This commit is contained in:
Alex Matulich 2024-12-11 12:28:36 -05:00 committed by GitHub
commit ee689cc45d
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

230
vnf.scad
View file

@ -237,21 +237,27 @@ function vnf_vertex_array(
// Function: vnf_tri_array() // Function: vnf_tri_array()
// Synopsis: Returns a VNF from an array of points. // Synopsis: Returns a VNF from an array of points. The array need not be rectangular.
// SynTags: VNF // SynTags: VNF
// Topics: VNF Generators, Lists // Topics: VNF Generators, Lists
// See Also: vnf_vertex_array(), vnf_join(), vnf_from_polygons(), vnf_from_region() // See Also: vnf_vertex_array(), vnf_join(), vnf_from_polygons(), vnf_merge_points()
// Usage: // Usage:
// vnf = vnf_tri_array(points, [row_wrap], [reverse]) // vnf = vnf_tri_array(points, [row_wrap], [reverse], [col_wrap], [caps], [cap1], [cap2])
// Description: // Description:
// Produces a VNF from an array of points where each row length can differ from the adjacent rows by up to 2 in length. This enables // Produces a VNF from an array of points where each row length can differ from the adjacent rows by any amount. This enables the construction of triangular or even irregular VNF patches. The resulting VNF can be wrapped along the rows by setting `row_wrap` to true, and wrapped along columns by setting `col_wrap` to true. It is possible to do both at once.
// the construction of triangular VNF patches. The resulting VNF can be wrapped along the rows by setting `row_wrap` to true. // If `row_wrap` is false, end caps can be generated across either the top and bottom rows.
// You cannot wrap columns: if you need to do that you'll need to merge two VNF arrays that share edges. Degenerate faces // .
// are not included in the output, but if this results in unused vertices they will still appear in the output. // The algorithm starts with the first point on each row and recursively walks around finding the minimum-length edge to make each new triangle face. This may result in several triangles being connected to one vertex. When triangulating two rows that happen to be equal length, the result is equivalent to {{vnf_vertex_array()}} using the "min_edge" style. If you already have a rectangular vertex list (equal length rows), you should use `vnf_vertex_array()` if you need a different triangulation style.
// .
// If you need to merge two VNF arrays that share edges using `vnf_join()` you can remove the duplicated vertices using `vnf_merge_points()`.
// Arguments: // Arguments:
// points = List of point lists for each row // points = List of point lists for each row.
// row_wrap = If true then add faces connecting the first row and last row. These rows must differ by at most 2 in length. // row_wrap = If true, then add faces connecting the first row and last row. The rows may be unequal length.
// reverse = Set this to reverse the direction of the faces // reverse = If true, reverses the direction of the faces.
// col_wrap = If true, then add faces connecting the first column and last column.
// caps = Close both first and last rows with end caps, if `row_wrap=false`.
// cap1 = Close first row with an end cap, if `row_wrap=false`.
// cap2 = Close last row with an end cap, if `row_wrap=false`.
// Example(3D,NoAxes): Each row has one more point than the preceeding one. // Example(3D,NoAxes): Each row has one more point than the preceeding one.
// pts = [for(y=[1:1:10]) [for(x=[0:y-1]) [x,y,y]]]; // pts = [for(y=[1:1:10]) [for(x=[0:y-1]) [x,y,y]]];
// vnf = vnf_tri_array(pts); // vnf = vnf_tri_array(pts);
@ -276,60 +282,149 @@ function vnf_vertex_array(
// vnf_tri_array(pts2)]); // vnf_tri_array(pts2)]);
// color("green")vnf_wireframe(vnf,width=0.1); // color("green")vnf_wireframe(vnf,width=0.1);
// vnf_polyhedron(vnf); // vnf_polyhedron(vnf);
// Example(3D,NoAxes): Point count can change irregularly // Example(3D,NoAxes): The number of points per row can change irregularly by any amount.
// lens = [10,9,7,5,6,8,8,10]; // lens = [10,9,8,6,4,8,2,5,3,10,4];
// pts = [for(y=idx(lens)) lerpn([-lens[y],y,y],[lens[y],y,y],lens[y])]; // pts = [for(y=idx(lens)) lerpn([-lens[y],y,y],[lens[y],y,y],lens[y])];
// vnf = vnf_tri_array(pts); // vnf = vnf_tri_array(pts);
// vnf_wireframe(vnf,width=0.1); // vnf_wireframe(vnf,width=0.1);
// color("red")move_copies(flatten(pts)) sphere(r=.15,$fn=9); // color("red")move_copies(flatten(pts)) sphere(r=.15,$fn=9);
function vnf_tri_array(points, row_wrap=false, reverse=false) = // Example(3D,NoAxes,ThrownTogether): A simple open-ended shape made from a series of arcs with different number of vertices at different elevations. Clockwise from upper left: (1) no row or column wrapping, (2) wrap rows only, (3) wrap rows and columns, (4) wrap columns only, with caps. The `reverse=true` parameter is needed because arcs generate counterclockwise, while `vnf_tri_array()` expects clockwise, as with polygons.
let( // polypoints = [12, 16, 25, 26, 25, 18, 10];
lens = [for(row=points) len(row)], // arc_elev = [1, 0, 6, 8, 10, 15, 14];
rowstarts = [0,each cumsum(lens)], // rows = [
faces = // for(i = [0:len(arc_elev)-1])
[for(i=[0:1:len(points) - 1 - (row_wrap ? 0 : 1)]) each // path3d(arc(r=polypoints[i]*2, angle=280, $fn=polypoints[i]), 5*arc_elev[i])
let( // ];
rowstart = rowstarts[i], // vnf1 = vnf_tri_array(rows, reverse=true); // no row or column wrapping
nextrow = select(rowstarts,i+1), // translate([-60,60,0]) {
delta = select(lens,i+1)-lens[i] // vnf_polyhedron(vnf1);
) // color("green") vnf_wireframe(vnf1);
delta == 0 ? // }
[for(j=[0:1:lens[i]-2]) reverse ? [j+rowstart+1, j+rowstart, j+nextrow] : [j+rowstart, j+rowstart+1, j+nextrow], // vnf2 = vnf_tri_array(rows, reverse=true, row_wrap=true); // wrap rows only
for(j=[0:1:lens[i]-2]) reverse ? [j+rowstart+1, j+nextrow, j+nextrow+1] : [j+rowstart+1, j+nextrow+1, j+nextrow]] : // translate([60,60,0]) {
delta == 1 ? // vnf_polyhedron(vnf2);
[for(j=[0:1:lens[i]-2]) reverse ? [j+rowstart+1, j+rowstart, j+nextrow+1] : [j+rowstart, j+rowstart+1, j+nextrow+1], // color("green") vnf_wireframe(vnf2);
for(j=[0:1:lens[i]-1]) reverse ? [j+rowstart, j+nextrow, j+nextrow+1] : [j+rowstart, j+nextrow+1, j+nextrow]] : // }
delta == -1 ? // vnf3 = vnf_tri_array(rows, reverse=true, row_wrap=true, col_wrap=true); // wrap rows and columns
[for(j=[0:1:lens[i]-3]) reverse ? [j+rowstart+1, j+nextrow, j+nextrow+1]: [j+rowstart+1, j+nextrow+1, j+nextrow], // translate([60,-60,0]) {
for(j=[0:1:lens[i]-2]) reverse ? [j+rowstart+1, j+rowstart, j+nextrow] : [j+rowstart, j+rowstart+1, j+nextrow]] : // vnf_polyhedron(vnf3);
let(count = floor((lens[i]-1)/2)) // color("green") vnf_wireframe(vnf3);
delta == 2 ? // }
[ // vnf4 = vnf_tri_array(rows, reverse=true, col_wrap=true, caps=true); // wrap columns only, with caps
for(j=[0:1:count-1]) reverse ? [j+rowstart+1, j+rowstart, j+nextrow+1] : [j+rowstart, j+rowstart+1, j+nextrow+1], // top triangles left // translate([-60,-60,0]) {
for(j=[count:1:lens[i]-2]) reverse ? [j+rowstart+1, j+rowstart, j+nextrow+2] : [j+rowstart, j+rowstart+1, j+nextrow+2], // top triangles right // vnf_polyhedron(vnf4);
for(j=[0:1:count]) reverse ? [j+rowstart, j+nextrow, j+nextrow+1] : [j+rowstart, j+nextrow+1, j+nextrow], // bot triangles left // color("green") vnf_wireframe(vnf4);
for(j=[count+1:1:select(lens,i+1)-2]) reverse ? [j+rowstart-1, j+nextrow, j+nextrow+1] : [j+rowstart-1, j+nextrow+1, j+nextrow], // bot triangles right // }
] : // Example(3D,NoAxes,Edges,VPR=[65,0,25]): Model of a cymbal with roughly same-size facets, using a different number of points for each concentric ring of vertices.
delta == -2 ? // include <BOSL2/beziers.scad>
[ // bez = [
for(j=[0:1:count-2]) reverse ? [j+nextrow, j+nextrow+1, j+rowstart+1] : [j+nextrow, j+rowstart+1, j+nextrow+1], // [[0,26], [35,26], [29,0], [80,16], [102,0]], //top
for(j=[count-1:1:lens[i]-4]) reverse ? [j+nextrow,j+nextrow+1,j+rowstart+2] : [j+nextrow,j+rowstart+2, j+nextrow+1], // [[99,-1], [79,15], [28,-1], [34,25], [-1,25]] // bottom
for(j=[0:1:count-1]) reverse ? [j+nextrow, j+rowstart+1, j+rowstart] : [j+nextrow, j+rowstart, j+rowstart+1], // ];
for(j=[count:1:select(lens,i+1)]) reverse ? [ j+nextrow-1, j+rowstart+1, j+rowstart]: [ j+nextrow-1, j+rowstart, j+rowstart+1], // points = [
] : // for(b=bez)
assert(false,str("Unsupported row length difference of ",delta, " between row ",i," and ",(i+1)%len(points))) // for(u=[0.01:0.04:1]) let(
], // bzp = bezier_points(b,u),
verts = flatten(points), // r = bzp[0],
culled_faces= // n = max(3, round(360 / (6/r * 180/PI)))
[for(face=faces) // ) path3d(regular_ngon(n, r=r), bzp[1])
if (norm(verts[face[0]]-verts[face[1]])>EPSILON && // ];
norm(verts[face[1]]-verts[face[2]])>EPSILON && // vnf = vnf_tri_array(points, reverse=true, col_wrap=true, caps=true);
norm(verts[face[2]]-verts[face[0]])>EPSILON) // color("brown") difference() {
face // vnf_polyhedron(vnf);
] // cylinder(30, d=8);
) // }
[flatten(points), culled_faces];
function vnf_tri_array(points, row_wrap=false, reverse=false, col_wrap=false, caps=false, cap1=false, cap2=false) =
assert(!(row_wrap && (caps || cap1 || cap2)), "Caps cannot exist when row_wrap=true")
let(
plen = len(points),
// append first vertex of each polygon to its end if wrapping columns
st = col_wrap ? [
for(i=[0:plen-1])
points[i][0] != points[i][len(points[i])-1]
? concat(points[i], [points[i][0]])
: points[i]
] : points,
addcol = col_wrap ? len(st[0])-len(points[0]) : 0,
rowstarts = [ for(i=[0:plen-1]) len(st[i]) ],
capfirst = caps ? true : cap1,
caplast = caps ? true : cap2,
pcumlen = [0, each cumsum(rowstarts)],
faces = flatten([
// close first end
if (capfirst)
if (reverse) [[ for(i=[0:rowstarts[0]-1-addcol]) i ]]
else [[ for(i=[rowstarts[0]-1-addcol:-1:0]) i ]],
// triangulate between the two polygons
for(i = [0:plen-2+(row_wrap?1:0)]) let(j = (i+1)%plen)
_lofttri(st[i], st[j], pcumlen[i], pcumlen[j], rowstarts[i], rowstarts[j], reverse),
// close up the last end
if (caplast)
if (reverse) [[ for(i=[pcumlen[plen]-1-addcol:-1:pcumlen[plen-1]]) i ]]
else [[ for(i=[pcumlen[plen-1]:pcumlen[plen]-1-addcol]) i ]]
]),
vnf = [flatten(st), faces]
) col_wrap ? vnf_merge_points(vnf) : vnf;
/*
Recursively triangulate between two 3D paths (which can be different
in length by any amount), starting at index 0 and generate a list of
triangles with minimum new-side length.
The first side of the first triangle always connects the two first
vertices of each path.
To triangulate between two closed paths, the first and last vertices
must be the same.
Parameters:
p1 = first path, an array of [x,y,z] vertices
p2 = second path, an array of [x,y,z] vertices
i1offset = index offset of first vertex in the first path
(sum of any prior path lengths)
i2offset = index offset of first vertex in the second path
(sum of any prior path lengths)
n1 = number of vertices in first path
n2 = number of vertices in second path
reverse = if true, assume a polygon path goes around
counterclockwise with respect to the direction from
p1 to p2 (right hand rule), clockwise if false
Other parameters are for internal use:
trilist[] = array of triangles to return
i1 = vertex index on p1 of the next triangle
i2 = vertex index on p2 of the next triangle
(next triangle vertex found can be on either p1 or p2, depending
on which triangle is smaller.)
Returns an array of triangles using vertex indices offset by
i1offset and i2offset
*/
function _lofttri(p1, p2, i1offset, i2offset, n1, n2, reverse=false, trilist=[], i1=0, i2=0) = n1!=n2 ?
// unequal row lengths
let(
t1 = i1 < n1 ? i1+1 : n1, // test point 1
t2 = i2 < n2 ? i2+1 : n2, // test point 2
d12 = t2>=n2 ? 9e+9 : norm(p2[t2]-p1[i1]), // distance from i1 to t2
d21 = t1>=n1 ? 9e+9 : norm(p1[t1]-p2[i2]), // distance from i2 to t1
triangle = reverse ?
[i1offset+i1, i2offset+i2, d12<d21 ? i2offset+t2 : i1offset+t1] :
[i2offset+i2, i1offset+i1, d12<d21 ? i2offset+t2 : i1offset+t1]
) t1>=n1 && t2>=n2 ? trilist :
_lofttri(p1, p2, i1offset, i2offset, n1, n2, reverse, concat(trilist, [triangle]), d12<d21 ? i1 : t1, d12<d21 ? t2 : i2)
: // equal row lengths
let(n=n1, i=i1,
t = i < n ? i+1 : n, // test point
d12 = t>=n ? 9e+9 : norm(p2[t]-p1[i]), // distance from p1 to new p2
d21 = t>=n ? 9e+9 : norm(p1[t]-p2[i]), // distance from p2 to new p1
triangle1 = reverse ?
[i1offset+i, i2offset+i, d12<d21 ? i2offset+t : i1offset+t] :
[i2offset+i, i1offset+i, d12<d21 ? i2offset+t : i1offset+t],
triangle2 = reverse ?
[i2offset+t, i1offset+t, d12<d21 ? i1offset+i : i2offset+i] :
[i1offset+t, i2offset+t, d12<d21 ? i1offset+i : i2offset+i]
) t>=n ? trilist :
_lofttri(p1, p2, i1offset, i2offset, n, n, reverse, concat(trilist, [triangle1, triangle2]), t, t);
// Function: vnf_join() // Function: vnf_join()
@ -436,7 +531,22 @@ function vnf_join(vnfs) =
// Arguments: // Arguments:
// polygons = The list of 3D polygons to turn into a VNF // polygons = The list of 3D polygons to turn into a VNF
// fast = Set to true to skip area and coplanarity checks for increased speed. Default: false // fast = Set to true to skip area and coplanarity checks for increased speed. Default: false
// eps = Polygons with area small than this are discarded. Default: EPSILON // eps = Polygons with area smaller than this are discarded. Default: EPSILON
// Example(3D,VPR=[60,0,40]): Construction of a dodecahedron from pentagon faces.
// dihedral = 2*atan(PHI); // dodecahedron face dihedral
// rpenta = 10; // pentagon face radius
// edge = 2*rpenta*sin(36); // edge length
// inrad = 0.5*edge * PHI*PHI/sqrt(3-PHI); // inner radius
// face3d = path3d(pentagon(rpenta), inrad); // single face
// facepoints = [
// face3d,
// for(a=[36:72:360]) zrot(a, yrot(180-dihedral, face3d)),
// for(a=[36:72:360]) zrot(a, yrot(360-dihedral, face3d)),
// yrot(180, face3d)
// ];
// vnf = vnf_from_polygons(facepoints, fast=true);
// vnf_polyhedron(vnf);
function vnf_from_polygons(polygons,fast=false,eps=EPSILON) = function vnf_from_polygons(polygons,fast=false,eps=EPSILON) =
assert(is_list(polygons) && is_path(polygons[0]),"Input should be a list of polygons") assert(is_list(polygons) && is_path(polygons[0]),"Input should be a list of polygons")
let( let(