mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-17 09:59:39 +00:00
commit
f07efed4bd
2 changed files with 5 additions and 1 deletions
|
@ -1224,6 +1224,7 @@ function block_matrix(M) =
|
||||||
// its diagonal. The off diagonal entries are set to offdiag,
|
// its diagonal. The off diagonal entries are set to offdiag,
|
||||||
// which is zero by default.
|
// which is zero by default.
|
||||||
function diagonal_matrix(diag,offdiag=0) =
|
function diagonal_matrix(diag,offdiag=0) =
|
||||||
|
assert(is_list(diag) && len(diag)>0)
|
||||||
[for(i=[0:1:len(diag)-1]) [for(j=[0:len(diag)-1]) i==j?diag[i] : offdiag]];
|
[for(i=[0:1:len(diag)-1]) [for(j=[0:len(diag)-1]) i==j?diag[i] : offdiag]];
|
||||||
|
|
||||||
|
|
||||||
|
@ -1237,6 +1238,8 @@ function diagonal_matrix(diag,offdiag=0) =
|
||||||
function submatrix_set(M,A,m=0,n=0) =
|
function submatrix_set(M,A,m=0,n=0) =
|
||||||
assert(is_list(M))
|
assert(is_list(M))
|
||||||
assert(is_list(A))
|
assert(is_list(A))
|
||||||
|
assert(is_int(m))
|
||||||
|
assert(is_int(n))
|
||||||
let( badrows = [for(i=idx(A)) if (!is_list(A[i])) i])
|
let( badrows = [for(i=idx(A)) if (!is_list(A[i])) i])
|
||||||
assert(badrows==[], str("Input submatrix malformed rows: ",badrows))
|
assert(badrows==[], str("Input submatrix malformed rows: ",badrows))
|
||||||
[for(i=[0:1:len(M)-1])
|
[for(i=[0:1:len(M)-1])
|
||||||
|
|
|
@ -894,7 +894,8 @@ function is_matrix(A,m,n,square=false) =
|
||||||
// squares of all of the entries of the matrix. On vectors it is the same as the usual 2-norm.
|
// squares of all of the entries of the matrix. On vectors it is the same as the usual 2-norm.
|
||||||
// This is an easily computed norm that is convenient for comparing two matrices.
|
// This is an easily computed norm that is convenient for comparing two matrices.
|
||||||
function norm_fro(A) =
|
function norm_fro(A) =
|
||||||
sqrt(sum([for(entry=A) sum_of_squares(entry)]));
|
assert(is_matrix(A) || is_vector(A))
|
||||||
|
norm(flatten(A));
|
||||||
|
|
||||||
|
|
||||||
// Section: Comparisons and Logic
|
// Section: Comparisons and Logic
|
||||||
|
|
Loading…
Reference in a new issue