mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
rewrote check_and_fix_path. Old version was broken/undef errors
added regions_equal (but probably not best version) removed debug echo from roundinglscad assert on invalid arc() radius inpu new "fast_distance" method for skin() tweaked skin() docs support regions for path_sweep
This commit is contained in:
parent
6f9ea55bc8
commit
f90e89c761
4 changed files with 134 additions and 42 deletions
89
regions.scad
89
regions.scad
|
@ -58,35 +58,34 @@ module region(r)
|
||||||
|
|
||||||
// Function: check_and_fix_path()
|
// Function: check_and_fix_path()
|
||||||
// Usage:
|
// Usage:
|
||||||
// check_and_fix_path(path, [valid_dim], [closed])
|
// check_and_fix_path(path, [valid_dim], [closed], [name])
|
||||||
// Description:
|
// Description:
|
||||||
// Checks that the input is a path. If it is a region with one component, converts it to a path.
|
// Checks that the input is a path. If it is a region with one component, converts it to a path.
|
||||||
|
// Note that arbitrary paths must have at least two points, but closed paths need at least 3 points.
|
||||||
// valid_dim specfies the allowed dimension of the points in the path.
|
// valid_dim specfies the allowed dimension of the points in the path.
|
||||||
// If the path is closed, removed duplicate endpoint if present.
|
// If the path is closed, removes duplicate endpoint if present.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// path = path to process
|
// path = path to process
|
||||||
// valid_dim = list of allowed dimensions for the points in the path, e.g. [2,3] to require 2 or 3 dimensional input. If left undefined do not perform this check. Default: undef
|
// valid_dim = list of allowed dimensions for the points in the path, e.g. [2,3] to require 2 or 3 dimensional input. If left undefined do not perform this check. Default: undef
|
||||||
// closed = set to true if the path is closed, which enables a check for endpoint duplication
|
// closed = set to true if the path is closed, which enables a check for endpoint duplication
|
||||||
function check_and_fix_path(path, valid_dim=undef, closed=false) =
|
// name = parameter name to use for reporting errors. Default: "path"
|
||||||
|
function check_and_fix_path(path, valid_dim=undef, closed=false, name="path") =
|
||||||
let(
|
let(
|
||||||
path = is_region(path)? (
|
path =
|
||||||
assert(len(path)==1,"Region supplied as path does not have exactly one component")
|
is_region(path)?
|
||||||
|
assert(len(path)==1,str("Region ",name," supplied as path does not have exactly one component"))
|
||||||
path[0]
|
path[0]
|
||||||
) : (
|
:
|
||||||
assert(is_path(path), "Input is not a path")
|
assert(is_path(path), str("Input ",name," is not a path"))
|
||||||
path
|
path
|
||||||
),
|
|
||||||
dim = array_dim(path)
|
|
||||||
)
|
)
|
||||||
assert(dim[0]>1,"Path must have at least 2 points")
|
assert(len(path)>(closed?2:1),closed?str("Closed path ",name," must have at least 3 points")
|
||||||
assert(len(dim)==2,"Invalid path: path is either a list of scalars or a list of matrices")
|
:str("Path ",name," must have at least 2 points"))
|
||||||
assert(is_def(dim[1]), "Invalid path: entries in the path have variable length")
|
let(valid=is_undef(valid_dim) || in_list(len(path[0]),force_list(valid_dim)))
|
||||||
let(valid=is_undef(valid_dim) || in_list(dim[1],valid_dim))
|
|
||||||
assert(
|
assert(
|
||||||
valid, str(
|
valid, str(
|
||||||
"The points on the path have length ",
|
"Input ",name," must has dimension ", len(path[0])," but dimension must be ",
|
||||||
dim[1], " but length must be ",
|
is_list(valid_dim) ? str("one of ",valid_dim) : valid_dim
|
||||||
len(valid_dim)==1? valid_dim[0] : str("one of ",valid_dim)
|
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
closed && approx(path[0],select(path,-1))? slice(path,0,-2) : path;
|
closed && approx(path[0],select(path,-1))? slice(path,0,-2) : path;
|
||||||
|
@ -223,6 +222,64 @@ function split_nested_region(region) =
|
||||||
) outs;
|
) outs;
|
||||||
|
|
||||||
|
|
||||||
|
function find_first_approx(val, list, start=0, all=false, eps=EPSILON) =
|
||||||
|
all? [for (i=[start:1:len(list)-1]) if(approx(val, list[i], eps=eps)) i] :
|
||||||
|
__find_first_approx(val, list, eps=eps, i=start);
|
||||||
|
|
||||||
|
function __find_first_approx(val, list, eps, i=0) =
|
||||||
|
i >= len(list)? undef :
|
||||||
|
approx(val, list[i], eps=eps)? i :
|
||||||
|
__find_first_approx(val, list, eps=eps, i=i+1);
|
||||||
|
|
||||||
|
|
||||||
|
// Function: polygons_equal()
|
||||||
|
// Usage:
|
||||||
|
// b = polygons_equal(poly1, poly2, <eps>)
|
||||||
|
// Description:
|
||||||
|
// Returns true if the components of region1 and region2 are the same polygons
|
||||||
|
// within given epsilon tolerance.
|
||||||
|
// Arguments:
|
||||||
|
// poly1 = first polygon
|
||||||
|
// poly2 = second polygon
|
||||||
|
// eps = tolerance for comparison
|
||||||
|
// Example(NORENDER):
|
||||||
|
// polygons_equal(pentagon(r=4),
|
||||||
|
// rot(360/5, p=pentagon(r=4))); // returns true
|
||||||
|
// polygons_equal(pentagon(r=4),
|
||||||
|
// rot(90, p=pentagon(r=4))); // returns false
|
||||||
|
function polygons_equal(poly1, poly2, eps=EPSILON) =
|
||||||
|
let( l1 = len(poly1), l2 = len(poly2))
|
||||||
|
l1 != l2 ? false :
|
||||||
|
let( maybes = find_first_approx(poly1[0], poly2, eps=eps, all=true) )
|
||||||
|
maybes == []? false :
|
||||||
|
[for (i=maybes) if (__polygons_equal(poly1, poly2, eps, i)) 1] != [];
|
||||||
|
|
||||||
|
function __polygons_equal(poly1, poly2, eps, st) =
|
||||||
|
max([for(d=poly1-select(poly2,st,st-1)) d*d])<eps*eps;
|
||||||
|
|
||||||
|
// Function: regions_equal()
|
||||||
|
// Usage:
|
||||||
|
// b = regions_equal(region1, region2, <eps>)
|
||||||
|
// Description:
|
||||||
|
// Returns true if the components of region1 and region2 are the same polygons
|
||||||
|
// within given epsilon tolerance.
|
||||||
|
// Arguments:
|
||||||
|
// poly1 = first polygon
|
||||||
|
// poly2 = second polygon
|
||||||
|
// eps = tolerance for comparison
|
||||||
|
function regions_equal(region1, region2) =
|
||||||
|
assert(is_region(region1) && is_region(region2))
|
||||||
|
len(region1)==len(region2) &&
|
||||||
|
[
|
||||||
|
for (a=region1)
|
||||||
|
if (1!=sum(
|
||||||
|
[for(b=region2)
|
||||||
|
if (polygons_equal(path3d(a), path3d(b)))
|
||||||
|
1]
|
||||||
|
)
|
||||||
|
) 1
|
||||||
|
] == [];
|
||||||
|
|
||||||
|
|
||||||
// Section: Region Extrusion and VNFs
|
// Section: Region Extrusion and VNFs
|
||||||
|
|
||||||
|
|
|
@ -75,7 +75,7 @@ include <structs.scad>
|
||||||
// circular roundovers. For continuous curvature roundovers `$fs` and `$fn` are used and `$fa` is
|
// circular roundovers. For continuous curvature roundovers `$fs` and `$fn` are used and `$fa` is
|
||||||
// ignored. Note that $fn is interpreted as the number of points on the roundover curve, which is
|
// ignored. Note that $fn is interpreted as the number of points on the roundover curve, which is
|
||||||
// not equivalent to its meaning for rounding circles because roundovers are usually small fractions
|
// not equivalent to its meaning for rounding circles because roundovers are usually small fractions
|
||||||
// of a circular arc. When doing continuous curvature rounding be sure to use lots of segments or the effect
|
// of a circular arc. As usual, $fn overrides $fs. When doing continuous curvature rounding be sure to use lots of segments or the effect
|
||||||
// will be hidden by the discretization. Note that if you use $fn with "smooth" then $fn points are added at each corner, even
|
// will be hidden by the discretization. Note that if you use $fn with "smooth" then $fn points are added at each corner, even
|
||||||
// if the "corner" is flat, with collinear points, so this guarantees a specific output length.
|
// if the "corner" is flat, with collinear points, so this guarantees a specific output length.
|
||||||
//
|
//
|
||||||
|
@ -264,8 +264,7 @@ function round_corners(path, method="circle", radius, cut, joint, k, closed=true
|
||||||
let(
|
let(
|
||||||
pathbit = select(path,i-1,i+1),
|
pathbit = select(path,i-1,i+1),
|
||||||
angle = approx(pathbit[0],pathbit[1]) || approx(pathbit[1],pathbit[2]) ? undef
|
angle = approx(pathbit[0],pathbit[1]) || approx(pathbit[1],pathbit[2]) ? undef
|
||||||
: vector_angle(select(path,i-1,i+1))/2,
|
: vector_angle(select(path,i-1,i+1))/2
|
||||||
f=echo(angle=angle)
|
|
||||||
)
|
)
|
||||||
(!closed && (i==0 || i==len(path)-1)) ? [0] : // Force zeros at ends for non-closed
|
(!closed && (i==0 || i==len(path)-1)) ? [0] : // Force zeros at ends for non-closed
|
||||||
parm[i]==0 ? [0] : // If no rounding requested then don't try to compute parameters
|
parm[i]==0 ? [0] : // If no rounding requested then don't try to compute parameters
|
||||||
|
|
|
@ -554,7 +554,7 @@ function arc(N, r, angle, d, cp, points, width, thickness, start, wedge=false, l
|
||||||
)
|
)
|
||||||
assert(is_vector(cp,2),"Centerpoint must be a 2d vector")
|
assert(is_vector(cp,2),"Centerpoint must be a 2d vector")
|
||||||
assert(angle!=0, "Arc has zero length")
|
assert(angle!=0, "Arc has zero length")
|
||||||
assert(r>0, "Arc radius invalid")
|
assert(is_def(r) && r>0, "Arc radius invalid")
|
||||||
let(
|
let(
|
||||||
N = max(3, is_undef(N)? ceil(segs(r)*abs(angle)/360) : N),
|
N = max(3, is_undef(N)? ceil(segs(r)*abs(angle)/360) : N),
|
||||||
arcpoints = [for(i=[0:N-1]) let(theta = start + i*angle/(N-1)) r*[cos(theta),sin(theta)]+cp],
|
arcpoints = [for(i=[0:N-1]) let(theta = start + i*angle/(N-1)) r*[cos(theta),sin(theta)]+cp],
|
||||||
|
|
70
skin.scad
70
skin.scad
|
@ -63,8 +63,8 @@
|
||||||
// Note that when dealing with continuous curves it is always better to adjust the
|
// Note that when dealing with continuous curves it is always better to adjust the
|
||||||
// sampling in your code to generate the desired sampling rather than using the `refine` argument.
|
// sampling in your code to generate the desired sampling rather than using the `refine` argument.
|
||||||
// .
|
// .
|
||||||
// You can choose from four methods for specifying alignment for incommensurate profiles.
|
// You can choose from five methods for specifying alignment for incommensurate profiles.
|
||||||
// The available methods are `"distance"`, `"tangent"`, `"direct"` and `"reindex"`.
|
// The available methods are `"distance"`, `"fast_distance"`, `"tangent"`, `"direct"` and `"reindex"`.
|
||||||
// It is useful to distinguish between continuous curves like a circle and discrete profiles
|
// It is useful to distinguish between continuous curves like a circle and discrete profiles
|
||||||
// like a hexagon or star, because the algorithms' suitability depend on this distinction.
|
// like a hexagon or star, because the algorithms' suitability depend on this distinction.
|
||||||
// .
|
// .
|
||||||
|
@ -87,7 +87,7 @@
|
||||||
// `sampling="segment"` may produce a more pleasing result. These two approaches differ only when
|
// `sampling="segment"` may produce a more pleasing result. These two approaches differ only when
|
||||||
// the segments of your input profiles have unequal length.
|
// the segments of your input profiles have unequal length.
|
||||||
// .
|
// .
|
||||||
// The "distance" and "tangent" methods work by duplicating vertices to create
|
// The "distance", "fast_distance" and "tangent" methods work by duplicating vertices to create
|
||||||
// triangular faces. The "distance" method finds the global minimum distance method for connecting two
|
// triangular faces. The "distance" method finds the global minimum distance method for connecting two
|
||||||
// profiles. This algorithm generally produces a good result when both profiles are discrete ones with
|
// profiles. This algorithm generally produces a good result when both profiles are discrete ones with
|
||||||
// a small number of vertices. It is computationally intensive (O(N^3)) and may be
|
// a small number of vertices. It is computationally intensive (O(N^3)) and may be
|
||||||
|
@ -95,6 +95,9 @@
|
||||||
// sure to select a sufficiently large value for `slices` and `refine`. Note that for
|
// sure to select a sufficiently large value for `slices` and `refine`. Note that for
|
||||||
// this method, `sampling` must be set to `"segment"`, and hence this is the default setting.
|
// this method, `sampling` must be set to `"segment"`, and hence this is the default setting.
|
||||||
// Using sampling by length would ignore the repeated vertices and ruin the alignment.
|
// Using sampling by length would ignore the repeated vertices and ruin the alignment.
|
||||||
|
// The "fast_distance" method is similar to "distance", but it makes the assumption that an edge should
|
||||||
|
// connect the first vertices of the two polygons. This reduces the run time to O(N^2) and makes
|
||||||
|
// the method usable on profiles with more points if you take care to index the inputs to match.
|
||||||
// .
|
// .
|
||||||
// The `"tangent"` method generally produces good results when
|
// The `"tangent"` method generally produces good results when
|
||||||
// connecting a discrete polygon to a convex, finely sampled curve. It works by finding
|
// connecting a discrete polygon to a convex, finely sampled curve. It works by finding
|
||||||
|
@ -105,6 +108,8 @@
|
||||||
// you should do it only for agreement with other profiles, and these models are linear, so extra slices also
|
// you should do it only for agreement with other profiles, and these models are linear, so extra slices also
|
||||||
// have no effect. For best efficiency set `refine=1` and `slices=0`. As with the "distance" method, refinement
|
// have no effect. For best efficiency set `refine=1` and `slices=0`. As with the "distance" method, refinement
|
||||||
// must be done using the "segment" sampling scheme to preserve alignment across duplicated points.
|
// must be done using the "segment" sampling scheme to preserve alignment across duplicated points.
|
||||||
|
// Note that the "tangent" method produces similar results to the "distance" method on curved inputs. If this
|
||||||
|
// method fails due to concavity, "fast_distance" may be a good option.
|
||||||
// .
|
// .
|
||||||
// It is possible to specify `method` and `refine` as arrays, but it is important to observe
|
// It is possible to specify `method` and `refine` as arrays, but it is important to observe
|
||||||
// matching rules when you do this. If a pair of profiles is connected using "tangent" or "distance"
|
// matching rules when you do this. If a pair of profiles is connected using "tangent" or "distance"
|
||||||
|
@ -119,11 +124,11 @@
|
||||||
// profiles = list of 2d or 3d profiles to be skinned. (If 2d must also give `z`.)
|
// profiles = list of 2d or 3d profiles to be skinned. (If 2d must also give `z`.)
|
||||||
// slices = scalar or vector number of slices to insert between each pair of profiles. Set to zero to use only the profiles you provided. Recommend starting with a value around 10.
|
// slices = scalar or vector number of slices to insert between each pair of profiles. Set to zero to use only the profiles you provided. Recommend starting with a value around 10.
|
||||||
// ---
|
// ---
|
||||||
// refine = resample profiles to this number of points per edge. Can be a list to give a refinement for each profile. Recommend using a value above 10 when using the "distance" method. Default: 1.
|
// refine = resample profiles to this number of points per edge. Can be a list to give a refinement for each profile. Recommend using a value above 10 when using the "distance" or "fast_distance" methods. Default: 1.
|
||||||
// sampling = sampling method to use with "direct" and "reindex" methods. Can be "length" or "segment". Ignored if any profile pair uses either the "distance" or "tangent" methods. Default: "length".
|
// sampling = sampling method to use with "direct" and "reindex" methods. Can be "length" or "segment". Ignored if any profile pair uses either the "distance", "fast_distance", or "tangent" methods. Default: "length".
|
||||||
// closed = set to true to connect first and last profile (to make a torus). Default: false
|
// closed = set to true to connect first and last profile (to make a torus). Default: false
|
||||||
// caps = true to create endcap faces when closed is false. Can be a length 2 boolean array. Default is true if closed is false.
|
// caps = true to create endcap faces when closed is false. Can be a length 2 boolean array. Default is true if closed is false.
|
||||||
// method = method for connecting profiles, one of "distance", "tangent", "direct" or "reindex". Default: "direct".
|
// method = method for connecting profiles, one of "distance", "fast_distance", "tangent", "direct" or "reindex". Default: "direct".
|
||||||
// z = array of height values for each profile if the profiles are 2d
|
// z = array of height values for each profile if the profiles are 2d
|
||||||
// convexity = convexity setting for use with polyhedron. (module only) Default: 10
|
// convexity = convexity setting for use with polyhedron. (module only) Default: 10
|
||||||
// anchor = Translate so anchor point is at the origin. (module only) Default: "origin"
|
// anchor = Translate so anchor point is at the origin. (module only) Default: "origin"
|
||||||
|
@ -374,7 +379,7 @@ function skin(profiles, slices, refine=1, method="direct", sampling, caps, close
|
||||||
assert(len(bad)==0, str("Profiles ",bad," are not a paths or have length less than 3"))
|
assert(len(bad)==0, str("Profiles ",bad," are not a paths or have length less than 3"))
|
||||||
let(
|
let(
|
||||||
profcount = len(profiles) - (closed?0:1),
|
profcount = len(profiles) - (closed?0:1),
|
||||||
legal_methods = ["direct","reindex","distance","tangent"],
|
legal_methods = ["direct","reindex","distance","fast_distance","tangent"],
|
||||||
caps = is_def(caps) ? caps :
|
caps = is_def(caps) ? caps :
|
||||||
closed ? false : true,
|
closed ? false : true,
|
||||||
capsOK = is_bool(caps) || (is_list(caps) && len(caps)==2 && is_bool(caps[0]) && is_bool(caps[1])),
|
capsOK = is_bool(caps) || (is_list(caps) && len(caps)==2 && is_bool(caps[0]) && is_bool(caps[1])),
|
||||||
|
@ -402,7 +407,7 @@ function skin(profiles, slices, refine=1, method="direct", sampling, caps, close
|
||||||
assert(methodlistok==[], str("method list contains invalid method at ",methodlistok))
|
assert(methodlistok==[], str("method list contains invalid method at ",methodlistok))
|
||||||
assert(len(method) == profcount,"Method list is the wrong length")
|
assert(len(method) == profcount,"Method list is the wrong length")
|
||||||
assert(in_list(sampling,["length","segment"]), "sampling must be set to \"length\" or \"segment\"")
|
assert(in_list(sampling,["length","segment"]), "sampling must be set to \"length\" or \"segment\"")
|
||||||
assert(sampling=="segment" || (!in_list("distance",method) && !in_list("tangent",method)), "sampling is set to \"length\" which is only allowed iwith methods \"direct\" and \"reindex\"")
|
assert(sampling=="segment" || (!in_list("distance",method) && !in_list("fast_distance") && !in_list("tangent",method)), "sampling is set to \"length\" which is only allowed with methods \"direct\" and \"reindex\"")
|
||||||
assert(capsOK, "caps must be boolean or a list of two booleans")
|
assert(capsOK, "caps must be boolean or a list of two booleans")
|
||||||
assert(!closed || !caps, "Cannot make closed shape with caps")
|
assert(!closed || !caps, "Cannot make closed shape with caps")
|
||||||
let(
|
let(
|
||||||
|
@ -449,6 +454,7 @@ function skin(profiles, slices, refine=1, method="direct", sampling, caps, close
|
||||||
let(
|
let(
|
||||||
pair =
|
pair =
|
||||||
method[i]=="distance" ? _skin_distance_match(profiles[i],select(profiles,i+1)) :
|
method[i]=="distance" ? _skin_distance_match(profiles[i],select(profiles,i+1)) :
|
||||||
|
method[i]=="fast_distance" ? _skin_aligned_distance_match(profiles[i], select(profiles,i+1)) :
|
||||||
method[i]=="tangent" ? _skin_tangent_match(profiles[i],select(profiles,i+1)) :
|
method[i]=="tangent" ? _skin_tangent_match(profiles[i],select(profiles,i+1)) :
|
||||||
/*method[i]=="reindex" || method[i]=="direct" ?*/
|
/*method[i]=="reindex" || method[i]=="direct" ?*/
|
||||||
let( p1 = subdivide_path(profiles[i],max_list[i], method=sampling),
|
let( p1 = subdivide_path(profiles[i],max_list[i], method=sampling),
|
||||||
|
@ -720,6 +726,23 @@ function _skin_distance_match(poly1,poly2) =
|
||||||
)
|
)
|
||||||
swap ? [newbig, newsmall] : [newsmall,newbig];
|
swap ? [newbig, newsmall] : [newsmall,newbig];
|
||||||
|
|
||||||
|
|
||||||
|
// This function associates vertices but with the assumption that index 0 is associated between the
|
||||||
|
// two inputs. This gives only quadratic run time. As above, output is pair of polygons with
|
||||||
|
// vertices duplicated as suited to use as input to skin().
|
||||||
|
|
||||||
|
function _skin_aligned_distance_match(poly1, poly2) =
|
||||||
|
let(
|
||||||
|
result = _dp_distance_array(poly1, poly2, abort_thresh=1/0),
|
||||||
|
map = _dp_extract_map(result[1]),
|
||||||
|
shift0 = len(map[0]) - max(max_index(map[0],all=true))-1,
|
||||||
|
shift1 = len(map[1]) - max(max_index(map[1],all=true))-1,
|
||||||
|
new0 = polygon_shift(repeat_entries(poly1,unique_count(map[0])[1]),shift0),
|
||||||
|
new1 = polygon_shift(repeat_entries(poly2,unique_count(map[1])[1]),shift1)
|
||||||
|
)
|
||||||
|
[new0,new1];
|
||||||
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
/// Internal Function: _skin_tangent_match()
|
/// Internal Function: _skin_tangent_match()
|
||||||
/// Usage:
|
/// Usage:
|
||||||
|
@ -927,7 +950,7 @@ module sweep(shape, transforms, closed=false, caps, convexity=10,
|
||||||
// path_sweep(shape, path, <method>, <normal=>, <closed=>, <twist=>, <twist_by_length=>, <symmetry=>, <last_normal=>, <tangent=>, <relaxed=>, <caps=>, <convexity=>, <transforms=>, <anchor=>, <cp=>, <spin=>, <orient=>, <extent=>) <attachments>;
|
// path_sweep(shape, path, <method>, <normal=>, <closed=>, <twist=>, <twist_by_length=>, <symmetry=>, <last_normal=>, <tangent=>, <relaxed=>, <caps=>, <convexity=>, <transforms=>, <anchor=>, <cp=>, <spin=>, <orient=>, <extent=>) <attachments>;
|
||||||
// vnf = path_sweep(shape, path, <method>, <normal=>, <closed=>, <twist=>, <twist_by_length=>, <symmetry=>, <last_normal=>, <tangent=>, <relaxed=>, <caps=>, <convexity=>, <transforms=>);
|
// vnf = path_sweep(shape, path, <method>, <normal=>, <closed=>, <twist=>, <twist_by_length=>, <symmetry=>, <last_normal=>, <tangent=>, <relaxed=>, <caps=>, <convexity=>, <transforms=>);
|
||||||
// Description:
|
// Description:
|
||||||
// Takes as input a 2D polygon path or region, and a 2d or 3d path and constructs a polyhedron by sweeping the shape along the path.
|
// Takes as input a 2D polygon path, and a 2d or 3d path and constructs a polyhedron by sweeping the shape along the path.
|
||||||
// When run as a module returns the polyhedron geometry. When run as a function returns a VNF by default or if you set `transforms=true`
|
// When run as a module returns the polyhedron geometry. When run as a function returns a VNF by default or if you set `transforms=true`
|
||||||
// then it returns a list of transformations suitable as input to `sweep`.
|
// then it returns a list of transformations suitable as input to `sweep`.
|
||||||
// .
|
// .
|
||||||
|
@ -1206,6 +1229,18 @@ module sweep(shape, transforms, closed=false, caps, convexity=10,
|
||||||
// outside = [for(i=[0:len(trans)-1]) trans[i]*scale(lerp(1,1.5,i/(len(trans)-1)))];
|
// outside = [for(i=[0:len(trans)-1]) trans[i]*scale(lerp(1,1.5,i/(len(trans)-1)))];
|
||||||
// inside = [for(i=[len(trans)-1:-1:0]) trans[i]*scale(lerp(1.1,1.4,i/(len(trans)-1)))];
|
// inside = [for(i=[len(trans)-1:-1:0]) trans[i]*scale(lerp(1.1,1.4,i/(len(trans)-1)))];
|
||||||
// sweep(shape, concat(outside,inside),closed=true);
|
// sweep(shape, concat(outside,inside),closed=true);
|
||||||
|
// Example: Using path_sweep on a region
|
||||||
|
// rgn1 = [for (d=[10:10:60]) circle(d=d,$fn=8)];
|
||||||
|
// rgn2 = [square(30,center=false)];
|
||||||
|
// rgn3 = [for (size=[10:10:20]) move([15,15],p=square(size=size, center=true))];
|
||||||
|
// mrgn = union(rgn1,rgn2);
|
||||||
|
// orgn = difference(mrgn,rgn3);
|
||||||
|
// path_sweep(orgn,arc(r=40,angle=180));
|
||||||
|
// Example: A region with a twist
|
||||||
|
// region = [for(i=pentagon(5)) move(i,p=circle(r=2,$fn=25))];
|
||||||
|
// path_sweep(region,
|
||||||
|
// circle(r=16,$fn=75),closed=true,
|
||||||
|
// twist=360/5*2,symmetry=5);
|
||||||
module path_sweep(shape, path, method="incremental", normal, closed=false, twist=0, twist_by_length=true,
|
module path_sweep(shape, path, method="incremental", normal, closed=false, twist=0, twist_by_length=true,
|
||||||
symmetry=1, last_normal, tangent, relaxed=false, caps, convexity=10,
|
symmetry=1, last_normal, tangent, relaxed=false, caps, convexity=10,
|
||||||
anchor="origin",cp,spin=0, orient=UP, extent=false)
|
anchor="origin",cp,spin=0, orient=UP, extent=false)
|
||||||
|
@ -1225,7 +1260,7 @@ function path_sweep(shape, path, method="incremental", normal, closed=false, twi
|
||||||
assert(!closed || twist % (360/symmetry)==0, str("For a closed sweep, twist must be a multiple of 360/symmetry = ",360/symmetry))
|
assert(!closed || twist % (360/symmetry)==0, str("For a closed sweep, twist must be a multiple of 360/symmetry = ",360/symmetry))
|
||||||
assert(closed || symmetry==1, "symmetry must be 1 when closed is false")
|
assert(closed || symmetry==1, "symmetry must be 1 when closed is false")
|
||||||
assert(is_integer(symmetry) && symmetry>0, "symmetry must be a positive integer")
|
assert(is_integer(symmetry) && symmetry>0, "symmetry must be a positive integer")
|
||||||
assert(is_path(shape,2) || is_region(shape), "shape must be a 2d path or region.")
|
// let(shape = check_and_fix_path(shape,valid_dim=2,closed=true,name="shape"))
|
||||||
assert(is_path(path), "input path is not a path")
|
assert(is_path(path), "input path is not a path")
|
||||||
assert(!closed || !approx(path[0],select(path,-1)), "Closed path includes start point at the end")
|
assert(!closed || !approx(path[0],select(path,-1)), "Closed path includes start point at the end")
|
||||||
let(
|
let(
|
||||||
|
@ -1301,15 +1336,15 @@ function path_sweep(shape, path, method="incremental", normal, closed=false, twi
|
||||||
translate(path[i%L])*rotation*zrot(-twist*pathfrac[i])
|
translate(path[i%L])*rotation*zrot(-twist*pathfrac[i])
|
||||||
] :
|
] :
|
||||||
assert(false,"Unknown method or no method given")[], // unknown method
|
assert(false,"Unknown method or no method given")[], // unknown method
|
||||||
ends_match = !closed ? true :
|
ends_match = !closed ? true
|
||||||
let(
|
: let( rshape = is_path(shape) ? [path3d(shape)]
|
||||||
start = apply(transform_list[0],path3d(shape)),
|
: [for(s=shape) path3d(s)]
|
||||||
end = reindex_polygon(start, apply(transform_list[L],path3d(shape)))
|
|
||||||
)
|
)
|
||||||
all([for(i=idx(start)) approx(start[i],end[i])]),
|
regions_equal(apply(transform_list[0], rshape),
|
||||||
|
apply(transform_list[L], rshape)),
|
||||||
dummy = ends_match ? 0 : echo("WARNING: ***** The points do not match when closing the model *****")
|
dummy = ends_match ? 0 : echo("WARNING: ***** The points do not match when closing the model *****")
|
||||||
)
|
)
|
||||||
transforms ? transform_list : sweep(clockwise_polygon(shape), transform_list, closed=false, caps=fullcaps);
|
transforms ? transform_list : sweep(is_path(shape)?clockwise_polygon(shape):shape, transform_list, closed=false, caps=fullcaps);
|
||||||
|
|
||||||
|
|
||||||
// Function&Module: path_sweep2d()
|
// Function&Module: path_sweep2d()
|
||||||
|
@ -1361,7 +1396,8 @@ function path_sweep2d(shape, path, closed=false, caps, quality=1) =
|
||||||
caps = is_def(caps) ? caps
|
caps = is_def(caps) ? caps
|
||||||
: closed ? false : true,
|
: closed ? false : true,
|
||||||
capsOK = is_bool(caps) || (is_list(caps) && len(caps)==2 && is_bool(caps[0]) && is_bool(caps[1])),
|
capsOK = is_bool(caps) || (is_list(caps) && len(caps)==2 && is_bool(caps[0]) && is_bool(caps[1])),
|
||||||
fullcaps = is_bool(caps) ? [caps,caps] : caps
|
fullcaps = is_bool(caps) ? [caps,caps] : caps,
|
||||||
|
shape = check_and_fix_path(shape,valid_dim=2,closed=true,name="shape")
|
||||||
)
|
)
|
||||||
assert(capsOK, "caps must be boolean or a list of two booleans")
|
assert(capsOK, "caps must be boolean or a list of two booleans")
|
||||||
assert(!closed || !caps, "Cannot make closed shape with caps")
|
assert(!closed || !caps, "Cannot make closed shape with caps")
|
||||||
|
|
Loading…
Reference in a new issue