Merge pull request #67 from adrianVmariano/master

API update for roundcorners
This commit is contained in:
Revar Desmera 2019-07-11 15:49:19 -07:00 committed by GitHub
commit f51bc36ab9
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -24,23 +24,27 @@ include <BOSL2/beziers.scad>
// Description: // Description:
// Takes a 2d or 3d point list as input (a path or the points of a polygon) and rounds each corner // Takes a 2d or 3d point list as input (a path or the points of a polygon) and rounds each corner
// by a specified amount. The rounding at each point can be different and some points can have zero // by a specified amount. The rounding at each point can be different and some points can have zero
// rounding. The `round_corners()` function supports two types of rounding, circular rounding and // rounding. The `round_corners()` function supports two types of rounding: circular rounding and
// continuous curvature rounding using 4th order bezier curves. Circular rounding can produce a // continuous curvature rounding using 4th order bezier curves. Circular rounding can produce a
// tactile "bump" where the curvature changes from flat to circular. // tactile "bump" where the curvature changes from flat to circular.
// See https://hackernoon.com/apples-icons-have-that-shape-for-a-very-good-reason-720d4e7c8a14 // See https://hackernoon.com/apples-icons-have-that-shape-for-a-very-good-reason-720d4e7c8a14
// //
// You select the type of rounding using the `curve` option, which should be either `"smooth"` to get // You select the type of rounding using the `curve` option, which should be either `"smooth"` to get
// continuous curvature rounding or `"circle"` to get circular rounding. Each rounding method has two // continuous curvature rounding or `"circle"` to get circular rounding. The default is circle rounding.
// options for how you specify the amount of rounding, which you select using the `type` argument. // Each rounding method has two
// Both rounding methods accept `type="cut"`. This mode specifies the amount of rounding as the // options for how you measure the amount of rounding, which you specify using the `measure` argument.
// distance from the corner to the curve. This can be easier to understand than setting a circular // Both rounding methods accept `measure="cut"`, which is the default.
// This mode specifies the amount of rounding as the
// minimum distance from the corner to the curve. This can be easier to understand than setting a circular
// radius, which can be unexpectedly extreme when the corner is very sharp. It also allows a // radius, which can be unexpectedly extreme when the corner is very sharp. It also allows a
// systematic specification of curves that is the same for both `"circle"` and `"smooth"`. // systematic specification of curves that is the same for both `"circle"` and `"smooth"`.
// //
// The second `type` setting for circular rounding is `"radius"`, which sets a circular rounding // The second `measure` setting for circular rounding is `"radius"`, which sets a circular rounding
// radius. The second `type` setting for smooth rounding is `"joint"` which specifies the distance // radius. The second `measure` setting for smooth rounding is `"joint"` which specifies the distance
// away from the corner where the roundover should start. The `"smooth"` type rounding also has a // away from the corner along the path where the roundover should start. The figure below shows
// parameter that specifies how smooth the curvature match is. This parameter ranges from 0 to 1, // the cut and joint distances for a given roundover.
// The `"smooth"` type rounding also has a
// parameter that specifies how smooth the curvature match is. This parameter, `k`, ranges from 0 to 1,
// with a default of 0.5. Larger values give a more abrupt transition and smaller ones a more // with a default of 0.5. Larger values give a more abrupt transition and smaller ones a more
// gradual transition. If you set the value much higher than 0.8 the curvature changes abruptly // gradual transition. If you set the value much higher than 0.8 the curvature changes abruptly
// enough that though it is theoretically continuous, it may not be continous in practice. If you // enough that though it is theoretically continuous, it may not be continous in practice. If you
@ -52,57 +56,70 @@ include <BOSL2/beziers.scad>
// size of the curves so that they will fit on your path. If the scale factors are larger than one // size of the curves so that they will fit on your path. If the scale factors are larger than one
// then they indicate how much you can increase the curve sizes before collisions will occur. // then they indicate how much you can increase the curve sizes before collisions will occur.
// //
// To specify rounding parameters you can use the `all` option to round every point in a path. // To specify rounding parameters you can use the `size` option to round every point in a path.
// Examples: // Examples:
// * `curve="circle", type="radius", all=2`: Rounds every point with circular, radius 2 roundover // * `curve="circle", measure="radius", size=2`: Rounds every point with circular, radius 2 roundover
// * `curve="smooth", type="cut", all=2`: Rounds every point with continuous curvature rounding with a cut of 2, and a default 0.5 smoothing parameter // * `curve="smooth", measure="cut", size=2`: Rounds every point with continuous curvature rounding with a cut of 2, and a default 0.5 smoothing parameter
// * `curve="smooth", type="cut", all=[2,.3]`: Rounds every point with continuous curvature rounding with a cut of 2, and a very gentle 0.3 smooth setting // * `curve="smooth", measure="cut", size=[2,.3]`: Rounds every point with continuous curvature rounding with a cut of 2, and a very gentle 0.3 smoothness setting
// //
// The path is a list of 2d or 3d points, possibly with an extra coordinate giving smoothing // The path is a list of 2d or 3d points, possibly with an extra coordinate giving smoothing
// parameters. It is important to specify if the path is a closed path or not using the `closed` // parameters. It is important to specify if the path is a closed path or not using the `closed`
// parameter. The default is a closed path for making polygons. // parameter. The default is a closed path for making polygons.
// Path examples: // Path examples:
// * `[[0,0],[0,1],[1,1],[0,1]]`: 2d point list (a square), `all` was given to set rounding // * `[[0,0],[0,1],[1,1],[0,1]]`: 2d point list (a square), `size` was given to set rounding
// * `[[0,0,0], [0,1,1], [1,1,2], [0,1,3]]`: 3d point list, `all` was given to set rounding // * `[[0,0,0], [0,1,1], [1,1,2], [0,1,3]]`: 3d point list, `size` was given to set rounding
// * `[[0,0,0.2],[0,1,0.1],[1,1,0],[0,1,0.3]]`: 2d point list with smoothing parameters different at every corner, `all` not given // * `[[0,0,0.2],[0,1,0.1],[1,1,0],[0,1,0.3]]`: 2d point list with smoothing parameters different at every corner, `size` not given
// * `[[0,0,0,.2], [0,1,1,.1], [1,1,2,0], [0,1,3,.3]]`: 3d point list with smoothing parameters, `all` not given // * `[[0,0,0,.2], [0,1,1,.1], [1,1,2,0], [0,1,3,.3]]`: 3d point list with smoothing parameters, `size` not given
// * `[[0,0,[.3,.7], [4,0,[.2,.6]], [4,4,0], [0,4,1]]`: 3d point list with smoothing parameters for the `"smooth"` type roundover, `all` not given. Note the third entry is sometimes a pair giving both smoothing parameters, sometimes it's zero specifying no smoothing, and sometimes a single number, specifying the amount of smoothing but using the default smoothness parameter. // * `[[0,0,[.3,.7], [4,0,[.2,.6]], [4,4,0], [0,4,1]]`: 3d point list with smoothing parameters for the `"smooth"` type roundover, `size` not given. Note the third entry is sometimes a pair giving both smoothing parameters, sometimes it's zero specifying no smoothing, and sometimes a single number, specifying the amount of smoothing but using the default smoothness parameter.
// //
// The number of segments used for roundovers is determined by `$fa`, `$fs` and `$fn` as usual for // The number of segments used for roundovers is determined by `$fa`, `$fs` and `$fn` as usual for
// circular roundovers. For continuous curvature roundovers `$fs` and `$fn` are used and `$fa` is ignored. // circular roundovers. For continuous curvature roundovers `$fs` and `$fn` are used and `$fa` is ignored.
// When doing continuous curvature rounding be sure to use lots of segments or the effect will be // When doing continuous curvature rounding be sure to use lots of segments or the effect will be
// hidden by the discretization. // hidden by the discretization.
// //
// Figure:
// h = 18;
// w = 12.6;
// example = [[0,0],[w,h],[2*w,0]];
// color("red")stroke(round_corners(example, size=18, measure="joint", curve="smooth",closed=false),width=.1);
// stroke(example, width=.1);
// color("green")stroke([[w,h], [w,h-cos(vector_angle(example)/2) *3/8*h]], width=.1);
// ll=lerp([w,h], [0,0],18/norm([w,h]-[0,0]) );
// color("blue")stroke(_shift_segment([[w,h], ll], -.7), width=.1);
// color("green")translate([w-.3,h-4])scale(.1)rotate(90)text("cut");
// color("blue")translate([w/2-1.1,h/2+.6]) scale(.1)rotate(90-vector_angle(example)/2)text("joint");
//
// Arguments: // Arguments:
// path = list of points defining the path to be rounded. Can be 2d or 3d, and may have an extra coordinate giving rounding parameters. If you specify rounding parameters you must do so on every point. // path = list of points defining the path to be rounded. Can be 2d or 3d, and may have an extra coordinate giving rounding parameters. If you specify rounding parameters you must do so on every point.
// curve = rounding method to use. Set to "circle" for circular rounding and "smooth" for continuous curvature 4th order bezier rounding // curve = rounding method to use. Set to "circle" for circular rounding and "smooth" for continuous curvature 4th order bezier rounding
// type = rounding parameter type. Set to "cut" to specify the cut back with either "smooth" or "circle" rounding methods. Set to "radius" with `curve="circle"` to set circular radius rounding. Set to "joint" with `curve="smooth"` for joint type rounding. (See above for details on these rounding options.) // measure = how to measure the amount of rounding. Set to "cut" to specify the cut back with either "smooth" or "circle" rounding curves. Set to "radius" with `curve="circle"` to set circular radius rounding. Set to "joint" with `curve="smooth"` for joint type rounding. (See above for details on these rounding options.)
// all = curvature parameter(s). Set this to the curvature parameter or parameters to apply to all points on the list. If you set this then all values given in the path are treated as geometrical coordinates. If you don't set this then the last value of each entry in `path` is treated as a smoothing parameter. // size = curvature parameter(s). Set this to a single curvature parameter or parameter pair to apply uniform roundovers to every corner. Alternatively set this to a list of curvature parameters with the same length as `path` to specify the curvature at every corner. If you set this then all values given in `path` are treated as geometric coordinates. If you don't set this then the last value of each entry in `path` is treated as a rounding parameter.
// closed = if true treat the path as a closed polygon, otherwise treat it as open. Default: true. // closed = if true treat the path as a closed polygon, otherwise treat it as open. Default: true.
// k = continuous curvature smoothness parameter default value. This value will apply with `curve=="smooth"` if you don't otherwise specify a smoothness parameter for a corner. Default: 0.5.
// //
// Example(Med2D): Standard circular roundover with radius the same at every point. Compare results at the different corners. // Example(Med2D): Standard circular roundover with radius the same at every point. Compare results at the different corners.
// shape = [[0,0], [10,0], [15,12], [6,6], [6, 12], [-3,7]]; // shape = [[0,0], [10,0], [15,12], [6,6], [6, 12], [-3,7]];
// polygon(round_corners(shape, curve="circle", type="radius", all=1)); // polygon(round_corners(shape, curve="circle", measure="radius", size=1));
// color("red") down(.1) polygon(shape); // color("red") down(.1) polygon(shape);
// Example(Med2D): Circular roundover using the "cut" specification, the same at every corner. // Example(Med2D): Circular roundover using the "cut" specification, the same at every corner.
// shape = [[0,0], [10,0], [15,12], [6,6], [6, 12], [-3,7]]; // shape = [[0,0], [10,0], [15,12], [6,6], [6, 12], [-3,7]];
// polygon(round_corners(shape, curve="circle", type="cut", all=1)); // polygon(round_corners(shape, curve="circle", measure="cut", size=1));
// color("red") down(.1) polygon(shape); // color("red") down(.1) polygon(shape);
// Example(Med2D): Continous curvature roundover using "cut", still the same at every corner. The default smoothness parameter of 0.5 was too gradual for these roundovers to fit, but 0.7 works. // Example(Med2D): Continous curvature roundover using "cut", still the same at every corner. The default smoothness parameter of 0.5 was too gradual for these roundovers to fit, but 0.7 works.
// shape = [[0,0], [10,0], [15,12], [6,6], [6, 12], [-3,7]]; // shape = [[0,0], [10,0], [15,12], [6,6], [6, 12], [-3,7]];
// polygon(round_corners(shape, curve="smooth", type="cut", all=[1,.7])); // polygon(round_corners(shape, curve="smooth", measure="cut", size=[1,.7]));
// color("red") down(.1) polygon(shape); // color("red") down(.1) polygon(shape);
// Example(Med2D): Continuous curvature roundover using "joint", for the last time the same at every corner. Notice how small the roundovers are. // Example(Med2D): Continuous curvature roundover using "joint", for the last time the same at every corner. Notice how small the roundovers are.
// shape = [[0,0], [10,0], [15,12], [6,6], [6, 12], [-3,7]]; // shape = [[0,0], [10,0], [15,12], [6,6], [6, 12], [-3,7]];
// polygon(round_corners(shape, curve="smooth", type="joint", all=[1,.7])); // polygon(round_corners(shape, curve="smooth", measure="joint", size=[1,.7]));
// color("red") down(.1) polygon(shape); // color("red") down(.1) polygon(shape);
// Example(Med2D): Circular rounding, different at every corner, some corners left unrounded // Example(Med2D): Circular rounding, different at every corner, some corners left unrounded
// shape = [[0,0,1.8], [10,0,0], [15,12,2], [6,6,.3], [6, 12,1.2], [-3,7,0]]; // shape = [[0,0,1.8], [10,0,0], [15,12,2], [6,6,.3], [6, 12,1.2], [-3,7,0]];
// polygon(round_corners(shape, curve="circle", type="radius")); // polygon(round_corners(shape, curve="circle", measure="radius"));
// color("red") down(.1) polygon(subindex(shape,[0:1])); // color("red") down(.1) polygon(subindex(shape,[0:1]));
// Example(Med2D): Continuous curvature rounding, different at every corner, with varying smoothness parameters as well, and `$fs` set very small // Example(Med2D): Continuous curvature rounding, different at every corner, with varying smoothness parameters as well, and `$fs` set very small
// shape = [[0,0,[1.5,.6]], [10,0,0], [15,12,2], [6,6,[.3,.7]], [6, 12,[1.2,.3]], [-3,7,0]]; // shape = [[0,0,[1.5,.6]], [10,0,0], [15,12,2], [6,6,[.3,.7]], [6, 12,[1.2,.3]], [-3,7,0]];
// polygon(round_corners(shape, curve="smooth", type="cut", $fs=0.1)); // polygon(round_corners(shape, curve="smooth", measure="cut", $fs=0.1));
// color("red") down(.1) polygon(subindex(shape,[0:1])); // color("red") down(.1) polygon(subindex(shape,[0:1]));
// Example(Med3D): 3d printing test pieces to display different curvature shapes. You can see the discontinuity in the curvature on the "C" piece in the rendered image. // Example(Med3D): 3d printing test pieces to display different curvature shapes. You can see the discontinuity in the curvature on the "C" piece in the rendered image.
// ten = [[0,0,5],[50,0,5],[50,50,5],[0,50,5]]; // ten = [[0,0,5],[50,0,5],[50,50,5],[0,50,5]];
@ -114,12 +131,12 @@ include <BOSL2/beziers.scad>
// } // }
// linear_extrude(height=13) // linear_extrude(height=13)
// { // {
// polygon(round_corners(ten, curve="circle", type="cut")); // polygon(round_corners(ten, curve="circle", measure="cut"));
// translate([60,0,0])polygon(round_corners(ten, curve="smooth", type="cut")); // translate([60,0,0])polygon(round_corners(ten, curve="smooth", measure="cut"));
// translate([60,60,0])polygon(round_corners([[0,0],[50,0],[50,50],[0,50]],all=[5,.32],$fs=5,$fa=0, // translate([60,60,0])polygon(round_corners([[0,0],[50,0],[50,50],[0,50]],size=[5,.32],$fs=5,$fa=0,
// curve="smooth", type="cut")); // curve="smooth", measure="cut"));
// translate([0,60,0])polygon(round_corners([[0,0],[50,0],[50,50],[0,50]],all=[5,.7], // translate([0,60,0])polygon(round_corners([[0,0],[50,0],[50,50],[0,50]],size=[5,.7],
// curve="smooth", type="cut")); // curve="smooth", measure="cut"));
// } // }
// Example(Med2D): Rounding a path that is not closed in a three different ways. // Example(Med2D): Rounding a path that is not closed in a three different ways.
// $fs=.25; // $fs=.25;
@ -128,75 +145,87 @@ include <BOSL2/beziers.scad>
// zigzagy = concat([0], flatten(replist([-10,10],8)), [-10,0]); // zigzagy = concat([0], flatten(replist([-10,10],8)), [-10,0]);
// zig = zip(zigzagx,zigzagy); // zig = zip(zigzagx,zigzagy);
// stroke(zig,width=1); // Original shape // stroke(zig,width=1); // Original shape
// fwd(20) // Smooth all corners with a cut of 4 and curvature parameter 0.6 // fwd(20) // Smooth size corners with a cut of 4 and curvature parameter 0.6
// stroke(round_corners(zig,all=[4,0.6],closed=false, curve="smooth", type="cut"),width=1); // stroke(round_corners(zig,size=[4,0.6],closed=false, curve="smooth", measure="cut"),width=1);
// fwd(40) // Smooth all corners with circular arcs and a cut of 4 // fwd(40) // Smooth size corners with circular arcs and a cut of 4
// stroke(round_corners(zig,all=[4,0.6],closed=false, curve="circle", type="cut"),width=1); // stroke(round_corners(zig,size=4,closed=false, curve="circle", measure="cut"),width=1);
// // Smooth all corners with a circular arc and radius 1.5 (close to maximum possible) // // Smooth size corners with a circular arc and radius 1.5 (close to maximum possible)
// fwd(60) // Note how the different points are cut back by different amounts // fwd(60) // Note how the different points are cut back by different amounts
// stroke(round_corners(zig,all=1.5,closed=false, curve="circle", type="radius"),width=1); // stroke(round_corners(zig,size=1.5,closed=false, curve="circle", measure="radius"),width=1);
// Example(FlatSpin): Rounding some random 3D paths // Example(FlatSpin): Rounding some random 3D paths
// list1= [[2.88736, 4.03497, 6.37209], [5.68221, 9.37103, 0.783548], [7.80846, 4.39414, 1.84377], // list1= [[2.88736, 4.03497, 6.37209], [5.68221, 9.37103, 0.783548], [7.80846, 4.39414, 1.84377],
// [0.941085, 5.30548, 4.46753], [1.86054, 9.81574, 6.49753], [6.93818, 7.21163, 5.79453]]; // [0.941085, 5.30548, 4.46753], [1.86054, 9.81574, 6.49753], [6.93818, 7.21163, 5.79453]];
// list2= [[1.07907, 4.74091, 6.90039], [8.77585, 4.42248, 6.65185], [5.94714, 9.17137, 6.15642], // list2= [[1.07907, 4.74091, 6.90039], [8.77585, 4.42248, 6.65185], [5.94714, 9.17137, 6.15642],
// [0.66266, 6.9563, 5.88423], [6.56454, 8.86334, 9.95311], [5.42015, 4.91874, 3.86696]]; // [0.66266, 6.9563, 5.88423], [6.56454, 8.86334, 9.95311], [5.42015, 4.91874, 3.86696]];
// path_sweep(regular_ngon(n=36,or=.1),round_corners(list1,closed=false, curve="smooth", type="cut", all=.65)); // path_sweep(regular_ngon(n=36,or=.1),round_corners(list1,closed=false, curve="smooth", measure="cut", size=.65));
// right(6) // right(6)
// path_sweep(regular_ngon(n=36,or=.1),round_corners(list2,closed=false, curve="circle", type="cut", all=.75)); // path_sweep(regular_ngon(n=36,or=.1),round_corners(list2,closed=false, curve="circle", measure="cut", size=.75));
// Example(FlatSpin): Rounding a spiral with increased rounding along the length // Example(FlatSpin): Rounding a spiral with increased rounding along the length
// // Construct a square spiral path in 3d // // Construct a square spiral path in 3d
// square = [[0,0],[1,0],[1,1],[0,1]]; // square = [[0,0],[1,0],[1,1],[0,1]];
// spiral = flatten(replist(concat(square,reverse(square)),5)); // spiral = flatten(replist(concat(square,reverse(square)),5)); // Squares repeat 10 times, forward and backward
// z= list_range(40)*.2+[for(i=[0:9]) each [i,i,i,i]]; // squareind = [for(i=[0:9]) each [i,i,i,i]]; // Index of the square for each point
// // Make rounding parameters, which get larger up the spiral // z = list_range(40)*.2+squareind;
// // and set the smoothing parameter to 1. // path3d = zip(spiral,z); // 3d spiral
// rvect = zip([for(i=[0:9]) each [i,i,i,i]]/20,replist(1,40)); // rounding = squareind/20; // Rounding parameters get larger up the spiral
// rounding = [for(i=rvect) [i]]; // Needed because zip removes a list level // // Setting k=1 means curvature won't be continuous, but curves are as round as possible
// path3d = zip([spiral,z,rounding]); // // Try changing the value to see the effect.
// rpath = round_corners(path3d, curve="smooth", type="joint",closed=false); // rpath = round_corners(path3d, size=rounding, k=1, curve="smooth", measure="joint",closed=false);
// path_sweep( regular_ngon(n=36, or=.1), rpath); // path_sweep( regular_ngon(n=36, or=.1), rpath);
function round_corners(path, curve, type, all=undef, closed=true) = function round_corners(path, curve="circle", measure="cut", size=undef, k=0.5, closed=true) =
let( let(
default_curvature = 0.5, // default curvature for "smooth" curves default_curvature = k, // default curvature for "smooth" curves
typeok = ( measureok = (
type == "cut" || measure == "cut" ||
(curve=="circle" && type=="radius") || (curve=="circle" && measure=="radius") ||
(curve=="smooth" && type=="joint") (curve=="smooth" && measure=="joint")
), ),
path = is_region(path) ?
assert(len(path)==1, "Region supplied as path does not have exactly one component")
path[0] : path,
pathdim = array_dim(path,1), pathdim = array_dim(path,1),
have_all = all==undef ? 1 : 0, have_size = size==undef ? 0 : 1,
pathsize_ok = is_num(pathdim) && pathdim >= 2+have_all && pathdim <= 3+have_all pathsize_ok = is_num(pathdim) && pathdim >= 3-have_size && pathdim <= 4-have_size,
size_ok = !have_size || is_num(size) ||
is_list(size) && ((len(size)==2 && curve=="smooth") || len(size)==len(path))
) )
assert(curve=="smooth" || curve=="circle", "Unknown 'curve' setting in round_corners") assert(curve=="smooth" || curve=="circle", "Unknown 'curve' setting in round_corners")
assert(typeok, curve=="circle"? assert(measureok, curve=="circle"?
"In round_corners curve==\"circle\" requires 'type' of 'radius' or 'cut'" : "In round_corners curve==\"circle\" requires 'measure' of 'radius' or 'cut'" :
"In round_corners curve==\"smooth\" requires 'type' of 'joint' or 'cut'" "In round_corners curve==\"smooth\" requires 'measure' of 'joint' or 'cut'"
) )
assert(pathdim!=undef, "Input 'path' has entries with inconsistent length") assert(pathdim!=undef, "Input 'path' has entries with inconsistent length")
assert(pathsize_ok, str( assert(pathsize_ok, str(
"Input 'path' must have entries with length ", "Input 'path' must have entries with length ",
2+have_all, " or ", 3+have_all, 2+have_size, " or ", 3+have_size,
all==undef ? " when 'all' is not specified" : "when 'all' is specified" have_size ? " when 'size' is specified" : "when 'all' is not specified"
)) ))
assert(len(path)>2,str("Path has length ",len(path),". Length must be 3 or more."))
assert(size_ok, is_list(size)?
(str("Input `size` has length ", len(size),". Length must be ",
(curve=="smooth"?"2 or ":""), len(path))) :
str("Input `size` is ",size," which is not a number"))
let( let(
pathfixed= all == undef ? path : zip([path, replist([all],len(path))]), dim = pathdim - 1 + have_size,
dim = len(pathfixed[0])-1, points = have_size ? path : subindex(path, [0:dim-1]),
points = subindex(pathfixed, [0:dim-1]), parm = have_size && is_list(size) && len(size)>2 ? size :
parm = subindex(pathfixed, dim), have_size ? replist(size, len(path)) :
// dk will be a list of parameters, for the "smooth" type the distance and curvature parameter pair, subindex(path, dim),
// and for the circle type, distance and radius. // dk will be a list of parameters, for the "smooth" curve the distance and curvature parameter pair,
// and for the "circle" curve, distance and radius.
dk = [ dk = [
for(i=[0:1:len(points)-1]) let( for(i=[0:1:len(points)-1]) let(
angle = vector_angle(select(points,i-1,i+1))/2, angle = vector_angle(select(points,i-1,i+1))/2,
fkd=echo(angle=angle),
parm0 = is_list(parm[i]) ? parm[i][0] : parm[i], parm0 = is_list(parm[i]) ? parm[i][0] : parm[i],
k = (curve=="circle" && type=="radius")? parm0 : k = (curve=="circle" && measure=="radius")? parm0 :
(curve=="circle" && type=="cut")? parm0 / (1/sin(angle) - 1) : (curve=="circle" && measure=="cut")? parm0 / (1/sin(angle) - 1) :
(is_list(parm[i]) && len(parm[i])==2)? parm[i][1] : (is_list(parm[i]) && len(parm[i])==2)? parm[i][1] :
default_curvature default_curvature
) )
(!closed && (i==0 || i==len(points)-1))? [0,0] : (!closed && (i==0 || i==len(points)-1))? [0,0] :
(curve=="circle")? [k/tan(angle), k] : (curve=="circle")? [k/tan(angle), k] :
(curve=="smooth" && type=="joint")? [parm0,k] : (curve=="smooth" && measure=="joint")? [parm0,k] :
[8*parm0/cos(angle)/(1+4*k),k] [8*parm0/cos(angle)/(1+4*k),k]
], ],
lengths = [for(i=[0:1:len(points)]) norm(select(points,i)-select(points,i-1))], lengths = [for(i=[0:1:len(points)]) norm(select(points,i)-select(points,i-1))],
@ -284,3 +313,5 @@ function bezier_curve(P,N) =
[for(i=[0:1:N-1]) bez_point(P, i/(N-1))]; [for(i=[0:1:N-1]) bez_point(P, i/(N-1))];
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap // vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap