Merge pull request #1433 from adrianVmariano/master

vnf_validate isect bugfix
This commit is contained in:
Revar Desmera 2024-05-21 23:34:59 -07:00 committed by GitHub
commit f9e6e67acf
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 59 additions and 46 deletions

View file

@ -1711,7 +1711,7 @@ function point_in_polygon(point, poly, nonzero=false, eps=EPSILON) =
// Description: // Description:
// Takes a possibly bounded line, and a 2D or 3D planar polygon, and finds their intersection. Note the polygon is // Takes a possibly bounded line, and a 2D or 3D planar polygon, and finds their intersection. Note the polygon is
// treated as its boundary and interior, so the intersection may include both points and line segments. // treated as its boundary and interior, so the intersection may include both points and line segments.
// If the line does not intersect the polygon returns `undef`. // If the line does not intersect the polygon then returns `undef`.
// In 3D if the line is not on the plane of the polygon but intersects it then you get a single intersection point. // In 3D if the line is not on the plane of the polygon but intersects it then you get a single intersection point.
// Otherwise the polygon and line are in the same plane, or when your input is 2D, you will get a list of segments and // Otherwise the polygon and line are in the same plane, or when your input is 2D, you will get a list of segments and
// single point lists. Use `is_vector` to distinguish these two cases. // single point lists. Use `is_vector` to distinguish these two cases.

View file

@ -1772,8 +1772,8 @@ module debug_vnf(vnf, faces=true, vertices=true, opacity=0.5, size=1, convexity=
// vnf_validate(vnf); // vnf_validate(vnf);
// Example(3D,Edges): FACE_ISECT Errors; Faces Intersect // Example(3D,Edges): FACE_ISECT Errors; Faces Intersect
// vnf = vnf_join([ // vnf = vnf_join([
// vnf_triangulate(linear_sweep(square(100,center=true), height=100)), // linear_sweep(square(100,center=true), height=100),
// move([75,35,30],p=vnf_triangulate(linear_sweep(square(100,center=true), height=100))) // move([75,35,30],p=linear_sweep(square(100,center=true), height=100))
// ]); // ]);
// vnf_validate(vnf,size=2,check_isects=true); // vnf_validate(vnf,size=2,check_isects=true);
// Example(3D,Edges): HOLE_EDGE Errors; Edges Adjacent to Holes. // Example(3D,Edges): HOLE_EDGE Errors; Edges Adjacent to Holes.
@ -1893,43 +1893,51 @@ function _vnf_validate(vnf, show_warns=true, check_isects=false) =
) t_juncts? issues : ) t_juncts? issues :
let( let(
isect_faces = !check_isects? [] : unique([ isect_faces = !check_isects? [] : unique([
for (i = [0:1:len(faces)-2]) let( for (i = [0:1:len(faces)-2])
f1 = faces[i], let(
poly1 = select(varr, faces[i]), f1 = faces[i],
plane1 = plane3pt(poly1[0], poly1[1], poly1[2]), poly1 = select(varr, faces[i]),
normal1 = [plane1[0], plane1[1], plane1[2]] plane1 = plane3pt(poly1[0], poly1[1], poly1[2]),
) normal1 = [plane1[0], plane1[1], plane1[2]]
for (j = [i+1:1:len(faces)-1]) let( )
f2 = faces[j], for (j = [i+1:1:len(faces)-1])
poly2 = select(varr, f2), let(
val = poly2 * normal1 f2 = faces[j],
) poly2 = select(varr, f2),
if( min(val)<=plane1[3] && max(val)>=plane1[3] ) let( val = poly2 * normal1
plane2 = plane_from_polygon(poly2), )
normal2 = [plane2[0], plane2[1], plane2[2]], // The next test skips f2 if it lies entirely on one side of the plane of poly1
val = poly1 * normal2 if( min(val)<=plane1[3] && max(val)>=plane1[3] )
) let(
if( min(val)<=plane2[3] && max(val)>=plane2[3] ) let( plane2 = plane_from_polygon(poly2),
shared_edges = [ normal2 = [plane2[0], plane2[1], plane2[2]],
for (edge1 = pair(f1, true), edge2 = pair(f2, true)) val = poly1 * normal2
if (edge1 == [edge2[1], edge2[0]]) 1 )
] // Skip if f1 lies entirely on one side of the plane defined by poly2
) if( min(val)<=plane2[3] && max(val)>=plane2[3] )
if (!shared_edges) let( let(
line = plane_intersection(plane1, plane2) shared_edges = [
) for (edge1 = pair(f1, true), edge2 = pair(f2, true))
if (!is_undef(line)) let( if (edge1 == [edge2[1], edge2[0]]) 1
isects = polygon_line_intersection(poly1, line) ]
) )
if (!is_undef(isects)) if (shared_edges==[])
for (isect = isects) let(
if (len(isect) > 1) let( line = plane_intersection(plane1, plane2)
isects2 = polygon_line_intersection(poly2, isect, bounded=true) )
) if (is_def(line))
if (!is_undef(isects2)) let(
for (seg = isects2) isects = polygon_line_intersection(poly1, line)
if (seg[0] != seg[1]) )
_vnf_validate_err("FACE_ISECT", seg) if (is_def(isects))
for (isect = isects)
if (len(isect) > 1)
let(
isects2 = polygon_line_intersection(poly2, isect, bounded=true)
)
if (is_def(isects2))
for (seg = isects2)
if (len(seg)>1 && seg[0] != seg[1]) _vnf_validate_err("FACE_ISECT", seg)
]), ]),
issues = concat(issues, isect_faces) issues = concat(issues, isect_faces)
) isect_faces? issues : ) isect_faces? issues :

View file

@ -18,7 +18,7 @@ include<rounding.scad>
// Synopsis: Makes an open cross-braced rectangular wall. // Synopsis: Makes an open cross-braced rectangular wall.
// SynTags: Geom // SynTags: Geom
// Topics: FDM Optimized, Walls // Topics: FDM Optimized, Walls
// See Also: corrugated_wall(), thinning_wall(), thinning_triangle(), narrowing_strut() // See Also: hex_panel(), corrugated_wall(), thinning_wall(), thinning_triangle(), narrowing_strut()
// //
// Usage: // Usage:
// sparse_wall(h, l, thick, [maxang=], [strut=], [max_bridge=]) [ATTACHMENTS]; // sparse_wall(h, l, thick, [maxang=], [strut=], [max_bridge=]) [ATTACHMENTS];
@ -81,7 +81,7 @@ module sparse_wall(h=50, l=100, thick=4, maxang=30, strut=5, max_bridge=20, anch
// Synopsis: Makes an open cross-braced rectangular wall. // Synopsis: Makes an open cross-braced rectangular wall.
// SynTags: Geom // SynTags: Geom
// Topics: FDM Optimized, Walls // Topics: FDM Optimized, Walls
// See Also: sparse_wall(), corrugated_wall(), thinning_wall(), thinning_triangle(), narrowing_strut() // See Also: sparse_wall(), hex_panel(), corrugated_wall(), thinning_wall(), thinning_triangle(), narrowing_strut()
// //
// Usage: // Usage:
// sparse_wall2d(size, [maxang=], [strut=], [max_bridge=]) [ATTACHMENTS]; // sparse_wall2d(size, [maxang=], [strut=], [max_bridge=]) [ATTACHMENTS];
@ -153,7 +153,7 @@ module sparse_wall2d(size=[50,100], maxang=30, strut=5, max_bridge=20, anchor=CE
// Synopsis: Makes an open cross-braced cuboid // Synopsis: Makes an open cross-braced cuboid
// SynTags: Geom // SynTags: Geom
// Topics: FDM Optimized, Walls // Topics: FDM Optimized, Walls
// See Also: sparse_wall(), corrugated_wall(), thinning_wall(), thinning_triangle(), narrowing_strut(), cuboid() // See Also: sparse_wall(), hex_panel(), corrugated_wall(), thinning_wall(), thinning_triangle(), narrowing_strut(), cuboid()
// Usage: // Usage:
// sparse_cuboid(size, [dir], [maxang=], [struct=] // sparse_cuboid(size, [dir], [maxang=], [struct=]
// Description: // Description:
@ -220,10 +220,15 @@ module sparse_cuboid(size, dir=RIGHT, strut=5, maxang=30, max_bridge=20,
// Module: hex_panel() // Module: hex_panel()
// Synopsis: Create a hexagon braced panel of any shape
// SynTags: Geom
// Topics: FDM Optimized, Walls
// See Also: sparse_wall(), hex_panel(), corrugated_wall(), thinning_wall(), thinning_triangle(), narrowing_strut()
// Usage: // Usage:
// hex_panel(shape, wall, spacing, [frame=], [bevel=], [bevel_frame=], [h=|height=|l=|length=], [anchor=], [orient=], [spin=]) // hex_panel(shape, wall, spacing, [frame=], [bevel=], [bevel_frame=], [h=|height=|l=|length=], [anchor=], [orient=], [spin=])
// Description: // Description:
// Produces a panel with a honeycomb interior. The panel consists of a frame containing // Produces a panel with a honeycomb interior that can be rectangular with optional beveling, or
// an arbitrary polygon shape without beveling. The panel consists of a frame containing
// a honeycob interior. The frame is laid out in the XY plane with the honeycob interior // a honeycob interior. The frame is laid out in the XY plane with the honeycob interior
// and then extruded to the height h. The shape argument defines the outer bounderies of // and then extruded to the height h. The shape argument defines the outer bounderies of
// the frame. // the frame.
@ -246,7 +251,7 @@ module sparse_cuboid(size, dir=RIGHT, strut=5, maxang=30, max_bridge=20,
// shape = 3D size vector or a 2D path // shape = 3D size vector or a 2D path
// strut = thickness of hexagonal bracing // strut = thickness of hexagonal bracing
// spacing = center-to-center spacing of hex cells in the honeycomb. // spacing = center-to-center spacing of hex cells in the honeycomb.
// -- // ---
// frame = width of the frame around the honeycomb. Default: same as strut // frame = width of the frame around the honeycomb. Default: same as strut
// bevel = list of edges to bevel on rectangular case when shape is a size vector; allowed options are RIGHT, LEFT, BACK, or FRONT, or those directions with BOTTOM added. Default: [] // bevel = list of edges to bevel on rectangular case when shape is a size vector; allowed options are RIGHT, LEFT, BACK, or FRONT, or those directions with BOTTOM added. Default: []
// bevel_frame = width of the frame applied at bevels. Default: same as frame // bevel_frame = width of the frame applied at bevels. Default: same as frame
@ -263,7 +268,7 @@ module sparse_cuboid(size, dir=RIGHT, strut=5, maxang=30, max_bridge=20,
// Anchor Types: // Anchor Types:
// hull = Anchors to the convex hull of the linear sweep of the path, ignoring any end roundings. // hull = Anchors to the convex hull of the linear sweep of the path, ignoring any end roundings.
// intersect = Anchors to the surface of the linear sweep of the path, ignoring any end roundings. // intersect = Anchors to the surface of the linear sweep of the path, ignoring any end roundings.
// Examples // Examples:
// hex_panel([50, 100, 5], strut=1.5, spacing=10); // hex_panel([50, 100, 5], strut=1.5, spacing=10);
// hex_panel([50, 100, 5], 1.5, 10, frame = 5); // hex_panel([50, 100, 5], 1.5, 10, frame = 5);
// hex_panel([50, 100, 5], 5, 10.05); // hex_panel([50, 100, 5], 5, 10.05);