Fix quant docs to point out non-integer quanta are allowed.

This commit is contained in:
Garth Minette 2021-07-07 23:28:07 -07:00
parent 0db5d6dd06
commit ee504540c3
2 changed files with 27 additions and 12 deletions

View file

@ -308,7 +308,8 @@ function atanh(x) =
// num = quant(x, y); // num = quant(x, y);
// Description: // Description:
// Quantize a value `x` to an integer multiple of `y`, rounding to the nearest multiple. // Quantize a value `x` to an integer multiple of `y`, rounding to the nearest multiple.
// If `x` is a list, then every item in that list will be recursively quantized. // The value of `y` does NOT have to be an integer. If `x` is a list, then every item
// in that list will be recursively quantized.
// Arguments: // Arguments:
// x = The value to quantize. // x = The value to quantize.
// y = The non-zero integer quantum of the quantization. // y = The non-zero integer quantum of the quantization.
@ -326,9 +327,11 @@ function atanh(x) =
// k = quant(10.5,3); // Returns: 12 // k = quant(10.5,3); // Returns: 12
// l = quant(11,3); // Returns: 12 // l = quant(11,3); // Returns: 12
// m = quant(12,3); // Returns: 12 // m = quant(12,3); // Returns: 12
// n = quant([12,13,13.1,14,14.1,15,16],4); // Returns: [12,12,12,16,16,16,16] // n = quant(11,2.5); // Returns: 10
// o = quant([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,12,12,12] // o = quant(12,2.5); // Returns: 12.5
// p = quant([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[12,12,12]] // p = quant([12,13,13.1,14,14.1,15,16],4); // Returns: [12,12,12,16,16,16,16]
// q = quant([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,12,12,12]
// r = quant([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[12,12,12]]
function quant(x,y) = function quant(x,y) =
assert( is_finite(y) && y>0, "The quantum `y` must be a non zero integer.") assert( is_finite(y) && y>0, "The quantum `y` must be a non zero integer.")
is_list(x) is_list(x)
@ -342,7 +345,8 @@ function quant(x,y) =
// num = quantdn(x, y); // num = quantdn(x, y);
// Description: // Description:
// Quantize a value `x` to an integer multiple of `y`, rounding down to the previous multiple. // Quantize a value `x` to an integer multiple of `y`, rounding down to the previous multiple.
// If `x` is a list, then every item in that list will be recursively quantized down. // The value of `y` does NOT have to be an integer. If `x` is a list, then every item in that
// list will be recursively quantized down.
// Arguments: // Arguments:
// x = The value to quantize. // x = The value to quantize.
// y = The non-zero integer quantum of the quantization. // y = The non-zero integer quantum of the quantization.
@ -360,9 +364,11 @@ function quant(x,y) =
// k = quantdn(10.5,3); // Returns: 9 // k = quantdn(10.5,3); // Returns: 9
// l = quantdn(11,3); // Returns: 9 // l = quantdn(11,3); // Returns: 9
// m = quantdn(12,3); // Returns: 12 // m = quantdn(12,3); // Returns: 12
// n = quantdn([12,13,13.1,14,14.1,15,16],4); // Returns: [12,12,12,12,12,12,16] // n = quantdn(11,2.5); // Returns: 10
// o = quantdn([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,9,9,12] // o = quantdn(12,2.5); // Returns: 10
// p = quantdn([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[9,9,12]] // p = quantdn([12,13,13.1,14,14.1,15,16],4); // Returns: [12,12,12,12,12,12,16]
// q = quantdn([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,9,9,12]
// r = quantdn([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[9,9,12]]
function quantdn(x,y) = function quantdn(x,y) =
assert( is_finite(y) && y>0, "The quantum `y` must be a non zero integer.") assert( is_finite(y) && y>0, "The quantum `y` must be a non zero integer.")
is_list(x) is_list(x)
@ -376,7 +382,8 @@ function quantdn(x,y) =
// num = quantup(x, y); // num = quantup(x, y);
// Description: // Description:
// Quantize a value `x` to an integer multiple of `y`, rounding up to the next multiple. // Quantize a value `x` to an integer multiple of `y`, rounding up to the next multiple.
// If `x` is a list, then every item in that list will be recursively quantized up. // The value of `y` does NOT have to be an integer. If `x` is a list, then every item in
// that list will be recursively quantized up.
// Arguments: // Arguments:
// x = The value to quantize. // x = The value to quantize.
// y = The non-zero integer quantum of the quantization. // y = The non-zero integer quantum of the quantization.
@ -394,9 +401,11 @@ function quantdn(x,y) =
// k = quantup(10.5,3); // Returns: 12 // k = quantup(10.5,3); // Returns: 12
// l = quantup(11,3); // Returns: 12 // l = quantup(11,3); // Returns: 12
// m = quantup(12,3); // Returns: 12 // m = quantup(12,3); // Returns: 12
// o = quantup([12,13,13.1,14,14.1,15,16],4); // Returns: [12,16,16,16,16,16,16] // n = quantdn(11,2.5); // Returns: 12.5
// p = quantup([9,10,10.4,10.5,11,12],3); // Returns: [9,12,12,12,12,12] // o = quantdn(12,2.5); // Returns: 12.5
// quantup([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,12,12],[12,12,12]] // p = quantup([12,13,13.1,14,14.1,15,16],4); // Returns: [12,16,16,16,16,16,16]
// q = quantup([9,10,10.4,10.5,11,12],3); // Returns: [9,12,12,12,12,12]
// r = quantup([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,12,12],[12,12,12]]
function quantup(x,y) = function quantup(x,y) =
assert( is_finite(y) && y>0, "The quantum `y` must be a non zero integer.") assert( is_finite(y) && y>0, "The quantum `y` must be a non zero integer.")
is_list(x) is_list(x)

View file

@ -13,6 +13,8 @@ module test_quant() {
assert_equal(quant(3,3), 3); assert_equal(quant(3,3), 3);
assert_equal(quant(4,3), 3); assert_equal(quant(4,3), 3);
assert_equal(quant(7,3), 6); assert_equal(quant(7,3), 6);
assert_equal(quant(12,2.5), 12.5);
assert_equal(quant(11,2.5), 10.0);
assert_equal(quant([12,13,13.1,14,14.1,15,16],4), [12,12,12,16,16,16,16]); assert_equal(quant([12,13,13.1,14,14.1,15,16],4), [12,12,12,16,16,16,16]);
assert_equal(quant([9,10,10.4,10.5,11,12],3), [9,9,9,12,12,12]); assert_equal(quant([9,10,10.4,10.5,11,12],3), [9,9,9,12,12,12]);
assert_equal(quant([[9,10,10.4],[10.5,11,12]],3), [[9,9,9],[12,12,12]]); assert_equal(quant([[9,10,10.4],[10.5,11,12]],3), [[9,9,9],[12,12,12]]);
@ -31,6 +33,8 @@ module test_quantdn() {
assert_equal(quantdn(3,3), 3); assert_equal(quantdn(3,3), 3);
assert_equal(quantdn(4,3), 3); assert_equal(quantdn(4,3), 3);
assert_equal(quantdn(7,3), 6); assert_equal(quantdn(7,3), 6);
assert_equal(quantdn(12,2.5), 10.0);
assert_equal(quantdn(11,2.5), 10.0);
assert_equal(quantdn([12,13,13.1,14,14.1,15,16],4), [12,12,12,12,12,12,16]); assert_equal(quantdn([12,13,13.1,14,14.1,15,16],4), [12,12,12,12,12,12,16]);
assert_equal(quantdn([9,10,10.4,10.5,11,12],3), [9,9,9,9,9,12]); assert_equal(quantdn([9,10,10.4,10.5,11,12],3), [9,9,9,9,9,12]);
assert_equal(quantdn([[9,10,10.4],[10.5,11,12]],3), [[9,9,9],[9,9,12]]); assert_equal(quantdn([[9,10,10.4],[10.5,11,12]],3), [[9,9,9],[9,9,12]]);
@ -49,6 +53,8 @@ module test_quantup() {
assert_equal(quantup(3,3), 3); assert_equal(quantup(3,3), 3);
assert_equal(quantup(4,3), 6); assert_equal(quantup(4,3), 6);
assert_equal(quantup(7,3), 9); assert_equal(quantup(7,3), 9);
assert_equal(quantup(12,2.5), 12.5);
assert_equal(quantup(11,2.5), 12.5);
assert_equal(quantup([12,13,13.1,14,14.1,15,16],4), [12,16,16,16,16,16,16]); assert_equal(quantup([12,13,13.1,14,14.1,15,16],4), [12,16,16,16,16,16,16]);
assert_equal(quantup([9,10,10.4,10.5,11,12],3), [9,12,12,12,12,12]); assert_equal(quantup([9,10,10.4,10.5,11,12],3), [9,12,12,12,12,12]);
assert_equal(quantup([[9,10,10.4],[10.5,11,12]],3), [[9,12,12],[12,12,12]]); assert_equal(quantup([[9,10,10.4],[10.5,11,12]],3), [[9,12,12],[12,12,12]]);