From 1b84a3129d7ad7f2aa68ad92a18ede42d175cf70 Mon Sep 17 00:00:00 2001 From: RonaldoCMP Date: Tue, 12 Oct 2021 21:22:02 -0300 Subject: [PATCH] Extend triangulate functionality and correct is_polygon_convex --- geometry.scad | 107 +++++++++++++++++++++++++++++++++++++++++++------- 1 file changed, 92 insertions(+), 15 deletions(-) diff --git a/geometry.scad b/geometry.scad index cf95fa6..b6b419e 100644 --- a/geometry.scad +++ b/geometry.scad @@ -494,11 +494,13 @@ function _covariance_evec_eval(points) = // Usage: // plane = plane_from_points(points, [fast], [eps]); // Topics: Geometry, Planes, Points +// See Also: plane_from_polygon // Description: // Given a list of 3 or more coplanar 3D points, returns the coefficients of the normalized cartesian equation of a plane, // that is [A,B,C,D] where Ax+By+Cz=D is the equation of the plane and norm([A,B,C])=1. // If `fast` is false and the points in the list are collinear or not coplanar, then `undef` is returned. // If `fast` is true, the polygon coplanarity check is skipped and a best fitting plane is returned. +// It differs from `plane_from_polygon` as the plane normal is independent of the point order. It is faster, though. // Arguments: // points = The list of points to find the plane of. // fast = If true, don't verify the point coplanarity. Default: false @@ -529,6 +531,7 @@ function plane_from_points(points, fast=false, eps=EPSILON) = // Usage: // plane = plane_from_polygon(points, [fast], [eps]); // Topics: Geometry, Planes, Polygons +// See Also: plane_from_points // Description: // Given a 3D planar polygon, returns the normalized cartesian equation of its plane. // Returns [A,B,C,D] where Ax+By+Cz=D is the equation of the plane where norm([A,B,C])=1. @@ -936,10 +939,10 @@ function point_plane_distance(plane, point) = // the maximum distance from points to the plane function _pointlist_greatest_distance(points,plane) = let( - normal = point3d(plane), + normal = [plane[0],plane[1],plane[2]], pt_nrm = points*normal ) - abs(max( max(pt_nrm) - plane[3], -min(pt_nrm) + plane[3])) / norm(normal); + max( max(pt_nrm) - plane[3], -min(pt_nrm) + plane[3]) / norm(normal); // Function: are_points_on_plane() @@ -1355,7 +1358,7 @@ function noncollinear_triple(points,error=true,eps=EPSILON) = pb = points[b], nrm = norm(pa-pb) ) - nrm <= eps*max(norm(pa),norm(pb)) ? + nrm <= eps ? assert(!error, "Cannot find three noncollinear points in pointlist.") [] : let( n = (pb-pa)/nrm, @@ -1659,7 +1662,7 @@ function polygon_triangulate(poly, ind, eps=EPSILON) = // requires ccw 2d polygons // returns ccw triangles -function _triangulate(poly, ind, eps=EPSILON, tris=[]) = +function _old_triangulate(poly, ind, eps=EPSILON, tris=[]) = len(ind)==3 ? concat(tris,[ind]) : let( ear = _get_ear(poly,ind,eps) ) assert( ear!=undef, @@ -1671,7 +1674,7 @@ function _triangulate(poly, ind, eps=EPSILON, tris=[]) = _triangulate(poly, indr, eps, concat(tris,[ear_tri])); // search a valid ear from the remaining polygon -function _get_ear(poly, ind, eps, _i=0) = +function _old_get_ear(poly, ind, eps, _i=0) = _i>=len(ind) ? undef : // poly has no ears let( // the _i-th ear candidate p0 = poly[ind[_i]], @@ -1702,6 +1705,67 @@ function _get_ear(poly, ind, eps, _i=0) = atleft==[] ? _i : // no point inside -> an ear // check the next ear candidate _get_ear(poly, ind, eps, _i=_i+1); + +function _triangulate(poly, ind, eps=EPSILON, tris=[]) = + len(ind)==3 + ? _is_degenerate(select(poly,ind),eps) + ? tris // last 3 pts perform a degenerate triangle, ignore it + : concat(tris,[ind]) // otherwise, include it + : let( ear = _get_ear(poly,ind,eps) ) + assert( ear!=undef, + "The polygon has self-intersections or its vertices are collinear or non coplanar.") + ear<0 // degenerate ear + ? let( indr = select(ind,-ear+1, -ear-1) ) // discard it + _triangulate(poly, indr, eps, tris) + : let( + ear_tri = select(ind,ear,ear+2), + indr = select(ind,ear+2, ear) // indices of the remaining points + ) + _triangulate(poly, indr, eps, concat(tris,[ear_tri])); + + +// a returned ear will be: +// 1. a CCW triangle without points inside except possibly at its vertices +// 2. or a degenerate triangle where two vertices are coincident +// the returned ear is specified by the index of `ind` of its first vertex +function _get_ear(poly, ind, eps, _i=0) = + _i>=len(ind) ? undef : // poly has no ears + let( // the _i-th ear candidate + p0 = poly[ind[_i]], + p1 = poly[ind[(_i+1)%len(ind)]], + p2 = poly[ind[(_i+2)%len(ind)]] + ) + // if it is a degenerate triangle, return it (codified) + _is_degenerate([p0,p1,p2],eps) ? -(_i+1) : + // if it is not a convex vertex, try the next one + _is_cw2(p0,p1,p2,eps) ? _get_ear(poly,ind,eps, _i=_i+1) : + let( // vertex p1 is convex + // check if the triangle contains any other point + // except possibly its own vertices + to_tst = select(ind,_i+3, _i-1), + pt2tst = select(poly,to_tst), // points other than p0, p1 and p2 + q = [(p0-p2).y, (p2-p0).x], // orthogonal to ray [p0,p2] pointing right + q0 = q*p0, + r = [(p2-p1).y, (p1-p2).x], // orthogonal to ray [p2,p1] pointing right + r0 = r*p2, + s = [(p1-p0).y, (p0-p1).x], // orthogonal to ray [p1,p0] pointing right + s0 = s*p1, + inside = [for(p=pt2tst) + if( p*q<=q0 && p*r<=r0 && p*s<=s0 ) // p is in the triangle + if( norm(p-p0)>eps // and doesn't coincide with + && norm(p-p1)>eps // any of its vertices + && norm(p-p2)>eps ) + p ] + ) + inside==[] ? _i : // no point inside -> an ear + // check the next ear candidate + _get_ear(poly, ind, eps, _i=_i+1); + + +// true for some specific kinds of degeneracy +function _is_degenerate(tri,eps) = + norm(tri[0]-tri[1])=3 , "A polygon must have at least 3 points" ) let( crosses = [for(i=[0:1:lp-1]) cross(poly[(i+1)%lp]-poly[i], poly[(i+2)%lp]-poly[(i+1)%lp]) ] ) len(p0)==2 - ? assert( !approx(sqrt(max(max(crosses),-min(crosses))),eps), "The points are collinear" ) - min(crosses) >=0 || max(crosses)<=0 - : let( prod = crosses*sum(crosses), - minc = min(prod), - maxc = max(prod) ) - assert( !approx(sqrt(max(maxc,-minc)),eps), "The points are collinear" ) - minc>=0 || maxc<=0; + ? let( size = max([for(p=poly) norm(p-p0)]), tol=pow(size,2)*eps ) + assert( size>eps, "The polygon is self-crossing or its points are collinear" ) + min(crosses) >=-tol || max(crosses)<=tol + : let( ip = noncollinear_triple(poly,error=false,eps=eps) ) + assert( ip!=[], "The points are collinear") + let( + crx = cross(poly[ip[1]]-poly[ip[0]],poly[ip[2]]-poly[ip[1]]), + nrm = crx/norm(crx), + plane = concat(nrm, nrm*poly[0]), + prod = crosses*nrm, + size = norm(poly[ip[1]]-poly[ip[0]]), + tol = pow(size,2)*eps + ) + assert(_pointlist_greatest_distance(poly,plane) < size*eps, "The polygon points are not coplanar") + let( + minc = min(prod), + maxc = max(prod) ) + minc>=-tol || maxc<=tol; // Function: convex_distance()