diff --git a/attachments.scad b/attachments.scad index 89d3214..5f3455a 100644 --- a/attachments.scad +++ b/attachments.scad @@ -1219,7 +1219,7 @@ module corner_profile(corners=CORNERS_ALL, except=[], r, d, convexity=10) { // offset = If given, offsets the perimeter of the volume around the centerpoint. // anchors = If given as a list of anchor points, allows named anchor points. // two_d = If true, the attachable shape is 2D. If false, 3D. Default: false (3D) -// axis = The vector pointing along the axis of a cylinder geometry. Default: UP +// axis = The vector pointing along the axis of a geometry. Default: UP // geom = If given, uses the pre-defined (via {{attach_geom()}} geometry. // // Side Effects: @@ -1385,14 +1385,15 @@ module attachable( region = !is_undef(region)? region : !is_undef(path)? [path] : undef; - geom = is_def(geom)? geom : attach_geom( - size=size, size2=size2, shift=shift, - r=r, r1=r1, r2=r2, h=h, - d=d, d1=d1, d2=d2, l=l, - vnf=vnf, region=region, extent=extent, - cp=cp, offset=offset, anchors=anchors, - two_d=two_d, axis=axis - ); + geom = is_def(geom)? geom : + attach_geom( + size=size, size2=size2, shift=shift, + r=r, r1=r1, r2=r2, h=h, + d=d, d1=d1, d2=d2, l=l, + vnf=vnf, region=region, extent=extent, + cp=cp, offset=offset, anchors=anchors, + two_d=two_d, axis=axis + ); m = _attach_transform(anchor,spin,orient,geom); multmatrix(m) { $parent_anchor = anchor; @@ -1499,7 +1500,7 @@ module attachable( // offset = If given, offsets the perimeter of the volume around the centerpoint. // anchors = If given as a list of anchor points, allows named anchor points. // two_d = If true, the attachable shape is 2D. If false, 3D. Default: false (3D) -// axis = The vector pointing along the axis of a cylinder geometry. Default: UP +// axis = The vector pointing along the axis of a geometry. Default: UP // p = The VNF, path, or point to transform. function reorient( anchor, spin, orient, @@ -1528,14 +1529,15 @@ function reorient( ) (anchor==CENTER && spin==0 && orient==UP && p!=undef)? p : let( - geom = is_def(geom)? geom : attach_geom( - size=size, size2=size2, shift=shift, - r=r, r1=r1, r2=r2, h=h, - d=d, d1=d1, d2=d2, l=l, - vnf=vnf, region=region, extent=extent, - cp=cp, offset=offset, anchors=anchors, - two_d=two_d, axis=axis - ), + geom = is_def(geom)? geom : + attach_geom( + size=size, size2=size2, shift=shift, + r=r, r1=r1, r2=r2, h=h, + d=d, d1=d1, d2=d2, l=l, + vnf=vnf, region=region, extent=extent, + cp=cp, offset=offset, anchors=anchors, + two_d=two_d, axis=axis + ), $attach_to = undef ) _attach_transform(anchor,spin,orient,geom,p); @@ -1605,7 +1607,7 @@ function named_anchor(name, pos, orient=UP, spin=0) = [name, pos, orient, spin]; // offset = If given, offsets the perimeter of the volume around the centerpoint. // anchors = If given as a list of anchor points, allows named anchor points. // two_d = If true, the attachable shape is 2D. If false, 3D. Default: false (3D) -// axis = The vector pointing along the axis of a cylinder geometry. Default: UP +// axis = The vector pointing along the axis of a geometry. Default: UP // // Example(NORENDER): Cubical Shape // geom = attach_geom(size=size); @@ -1697,7 +1699,7 @@ function attach_geom( assert(is_vector(size,2)) assert(is_num(size2)) assert(is_num(shift)) - ["rect", point2d(size), size2, shift, cp, offset, anchors] + ["trapezoid", point2d(size), size2, shift, cp, offset, anchors] ) : ( let( size2 = default(size2, point2d(size)), @@ -1706,7 +1708,7 @@ function attach_geom( assert(is_vector(size,3)) assert(is_vector(size2,2)) assert(is_vector(shift,2)) - ["cuboid", size, size2, shift, axis, cp, offset, anchors] + ["prismoid", size, size2, shift, axis, cp, offset, anchors] ) ) : !is_undef(vnf)? ( assert(is_vnf(vnf)) @@ -1748,11 +1750,11 @@ function attach_geom( assert(is_num(r2) || is_vector(r2,2)) assert(is_num(l)) assert(is_vector(shift,2)) - ["cyl", r1, r2, l, shift, axis, cp, offset, anchors] + ["conoid", r1, r2, l, shift, axis, cp, offset, anchors] ) : ( two_d? ( assert(is_num(r1) || is_vector(r1,2)) - ["circle", r1, cp, offset, anchors] + ["ellipse", r1, cp, offset, anchors] ) : ( assert(is_num(r1) || is_vector(r1,3)) ["spheroid", r1, cp, offset, anchors] @@ -1780,7 +1782,7 @@ function attach_geom( // Returns true if the given attachment geometry description is for a 2D shape. function _attach_geom_2d(geom) = let( type = geom[0] ) - type == "rect" || type == "circle" || + type == "trapezoid" || type == "ellipse" || type == "rgn_isect" || type == "rgn_extent"; @@ -1793,14 +1795,14 @@ function _attach_geom_2d(geom) = // Returns the `[X,Y,Z]` bounding size for the given attachment geometry description. function _attach_geom_size(geom) = let( type = geom[0] ) - type == "cuboid"? ( //size, size2, shift + type == "prismoid"? ( //size, size2, shift, axis let( size=geom[1], size2=geom[2], shift=point2d(geom[3]), maxx = max(size.x,size2.x), maxy = max(size.y,size2.y), z = size.z ) [maxx, maxy, z] - ) : type == "cyl"? ( //r1, r2, l, shift + ) : type == "conoid"? ( //r1, r2, l, shift let( r1=geom[1], r2=geom[2], l=geom[3], shift=point2d(geom[4]), axis=point3d(geom[5]), @@ -1831,12 +1833,12 @@ function _attach_geom_size(geom) = mm = pointlist_bounds(flatten(geom[1])), delt = mm[1]-mm[0] ) [delt.x, delt.y, geom[2]] - ) : type == "rect"? ( //size, size2 + ) : type == "trapezoid"? ( //size, size2 let( size=geom[1], size2=geom[2], shift=geom[3], maxx = max(size.x,size2+abs(shift)) ) [maxx, size.y] - ) : type == "circle"? ( //r + ) : type == "ellipse"? ( //r let( r=geom[1] ) is_num(r)? [2,2]*r : v_mul([2,2],point2d(r)) ) : type == "rgn_isect" || type == "rgn_extent"? ( //path @@ -1982,37 +1984,36 @@ function _find_anchor(anchor, geom) = type = geom[0] ) assert(is_vector(anchor),str("Invalid anchor: anchor=",anchor)) - let(anchor = point3d(anchor)) - anchor==CENTER? [anchor, cp, UP, 0] : let( + anchor = point3d(anchor), oang = ( approx(point2d(anchor), [0,0])? 0 : atan2(anchor.y, anchor.x)+90 ) ) - type == "cuboid"? ( //size, size2, shift + type == "prismoid"? ( //size, size2, shift, axis let(all_comps_good = [for (c=anchor) if (c!=sign(c)) 1]==[]) assert(all_comps_good, "All components of an anchor for a cuboid/prismoid must be -1, 0, or 1") let( size=geom[1], size2=geom[2], shift=point2d(geom[3]), axis=point3d(geom[4]), anch = rot(from=axis, to=UP, p=anchor), + offset = rot(from=axis, to=UP, p=offset), h = size.z, - u = (anch.z+1)/2, // u is one of 0, 0.5, or 1 + u = (anch.z + 1) / 2, // u is one of 0, 0.5, or 1 axy = point2d(anch), - bot = point3d(v_mul(point2d(size)/2,axy),-h/2), - top = point3d(v_mul(point2d(size2)/2,axy)+shift,h/2), + bot = point3d(v_mul(point2d(size )/2, axy), -h/2), + top = point3d(v_mul(point2d(size2)/2, axy) + shift, h/2), pos = point3d(cp) + lerp(bot,top,u) + offset, vecs = [ - if (anchor.x!=0) unit(rot(from=UP, to=unit([(top-bot).x,0,h]), p=[axy.x,0,0]), UP), - if (anchor.y!=0) unit(rot(from=UP, to=unit([0,(top-bot).y,h]), p=[0,axy.y,0]), UP), - if (anchor.z!=0) anch==CENTER? UP : unit([0,0,anch.z],UP) + if (anch.x!=0) unit(rot(from=UP, to=[(top-bot).x,0,h], p=[axy.x,0,0]), UP), + if (anch.y!=0) unit(rot(from=UP, to=[0,(top-bot).y,h], p=[0,axy.y,0]), UP), + if (anch.z!=0) anch==CENTER? UP : unit([0,0,anch.z],UP) ], - vec = unit(sum(vecs) / len(vecs)), - pos2 = rot(from=UP, to=axis, p=pos), - vec2 = rot(from=UP, to=axis, p=vec) - ) [anchor, pos2, vec2, oang] - ) : type == "cyl"? ( //r1, r2, l, shift + vec = anchor==CENTER? UP : rot(from=UP, to=axis, p=unit(sum(vecs) / len(vecs))), + pos2 = rot(from=UP, to=axis, p=pos) + ) [anchor, pos2, vec, oang] + ) : type == "conoid"? ( //r1, r2, l, shift assert(anchor.z == sign(anchor.z), "The Z component of an anchor for a cylinder/cone must be -1, 0, or 1") let( rr1=geom[1], rr2=geom[2], l=geom[3], @@ -2020,6 +2021,7 @@ function _find_anchor(anchor, geom) = r1 = is_num(rr1)? [rr1,rr1] : point2d(rr1), r2 = is_num(rr2)? [rr2,rr2] : point2d(rr2), anch = rot(from=axis, to=UP, p=anchor), + offset = rot(from=axis, to=UP, p=offset), u = (anch.z+1)/2, axy = unit(point2d(anch),[0,0]), bot = point3d(v_mul(r1,axy), -l/2), @@ -2027,12 +2029,12 @@ function _find_anchor(anchor, geom) = pos = point3d(cp) + lerp(bot,top,u) + offset, sidevec = rot(from=UP, to=top-bot, p=point3d(axy)), vvec = anch==CENTER? UP : unit([0,0,anch.z],UP), - vec = anch==CENTER? UP : + vec = anch==CENTER? CENTER : approx(axy,[0,0])? unit(anch,UP) : approx(anch.z,0)? sidevec : unit((sidevec+vvec)/2,UP), pos2 = rot(from=UP, to=axis, p=pos), - vec2 = rot(from=UP, to=axis, p=vec) + vec2 = anch==CENTER? UP : rot(from=UP, to=axis, p=vec) ) [anchor, pos2, vec2, oang] ) : type == "spheroid"? ( //r let( @@ -2043,9 +2045,9 @@ function _find_anchor(anchor, geom) = vec = unit(v_mul(r,anchor),UP) ) [anchor, pos, vec, oang] ) : type == "vnf_isect"? ( //vnf - let( - vnf=geom[1] - ) vnf==EMPTY_VNF? [anchor, [0,0,0], unit(anchor), 0] : + let( vnf=geom[1] ) + approx(anchor,CTR)? [anchor, [0,0,0], UP, 0] : + vnf==EMPTY_VNF? [anchor, [0,0,0], unit(anchor), 0] : let( eps = 1/2048, points = vnf[0], @@ -2093,9 +2095,9 @@ function _find_anchor(anchor, geom) = ) [anchor, pos, n, oang] ) : type == "vnf_extent"? ( //vnf - let( - vnf=geom[1] - ) vnf==EMPTY_VNF? [anchor, [0,0,0], unit(anchor), 0] : + let( vnf=geom[1] ) + approx(anchor,CTR)? [anchor, [0,0,0], UP, 0] : + vnf==EMPTY_VNF? [anchor, [0,0,0], unit(anchor,UP), 0] : let( rpts = apply(rot(from=anchor, to=RIGHT) * move(point3d(-cp)), vnf[0]), maxx = max(column(rpts,0)), @@ -2104,7 +2106,7 @@ function _find_anchor(anchor, geom) = mpt = approx(point2d(anchor),[0,0])? [maxx,0,0] : avep, pos = point3d(cp) + rot(from=RIGHT, to=anchor, p=mpt) ) [anchor, pos, anchor, oang] - ) : type == "rect"? ( //size, size2, shift + ) : type == "trapezoid"? ( //size, size2, shift let(all_comps_good = [for (c=anchor) if (c!=sign(c)) 1]==[]) assert(all_comps_good, "All components of an anchor for a rectangle/trapezoid must be -1, 0, or 1") let( @@ -2127,7 +2129,7 @@ function _find_anchor(anchor, geom) = unit((point3d(svec) + BACK) / 2, BACK) ) ) [anchor, pos, vec, 0] - ) : type == "circle"? ( //r + ) : type == "ellipse"? ( //r let( anchor = unit(_force_anchor_2d(anchor),[0,0]), r = force_list(geom[1],2), @@ -2137,17 +2139,20 @@ function _find_anchor(anchor, geom) = px = sign(anchor.x) * sqrt(1/(1/sqr(r.x) + m*m/sqr(r.y))) ) [px,m*px], - vec = unit([r.y/r.x*pos.x, r.x/r.y*pos.y]) + vec = unit([r.y/r.x*pos.x, r.x/r.y*pos.y],BACK) ) [anchor, point2d(cp+offset)+pos, vec, 0] ) : type == "rgn_isect"? ( //region let( anchor = _force_anchor_2d(anchor), - rgn = force_region(move(-point2d(cp), p=geom[1])), + rgn = force_region(move(-point2d(cp), p=geom[1])) + ) + approx(anchor,[0,0])? [anchor, [0,0,0], BACK, 0] : + let( isects = [ for (path=rgn, t=triplet(path,true)) let( seg1 = [t[0],t[1]], seg2 = [t[1],t[2]], - isect = line_intersection([[0,0],anchor], seg1,RAY,SEGMENT), + isect = line_intersection([[0,0],anchor], seg1, RAY, SEGMENT), n = is_undef(isect)? [0,1] : !approx(isect, t[1])? line_normal(seg1) : unit((line_normal(seg1)+line_normal(seg2))/2,[0,1]), @@ -2164,15 +2169,16 @@ function _find_anchor(anchor, geom) = vec = unit(isect[2],[0,1]) ) [anchor, pos, vec, 0] ) : type == "rgn_extent"? ( //region + let( anchor = _force_anchor_2d(anchor) ) + approx(anchor,[0,0])? [anchor, [0,0,0], BACK, 0] : let( - anchor = _force_anchor_2d(anchor), rgn = force_region(geom[1]), rpts = rot(from=anchor, to=RIGHT, p=flatten(rgn)), maxx = max(column(rpts,0)), ys = [for (pt=rpts) if (approx(pt.x, maxx)) pt.y], midy = (min(ys)+max(ys))/2, pos = rot(from=RIGHT, to=anchor, p=[maxx,midy]) - ) [anchor, pos, unit(anchor), 0] + ) [anchor, pos, unit(anchor,BACK), 0] ) : type=="xrgn_extent" || type=="xrgn_isect" ? ( // extruded region assert(in_list(anchor.z,[-1,0,1]), "The Z component of an anchor for an extruded 2D shape must be -1, 0, or 1.") let( @@ -2188,7 +2194,7 @@ function _find_anchor(anchor, geom) = twmat = zrot(lerp(0, -twist, u)), mat = shmat * scmat * twmat ) - approx(anchor_xy,[0,0]) ? [anchor, apply(mat, up(anchor.z*L/2,cp)), anchor, oang] : + approx(anchor_xy,[0,0]) ? [anchor, apply(mat, up(anchor.z*L/2,cp)), unit(anchor, UP), oang] : let( newrgn = apply(mat, rgn), newgeom = attach_geom(two_d=true, region=newrgn, extent=type=="xrgn_extent", cp=cp), diff --git a/shapes2d.scad b/shapes2d.scad index 2060773..e79cd17 100644 --- a/shapes2d.scad +++ b/shapes2d.scad @@ -392,7 +392,7 @@ module ellipse(r, d, realign=false, circum=false, uniform=false, anchor=CENTER, ry = r.y * sc; attachable(anchor,spin, two_d=true, r=[rx,ry]) { if (uniform) { - assert(!circum, "Circum option not allowed when \"uniform\" is true"); + check = assert(!circum, "Circum option not allowed when \"uniform\" is true"); polygon(ellipse(r,realign=realign, circum=circum, uniform=true)); } else if (rx < ry) { @@ -591,7 +591,7 @@ module regular_ngon(n=6, r, d, or, od, ir, id, side, rounding=0, realign=false, id = is_finite(id)? id*sc : undef; side = is_finite(side)? side/2/sin(180/n) : undef; r = get_radius(r1=ir, r2=or, r=r, d1=id, d2=od, d=d, dflt=side); - assert(!is_undef(r), "regular_ngon(): need to specify one of r, d, or, od, ir, id, side."); + check = assert(!is_undef(r), "regular_ngon(): need to specify one of r, d, or, od, ir, id, side."); mat = ( realign? zrot(-180/n) : ident(4) ) * ( !is_undef(align_tip)? rot(from=RIGHT, to=point2d(align_tip)) : !is_undef(align_side)? rot(from=RIGHT, to=point2d(align_side)) * zrot(180/n) : @@ -828,7 +828,7 @@ function right_triangle(size=[1,1], center, anchor, spin=0) = module right_triangle(size=[1,1], center, anchor, spin=0) { size = is_num(size)? [size,size] : size; anchor = get_anchor(anchor, center, [-1,-1], [-1,-1]); - assert(is_vector(size,2)); + check = assert(is_vector(size,2)); path = right_triangle(size, center=true); attachable(anchor,spin, two_d=true, size=[size.x,size.y], size2=0, shift=-size.x/2) { polygon(path); @@ -1083,10 +1083,11 @@ function star(n, r, ir, d, or, od, id, step, realign=false, align_tip, align_pit module star(n, r, ir, d, or, od, id, step, realign=false, align_tip, align_pit, anchor=CENTER, spin=0, atype="hull") { - assert(in_list(atype, _ANCHOR_TYPES), "Anchor type must be \"hull\" or \"intersect\""); - assert(is_undef(align_tip) || is_vector(align_tip)); - assert(is_undef(align_pit) || is_vector(align_pit)); - assert(is_undef(align_tip) || is_undef(align_pit), "Can only specify one of align_tip and align_pit"); + checks = + assert(in_list(atype, _ANCHOR_TYPES), "Anchor type must be \"hull\" or \"intersect\"") + assert(is_undef(align_tip) || is_vector(align_tip)) + assert(is_undef(align_pit) || is_vector(align_pit)) + assert(is_undef(align_tip) || is_undef(align_pit), "Can only specify one of align_tip and align_pit"); r = get_radius(r1=or, d1=od, r=r, d=d, dflt=undef); stepr = is_undef(step)? r : r*cos(180*step/n)/cos(180*(step-1)/n); ir = get_radius(r=ir, d=id, dflt=stepr); @@ -1463,7 +1464,7 @@ function supershape(step=0.5, m1=4, m2, n1=1, n2, n3, a=1, b, r, d,anchor=CENTER ) reorient(anchor,spin, two_d=true, path=path, p=path, extent=atype=="hull"); module supershape(step=0.5,m1=4,m2=undef,n1,n2=undef,n3=undef,a=1,b=undef, r=undef, d=undef, anchor=CENTER, spin=0, atype="hull") { - assert(in_list(atype, _ANCHOR_TYPES), "Anchor type must be \"hull\" or \"intersect\""); + check = assert(in_list(atype, _ANCHOR_TYPES), "Anchor type must be \"hull\" or \"intersect\""); path = supershape(step=step,m1=m1,m2=m2,n1=n1,n2=n2,n3=n3,a=a,b=b,r=r,d=d); attachable(anchor,spin,extent=atype=="hull", two_d=true, path=path) { polygon(path); @@ -1498,7 +1499,7 @@ module supershape(step=0.5,m1=4,m2=undef,n1,n2=undef,n3=undef,a=1,b=undef, r=und // Examples(2D): Named anchors exist for the tips // reuleaux_polygon(n=3, d=50) show_anchors(std=false); module reuleaux_polygon(n=3, r, d, anchor=CENTER, spin=0) { - assert(n>=3 && (n%2)==1); + check = assert(n>=3 && (n%2)==1); r = get_radius(r=r, d=d, dflt=1); path = reuleaux_polygon(n=n, r=r); anchors = [ diff --git a/shapes3d.scad b/shapes3d.scad index ab674e1..bb9d538 100644 --- a/shapes3d.scad +++ b/shapes3d.scad @@ -214,7 +214,7 @@ module cuboid( e = _corner_edges(edges, corner); cnt = sum(e); r = first_defined([chamfer, rounding]); - dummy=assert(is_finite(r) && !approx(r,0)); + dummy = assert(is_finite(r) && !approx(r,0)); c = [r,r,r]; m = 0.01; c2 = v_mul(corner,c/2); @@ -266,15 +266,16 @@ module cuboid( teardrop = is_bool(teardrop)&&teardrop? 45 : teardrop; chamfer = approx(chamfer,0) ? undef : chamfer; rounding = approx(rounding,0) ? undef : rounding; - assert(is_vector(size,3)); - assert(all_positive(size)); - assert(is_undef(chamfer) || is_finite(chamfer),"chamfer must be a finite value"); - assert(is_undef(rounding) || is_finite(rounding),"rounding must be a finite value"); - assert(is_undef(rounding) || is_undef(chamfer), "Cannot specify nonzero value for both chamfer and rounding"); - assert(teardrop==false || (is_finite(teardrop) && teardrop>0 && teardrop<90), "teardrop must be either false or an angle number between 0 and 90") - assert(is_undef(p1) || is_vector(p1)); - assert(is_undef(p2) || is_vector(p2)); - assert(is_bool(trimcorners)); + checks = + assert(is_vector(size,3)) + assert(all_positive(size)) + assert(is_undef(chamfer) || is_finite(chamfer),"chamfer must be a finite value") + assert(is_undef(rounding) || is_finite(rounding),"rounding must be a finite value") + assert(is_undef(rounding) || is_undef(chamfer), "Cannot specify nonzero value for both chamfer and rounding") + assert(teardrop==false || (is_finite(teardrop) && teardrop>0 && teardrop<90), "teardrop must be either false or an angle number between 0 and 90") + assert(is_undef(p1) || is_vector(p1)) + assert(is_undef(p2) || is_vector(p2)) + assert(is_bool(trimcorners)); if (!is_undef(p1)) { if (!is_undef(p2)) { translate(pointlist_bounds([p1,p2])[0]) { @@ -321,7 +322,7 @@ module cuboid( } } } else if (chamfer<0) { - assert(edges == EDGES_ALL || edges[2] == [0,0,0,0], "Cannot use negative chamfer with Z aligned edges."); + checks = assert(edges == EDGES_ALL || edges[2] == [0,0,0,0], "Cannot use negative chamfer with Z aligned edges."); ach = abs(chamfer); cube(size, center=true); @@ -408,7 +409,7 @@ module cuboid( } } } else if (rounding<0) { - assert(edges == EDGES_ALL || edges[2] == [0,0,0,0], "Cannot use negative rounding with Z aligned edges."); + checks = assert(edges == EDGES_ALL || edges[2] == [0,0,0,0], "Cannot use negative rounding with Z aligned edges."); ard = abs(rounding); cube(size, center=true); @@ -573,23 +574,25 @@ module prismoid( l, center, anchor, spin=0, orient=UP ) { - assert(is_num(size1) || is_vector(size1,2)); - assert(is_num(size2) || is_vector(size2,2)); - assert(is_num(h) || is_num(l)); - assert(is_vector(shift,2)); - assert(is_num(rounding) || is_vector(rounding,4), "Bad rounding argument."); - assert(is_undef(rounding1) || is_num(rounding1) || is_vector(rounding1,4), "Bad rounding1 argument."); - assert(is_undef(rounding2) || is_num(rounding2) || is_vector(rounding2,4), "Bad rounding2 argument."); - assert(is_num(chamfer) || is_vector(chamfer,4), "Bad chamfer argument."); - assert(is_undef(chamfer1) || is_num(chamfer1) || is_vector(chamfer1,4), "Bad chamfer1 argument."); - assert(is_undef(chamfer2) || is_num(chamfer2) || is_vector(chamfer2,4), "Bad chamfer2 argument."); + checks = + assert(is_num(size1) || is_vector(size1,2)) + assert(is_num(size2) || is_vector(size2,2)) + assert(is_num(h) || is_num(l)) + assert(is_vector(shift,2)) + assert(is_num(rounding) || is_vector(rounding,4), "Bad rounding argument.") + assert(is_undef(rounding1) || is_num(rounding1) || is_vector(rounding1,4), "Bad rounding1 argument.") + assert(is_undef(rounding2) || is_num(rounding2) || is_vector(rounding2,4), "Bad rounding2 argument.") + assert(is_num(chamfer) || is_vector(chamfer,4), "Bad chamfer argument.") + assert(is_undef(chamfer1) || is_num(chamfer1) || is_vector(chamfer1,4), "Bad chamfer1 argument.") + assert(is_undef(chamfer2) || is_num(chamfer2) || is_vector(chamfer2,4), "Bad chamfer2 argument."); eps = pow(2,-14); size1 = is_num(size1)? [size1,size1] : size1; size2 = is_num(size2)? [size2,size2] : size2; - assert(all_nonnegative(size1)); - assert(all_nonnegative(size2)); - assert(size1.x + size2.x > 0); - assert(size1.y + size2.y > 0); + checks2 = + assert(all_nonnegative(size1)) + assert(all_nonnegative(size2)) + assert(size1.x + size2.x > 0) + assert(size1.y + size2.y > 0); s1 = [max(size1.x, eps), max(size1.y, eps)]; s2 = [max(size2.x, eps), max(size2.y, eps)]; rounding1 = default(rounding1, rounding); @@ -841,8 +844,9 @@ module rect_tube( l ) { h = one_defined([h,l],"h,l"); - assert(is_num(h), "l or h argument required."); - assert(is_vector(shift,2)); + checks = + assert(is_num(h), "l or h argument required.") + assert(is_vector(shift,2)); s1 = is_num(size1)? [size1, size1] : is_vector(size1,2)? size1 : is_num(size)? [size, size] : @@ -875,15 +879,16 @@ module rect_tube( isize2 = is_def(is2)? is2 : (is_def(wall) && is_def(s2))? (s2-2*[wall,wall]) : undef; - assert(wall==undef || is_num(wall)); - assert(size1!=undef, "Bad size/size1 argument."); - assert(size2!=undef, "Bad size/size2 argument."); - assert(isize1!=undef, "Bad isize/isize1 argument."); - assert(isize2!=undef, "Bad isize/isize2 argument."); - assert(isize1.x < size1.x, "Inner size is larger than outer size."); - assert(isize1.y < size1.y, "Inner size is larger than outer size."); - assert(isize2.x < size2.x, "Inner size is larger than outer size."); - assert(isize2.y < size2.y, "Inner size is larger than outer size."); + checks2 = + assert(wall==undef || is_num(wall)) + assert(size1!=undef, "Bad size/size1 argument.") + assert(size2!=undef, "Bad size/size2 argument.") + assert(isize1!=undef, "Bad isize/isize1 argument.") + assert(isize2!=undef, "Bad isize/isize2 argument.") + assert(isize1.x < size1.x, "Inner size is larger than outer size.") + assert(isize1.y < size1.y, "Inner size is larger than outer size.") + assert(isize2.x < size2.x, "Inner size is larger than outer size.") + assert(isize2.y < size2.y, "Inner size is larger than outer size."); anchor = get_anchor(anchor, center, BOT, BOT); attachable(anchor,spin,orient, size=[each size1, h], size2=size2, shift=shift) { diff("_H_o_L_e_") @@ -1190,28 +1195,30 @@ module cyl( fil1 = first_defined([rounding1, rounding]); fil2 = first_defined([rounding2, rounding]); if (chamfer != undef) { - assert(chamfer <= r1, "chamfer is larger than the r1 radius of the cylinder."); - assert(chamfer <= r2, "chamfer is larger than the r2 radius of the cylinder."); + checks = + assert(chamfer <= r1, "chamfer is larger than the r1 radius of the cylinder.") + assert(chamfer <= r2, "chamfer is larger than the r2 radius of the cylinder."); } if (cham1 != undef) { - assert(cham1 <= r1, "chamfer1 is larger than the r1 radius of the cylinder."); + check = assert(cham1 <= r1, "chamfer1 is larger than the r1 radius of the cylinder."); } if (cham2 != undef) { - assert(cham2 <= r2, "chamfer2 is larger than the r2 radius of the cylinder."); + check = assert(cham2 <= r2, "chamfer2 is larger than the r2 radius of the cylinder."); } if (rounding != undef) { - assert(rounding <= r1, "rounding is larger than the r1 radius of the cylinder."); - assert(rounding <= r2, "rounding is larger than the r2 radius of the cylinder."); + checks = + assert(rounding <= r1, "rounding is larger than the r1 radius of the cylinder.") + assert(rounding <= r2, "rounding is larger than the r2 radius of the cylinder."); } if (fil1 != undef) { - assert(fil1 <= r1, "rounding1 is larger than the r1 radius of the cylinder."); + check = assert(fil1 <= r1, "rounding1 is larger than the r1 radius of the cylinder."); } if (fil2 != undef) { - assert(fil2 <= r2, "rounding2 is larger than the r1 radius of the cylinder."); + check = assert(fil2 <= r2, "rounding2 is larger than the r1 radius of the cylinder."); } dy1 = abs(first_defined([cham1, fil1, 0])); dy2 = abs(first_defined([cham2, fil2, 0])); - assert(dy1+dy2 <= l, "Sum of fillets and chamfer sizes must be less than the length of the cylinder."); + check = assert(dy1+dy2 <= l, "Sum of fillets and chamfer sizes must be less than the length of the cylinder."); path = concat( [[0,l/2]], @@ -1540,9 +1547,10 @@ module tube( r2 = default(orr2, u_add(irr2,wall)); ir1 = default(irr1, u_sub(orr1,wall)); ir2 = default(irr2, u_sub(orr2,wall)); - assert(all_defined([r1, r2, ir1, ir2]), "Must specify two of inner radius/diam, outer radius/diam, and wall width."); - assert(ir1 <= r1, "Inner radius is larger than outer radius."); - assert(ir2 <= r2, "Inner radius is larger than outer radius."); + checks = + assert(all_defined([r1, r2, ir1, ir2]), "Must specify two of inner radius/diam, outer radius/diam, and wall width.") + assert(ir1 <= r1, "Inner radius is larger than outer radius.") + assert(ir2 <= r2, "Inner radius is larger than outer radius."); sides = segs(max(r1,r2)); anchor = get_anchor(anchor, center, BOT, CENTER); attachable(anchor,spin,orient, r1=r1, r2=r2, l=h) { @@ -2608,7 +2616,6 @@ function _cut_interp(pathcut, path, data) = // color("red")stroke(path, width=.3); // kern = [1,1.2,1,1,.3,-.2,1,0,.8,1,1.1,1]; // path_text(path, "Example text", font="Courier", size=5, lettersize = 5/1.2, kern=kern, normal=UP); - module path_text(path, text, font, size, thickness, lettersize, offset=0, reverse=false, normal, top, center=false, textmetrics=false, kern=0) { no_children($children); @@ -2653,29 +2660,37 @@ module path_text(path, text, font, size, thickness, lettersize, offset=0, revers normpts = is_undef(normal) ? (reverse?1:-1)*column(pts,3) : _cut_interp(pts,path, normal); toppts = is_undef(top) ? undef : _cut_interp(pts,path,top); - for(i=idx(text)) - let( tangent = pts[i][2] ) - assert(!usetop || !approx(tangent*toppts[i],norm(top[i])*norm(tangent)), - str("Specified top direction parallel to path at character ",i)) - assert(usetop || !approx(tangent*normpts[i],norm(normpts[i])*norm(tangent)), - str("Specified normal direction parallel to path at character ",i)) - let( - adjustment = usetop ? (tangent*toppts[i])*toppts[i]/(toppts[i]*toppts[i]) - : usernorm ? (tangent*normpts[i])*normpts[i]/(normpts[i]*normpts[i]) - : [0,0,0] - ) - move(pts[i][0]) - if(dim==3){ - frame_map(x=tangent-adjustment, - z=usetop ? undef : normpts[i], - y=usetop ? toppts[i] : undef) - up(offset-thickness/2) + for (i = idx(text)) { + tangent = pts[i][2]; + checks = + assert(!usetop || !approx(tangent*toppts[i],norm(top[i])*norm(tangent)), + str("Specified top direction parallel to path at character ",i)) + assert(usetop || !approx(tangent*normpts[i],norm(normpts[i])*norm(tangent)), + str("Specified normal direction parallel to path at character ",i)); + adjustment = usetop ? (tangent*toppts[i])*toppts[i]/(toppts[i]*toppts[i]) + : usernorm ? (tangent*normpts[i])*normpts[i]/(normpts[i]*normpts[i]) + : [0,0,0]; + move(pts[i][0]) { + if (dim==3) { + frame_map( + x=tangent-adjustment, + z=usetop ? undef : normpts[i], + y=usetop ? toppts[i] : undef + ) up(offset-thickness/2) { linear_extrude(height=thickness) - left(lsize[0]/2)text(text[i], font=font, size=size); - } else { - frame_map(x=point3d(tangent-adjustment), y=point3d(usetop ? toppts[i] : -normpts[i])) - left(lsize[0]/2)text(text[i], font=font, size=size); - } + left(lsize[0]/2) + text(text[i], font=font, size=size); + } + } else { + frame_map( + x=point3d(tangent-adjustment), + y=point3d(usetop ? toppts[i] : -normpts[i]) + ) left(lsize[0]/2) { + text(text[i], font=font, size=size); + } + } + } + } } @@ -2912,8 +2927,9 @@ module ruler(length=100, width, thickness=1, depth=3, labels=false, pipscale=1/3 colors=["black","white"], alpha=1.0, unit=1, inch=false, anchor=LEFT+BACK+TOP, spin=0, orient=UP) { inchfactor = 25.4; - assert(depth<=5, "Cannot render scales smaller than depth=5"); - assert(len(colors)==2, "colors must contain a list of exactly two colors."); + checks = + assert(depth<=5, "Cannot render scales smaller than depth=5") + assert(len(colors)==2, "colors must contain a list of exactly two colors."); length = inch ? inchfactor * length : length; unit = inch ? inchfactor*unit : unit; maxscale = is_def(maxscale)? maxscale : floor(log(length/unit-EPSILON)); diff --git a/vnf.scad b/vnf.scad index a0b141d..e4a6cc1 100644 --- a/vnf.scad +++ b/vnf.scad @@ -104,6 +104,23 @@ EMPTY_VNF = [[],[]]; // The standard empty VNF with no vertices or faces. // vnf2 = vnf_vertex_array(points=cap1, col_wrap=true); // vnf3 = vnf_vertex_array(points=cap2, col_wrap=true, reverse=true); // vnf_polyhedron([vnf1, vnf2, vnf3]); +// Example(3D): Building a Multi-Stage Cylindrical Ramp +// include +// major_r = 50; +// groove_profile = [ +// [-10,0], each arc(points=[[-7,0],[0,-3],[7,0]]), [10,0] +// ]; +// ramp_profile = [ [-10,25], [90,25], [180,5], [190,5] ]; +// rgroove = apply(right(major_r) * xrot(90), path3d(groove_profile)); +// rprofile = round_corners(ramp_profile, radius=20, closed=false, $fn=72); +// vnf = vnf_vertex_array([ +// for (a = [ramp_profile[0].x : 1 : last(ramp_profile).x]) let( +// z = lookup(a,rprofile), +// m = zrot(a) * up(z) +// ) +// apply(m, [ [rgroove[0].x,0,-z], each rgroove, [last(rgroove).x,0,-z] ]) +// ], caps=true, col_wrap=true, reverse=true); +// vnf_polyhedron(vnf, convexity=8); function vnf_vertex_array( points, caps, cap1, cap2,