]], [[3, 4, 7], [4, 6, 7], [6, 3, 7], [4, 5, 6], [5, 2, 6], [2, 3, 6], [4, 1, 5], [1, 2, 5], [4, 0, 1], [0, 2, 1], [0, 3, 2], [4, 3, 0]]]);
assert_approx(prismoid([100,80],[40,50],h=50,shift=[10,5]), [[[30,30,50],[30,-20,50],[-10,-20,50],[-10,30,50],[50,40,0],[50,-40,0],[-50,-40,0],[-50,40,0]],[[0,1,2],[0,2,3],[0,4,5],[0,5,1],[1,5,6],[1,6,2],[2,6,7],[2,7,3],[3,7,4],[3,4,0],[4,7,6],[4,6,5]]]); assert_approx(prismoid([100,80],[40,50],h=50,shift=[10,5]), [[[50, -40, 0], [-50, -40, 0], [-50, 40, 0], [50, 40, 0], [30, -20, 50], [-10, -20, 50], [-10, 30, 50], [30, 30, 50]], [[2, 7, 6], [7, 5, 6], [5, 2, 6], [7, 4, 5], [4, 1, 5], [1, 2, 5], [7, 0, 4], [0, 1, 4], [0, 7, 3], [7, 2, 3], [2, 0, 3], [2, 1, 0]]]);
assert_approx(prismoid([100,80],[40,50],h=50,shift=[10,5],chamfer=5), [[[50,-35,0],[45,-40,0],[-45,-40,0],[-50,-35,0],[-50,35,0],[-45,40,0],[45,40,0],[50,35,0],[30,-15,50],[25,-20,50],[-5,-20,50],[-10,-15,50],[-10,25,50],[-5,30,50],[25,30,50],[30,25,50]],[[14,7,15],[7,8,15],[8,14,15],[5,14,13],[14,12,13],[12,5,13],[14,11,12],[11,4,12],[4,5,12],[14,10,11],[3,4,11],[10,3,11],[2,3,10],[9,2,10],[14,9,10],[14,8,9],[1,2,9],[8,1,9],[7,0,8],[0,1,8],[14,6,7],[6,0,7],[14,5,6],[5,0,6],[4,0,5],[2,4,3],[1,4,2],[4,1,0]]]); assert_approx(prismoid([100,80],[40,50],h=50,shift=[10,5],chamfer=5), [[[50,-35,0],[45,-40,0],[-45,-40,0],[-50,-35,0],[-50,35,0],[-45,40,0],[45,40,0],[50,35,0],[30,-15,50],[25,-20,50],[-5,-20,50],[-10,-15,50],[-10,25,50],[-5,30,50],[25,30,50],[30,25,50]],[[14,7,15],[7,8,15],[8,14,15],[5,14,13],[14,12,13],[12,5,13],[14,11,12],[11,4,12],[4,5,12],[14,10,11],[3,4,11],[10,3,11],[2,3,10],[9,2,10],[14,9,10],[14,8,9],[1,2,9],[8,1,9],[7,0,8],[0,1,8],[14,6,7],[6,0,7],[14,5,6],[5,0,6],[4,0,5],[2,4,3],[1,4,2],[4,1,0]]]);
assert_approx(prismoid([100,80],[40,50],h=50,shift=[10,5],chamfer1=5), [[[50,-35,0],[45,-40,0],[-45,-40,0],[-50,-35,0],[-50,35,0],[-45,40,0],[45,40,0],[50,35,0],[30,-20,50],[-10,-20,50],[-10,30,50],[30,30,50]],[[11,9,10],[9,4,10],[4,5,10],[5,11,10],[2,3,9],[8,2,9],[11,8,9],[3,4,9],[1,2,8],[11,0,8],[0,1,8],[0,11,7],[11,6,7],[6,0,7],[11,5,6],[5,0,6],[4,0,5],[2,4,3],[1,4,2],[4,1,0]]]); assert_approx(prismoid([100,80],[40,50],h=50,shift=[10,5],chamfer1=5), [[[50,-35,0],[45,-40,0],[-45,-40,0],[-50,-35,0],[-50,35,0],[-45,40,0],[45,40,0],[50,35,0],[30,-20,50],[-10,-20,50],[-10,30,50],[30,30,50]],[[11,9,10],[9,4,10],[4,5,10],[5,11,10],[2,3,9],[8,2,9],[11,8,9],[3,4,9],[1,2,8],[11,0,8],[0,1,8],[0,11,7],[11,6,7],[6,0,7],[11,5,6],[5,0,6],[4,0,5],[2,4,3],[1,4,2],[4,1,0]]]);
assert_approx(prismoid([100,80],[40,50],h=50,shift=[10,5],chamfer2=5), [[[50,-40,0],[-50,-40,0],[-50,40,0],[50,40,0],[30,-15,50],[25,-20,50],[-5,-20,50],[-10,-15,50],[-10,25,50],[-5,30,50],[25,30,50],[30,25,50]],[[10,3,11],[3,4,11],[4,10,11],[2,10,9],[10,8,9],[8,2,9],[10,7,8],[7,2,8],[1,2,7],[6,1,7],[10,6,7],[10,5,6],[5,1,6],[10,4,5],[0,1,5],[4,0,5],[3,0,4],[10,2,3],[2,0,3],[2,1,0]]]); assert_approx(prismoid([100,80],[40,50],h=50,shift=[10,5],chamfer2=5), [[[50,-40,0],[-50,-40,0],[-50,40,0],[50,40,0],[30,-15,50],[25,-20,50],[-5,-20,50],[-10,-15,50],[-10,25,50],[-5,30,50],[25,30,50],[30,25,50]],[[10,3,11],[3,4,11],[4,10,11],[2,10,9],[10,8,9],[8,2,9],[10,7,8],[7,2,8],[1,2,7],[6,1,7],[10,6,7],[10,5,6],[5,1,6],[10,4,5],[0,1,5],[4,0,5],[3,0,4],[10,2,3],[2,0,3],[2,1,0]]]);

View file

@ -284,6 +284,26 @@ function vector_axis(v1,v2=undef,v3=undef) =
) unit(cross(w1,w3)); ) unit(cross(w1,w3));
// Function: vector_bisect()
// Usage:
// newv = vector_bisect(v1,v2);
// Description:
// Returns a unit vector that exactly bisects the minor angle between two given vectors.
// If given two vectors that are directly opposed, returns `undef`.
function vector_bisect(v1,v2) =
assert(is_vector(v1))
assert(is_vector(v2))
assert(!approx(norm(v1),0), "Zero length vector.")
assert(!approx(norm(v2),0), "Zero length vector.")
assert(len(v1)==len(v2), "Vectors are of different sizes.")
let( v1 = unit(v1), v2 = unit(v2) )
approx(v1,-v2)? undef :
let(
axis = vector_axis(v1,v2),
ang = vector_angle(v1,v2),
v3 = rot(ang/2, v=axis, p=v1)
) v3;
// Section: Vector Searching // Section: Vector Searching