Tweaked move(), rot(), scale(), etc to handle bezier patches and VNF structures. Added mirror() and skew_XX() functions.

This commit is contained in:
Revar Desmera 2019-12-04 02:24:34 -08:00
parent 80e9ecac05
commit fa055e9469
5 changed files with 401 additions and 210 deletions

View file

@ -709,12 +709,12 @@ function is_patch(x) = is_tripatch(x) || is_rectpatch(x);
// [[0, 67,0], [33, 67, 33], [67, 67, 33], [100, 67,0]], // [[0, 67,0], [33, 67, 33], [67, 67, 33], [100, 67,0]],
// [[0,100,0], [33,100, 0], [67,100, 0], [100,100,0]], // [[0,100,0], [33,100, 0], [67,100, 0], [100,100,0]],
// ]; // ];
// vnf1 = bezier_patch(patch_translate(patch,[-50,-50,50])); // vnf1 = bezier_patch(translate(p=patch,[-50,-50,50]));
// vnf2 = bezier_patch(vnf=vnf1, patch_rotate(a=[90,0,0],patch_translate(patch,[-50,-50,50]))); // vnf2 = bezier_patch(vnf=vnf1, rot(a=[90,0,0],p=translate(p=patch,[-50,-50,50])));
// vnf3 = bezier_patch(vnf=vnf2, patch_rotate(a=[-90,0,0],patch_translate(patch,[-50,-50,50]))); // vnf3 = bezier_patch(vnf=vnf2, rot(a=[-90,0,0],p=translate(p=patch,[-50,-50,50])));
// vnf4 = bezier_patch(vnf=vnf3, patch_rotate(a=[180,0,0],patch_translate(patch,[-50,-50,50]))); // vnf4 = bezier_patch(vnf=vnf3, rot(a=[180,0,0],p=translate(p=patch,[-50,-50,50])));
// vnf5 = bezier_patch(vnf=vnf4, patch_rotate(a=[0,90,0],patch_translate(patch,[-50,-50,50]))); // vnf5 = bezier_patch(vnf=vnf4, rot(a=[0,90,0],p=translate(p=patch,[-50,-50,50])));
// vnf6 = bezier_patch(vnf=vnf5, patch_rotate(a=[0,-90,0],patch_translate(patch,[-50,-50,50]))); // vnf6 = bezier_patch(vnf=vnf5, rot(a=[0,-90,0],p=translate(p=patch,[-50,-50,50])));
// vnf_polyhedron(vnf6); // vnf_polyhedron(vnf6);
// Example(3D): Chaining Patches with Assymmetric Splinesteps // Example(3D): Chaining Patches with Assymmetric Splinesteps
// steps = 8; // steps = 8;
@ -733,9 +733,9 @@ function is_patch(x) = is_tripatch(x) || is_rectpatch(x);
// for (axrot=[[0,0,0],[0,90,0],[0,0,90]], xang=[-90:90:180]) // for (axrot=[[0,0,0],[0,90,0],[0,0,90]], xang=[-90:90:180])
// bezier_patch( // bezier_patch(
// splinesteps=[1,steps], // splinesteps=[1,steps],
// patch_rotate(a=axrot, // rot(a=axrot,
// patch_rotate(a=[xang,0,0], // p=rot(a=[xang,0,0],
// patch_translate(v=[0,-100,100],edge_patch) // p=translate(v=[0,-100,100],p=edge_patch)
// ) // )
// ) // )
// ) // )
@ -744,8 +744,8 @@ function is_patch(x) = is_tripatch(x) || is_rectpatch(x);
// for (zang=[0,180], xang=[-90:90:180]) // for (zang=[0,180], xang=[-90:90:180])
// bezier_patch( // bezier_patch(
// splinesteps=steps, // splinesteps=steps,
// patch_rotate(a=[xang,0,zang], // rot(a=[xang,0,zang],
// patch_translate(v=[-100,-100,100],corner_patch) // p=translate(v=[-100,-100,100],p=corner_patch)
// ) // )
// ) // )
// ]; // ];
@ -753,9 +753,9 @@ function is_patch(x) = is_tripatch(x) || is_rectpatch(x);
// for (axrot=[[0,0,0],[0,90,0],[0,0,90]], zang=[0,180]) // for (axrot=[[0,0,0],[0,90,0],[0,0,90]], zang=[0,180])
// bezier_patch( // bezier_patch(
// splinesteps=1, // splinesteps=1,
// patch_rotate(a=axrot, // rot(a=axrot,
// patch_rotate(a=[0,0,zang], // p=rot(a=[0,0,zang],
// patch_translate(v=[-100,0,0], face_patch) // p=translate(v=[-100,0,0], p=face_patch)
// ) // )
// ) // )
// ) // )
@ -847,76 +847,6 @@ function bezier_patch_flat(size=[100,100], N=4, spin=0, orient=UP, trans=[0,0,0]
function patch_reverse(patch) = [for (row=patch) reverse(row)]; function patch_reverse(patch) = [for (row=patch) reverse(row)];
// Function: patch_translate()
// Usage:
// patch_translate(patch, v)
// Description: Translates all coordinates in a rectangular or triangular patch by a given amount.
// Arguments:
// patch = The patch to translate.
// v = Vector to translate by.
function patch_translate(patch, v=[0,0,0]) = [for(row=patch) translate_points(row, v)];
// Function: patch_scale()
// Usage:
// patch_scale(patch, v, [cp])
// Description: Scales all coordinates in a rectangular or triangular patch by a given amount.
// Arguments:
// patch = The patch to scale.
// v = [X,Y,Z] scaling factors.
// cp = Centerpoint to scale around.
function patch_scale(patch, v=[1,1,1], cp=[0,0,0]) = [for(row=patch) scale_points(row, v, cp)];
// Function: patch_rotate()
// Usage:
// patch_rotate(patch, a, [cp])
// patch_rotate(patch, a, v, [cp])
// Description: Rotates all coordinates in a rectangular or triangular patch by a given amount.
// Arguments:
// patch = The patch to rotate.
// a = Rotation angle(s) in degrees.
// v = Vector axis to rotate round.
// cp = Centerpoint to rotate around.
function patch_rotate(patch, a=undef, v=undef, cp=[0,0,0]) =
[for(row=patch) rotate_points3d(row, a=a, v=v, cp=cp)];
// Function: patches_translate()
// Usage:
// patches_translate(patch, v, [cp])
// Description: Translates all coordinates in each of a list of rectangular or triangular patches.
// Arguments:
// patches = List of patches to translate.
// v = Vector to translate by.
function patches_translate(patches, v=[0,0,0]) = [for (patch=patches) patch_translate(patch,v)];
// Function: patches_scale()
// Usage:
// patches_scale(patch, v, [cp])
// Description: Scales all coordinates in each of a list of rectangular or triangular patches.
// Arguments:
// patches = List of patches to scale.
// v = [X,Y,Z] scaling factors.
// cp = Centerpoint to scale around.
function patches_scale(patches, v=[1,1,1], cp=[0,0,0]) = [for (patch=patches) patch_scale(patch,v,cp)];
// Function: patches_rotate()
// Usage:
// patches_rotate(patch, a, [cp])
// patches_rotate(patch, a, v, [cp])
// Description: Rotates all coordinates in each of a list of rectangular or triangular patches.
// Arguments:
// patches = List of patches to rotate.
// a = Rotation angle(s) in degrees.
// v = Vector axis to rotate round.
// cp = Centerpoint to rotate around.
function patches_rotate(patches, a=undef, v=undef, cp=[0,0,0]) = [for (patch=patches) patch_rotate(patch, a=a, v=v, cp=cp)];
// Function: bezier_surface() // Function: bezier_surface()
// Usage: // Usage:
// bezier_surface(patches, [splinesteps], [vnf]); // bezier_surface(patches, [splinesteps], [vnf]);

View file

@ -18,13 +18,12 @@ function CR_corner(size, spin=0, orient=UP, trans=[0,0,0]) =
[[a,1,0], [1,a,0]], [[a,1,0], [1,a,0]],
[[1,1,0]], [[1,1,0]],
] ]
) [for (row=patch)
translate_points(v=trans,
rotate_points3d(a=spin, from=UP, to=orient,
scale_points(v=size, row)
) )
translate(trans,
p=rot(a=spin, from=UP, to=orient,
p=scale(size, patch)
) )
]; );
function CR_edge(size, spin=0, orient=UP, trans=[0,0,0]) = function CR_edge(size, spin=0, orient=UP, trans=[0,0,0]) =
@ -47,13 +46,12 @@ function CR_edge(size, spin=0, orient=UP, trans=[0,0,0]) =
[[0,a,m], [0,a,n], [0,a,o], [0,a,p], [0,a,q], [0,a,r]], [[0,a,m], [0,a,n], [0,a,o], [0,a,p], [0,a,q], [0,a,r]],
[[0,1,m], [0,1,n], [0,1,o], [0,1,p], [0,1,q], [0,1,r]], [[0,1,m], [0,1,n], [0,1,o], [0,1,p], [0,1,q], [0,1,r]],
] ]
) [for (row=patch)
translate_points(v=trans,
rotate_points3d(a=spin, from=UP, to=orient,
scale_points(v=size, row)
) )
translate(trans,
p=rot(a=spin, from=UP, to=orient,
p=scale(size, p=patch)
) )
]; );
module CR_cube(size=[100,100,100], r=10, splinesteps=8, cheat=false, debug=false) module CR_cube(size=[100,100,100], r=10, splinesteps=8, cheat=false, debug=false)

View file

@ -16,6 +16,7 @@ include <edges.scad>
include <common.scad> include <common.scad>
include <errors.scad> include <errors.scad>
include <arrays.scad> include <arrays.scad>
include <vnf.scad>
include <math.scad> include <math.scad>
include <vectors.scad> include <vectors.scad>

View file

@ -15,23 +15,28 @@
// Function&Module: move() // Function&Module: move()
// //
// Description:
// If called as a module, moves/translates all children. If called as a function with the `p`
// argument, returns the translated point or list of points. If called as a function without the
// `p` argument, returns an affine translation matrix, either 2D or 3D depending on the length
// of the offset vector `a`.
//
// Usage: As Module // Usage: As Module
// move([x], [y], [z]) ... // move([x], [y], [z]) ...
// move(a) ... // move(v) ...
// Usage: Translate Points // Usage: Translate Points
// pts = move(a, p); // pts = move(v, p);
// pts = move([x], [y], [z], p); // pts = move([x], [y], [z], p);
// Usage: Get Translation Matrix // Usage: Get Translation Matrix
// mat = move(a); // mat = move(v);
//
// Description:
// Translates position by the given amount.
// * Called as a module, moves/translates all children.
// * Called as a function with a point in the `p` argument, returns the translated point.
// * Called as a function with a list of points in the `p` argument, returns the translated list of points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the translated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the translated VNF.
// * Called as a function with the `p` argument, returns the translated point or list of points.
// * Called as a function without a `p` argument, with a 2D offset vector `v`, returns an affine2d translation matrix.
// * Called as a function without a `p` argument, with a 3D offset vector `v`, returns an affine3d translation matrix.
// //
// Arguments: // Arguments:
// a = An [X,Y,Z] vector to translate by. // v = An [X,Y,Z] vector to translate by.
// x = X axis translation. // x = X axis translation.
// y = Y axis translation. // y = Y axis translation.
// z = Z axis translation. // z = Z axis translation.
@ -49,6 +54,11 @@
// #sphere(d=10); // #sphere(d=10);
// move(x=-10, y=-5) sphere(d=10); // move(x=-10, y=-5) sphere(d=10);
// //
// Example(2D):
// path = square([50,30], center=true);
// #stroke(path, closed=true);
// stroke(move([10,20],p=path), closed=true);
//
// Example(NORENDER): // Example(NORENDER):
// pt1 = move([0,20,30], p=[15,23,42]); // Returns: [15, 43, 72] // pt1 = move([0,20,30], p=[15,23,42]); // Returns: [15, 43, 72]
// pt2 = move(y=10, p=[15,23,42]); // Returns: [15, 33, 42] // pt2 = move(y=10, p=[15,23,42]); // Returns: [15, 33, 42]
@ -56,21 +66,24 @@
// pt4 = move(y=11, p=[[1,2,3],[4,5,6]]); // Returns: [[1,13,3], [4,16,6]] // pt4 = move(y=11, p=[[1,2,3],[4,5,6]]); // Returns: [[1,13,3], [4,16,6]]
// mat2d = move([2,3]); // Returns: [[1,0,2],[0,1,3],[0,0,1]] // mat2d = move([2,3]); // Returns: [[1,0,2],[0,1,3],[0,0,1]]
// mat3d = move([2,3,4]); // Returns: [[1,0,0,2],[0,1,0,3],[0,0,1,4],[0,0,0,1]] // mat3d = move([2,3,4]); // Returns: [[1,0,0,2],[0,1,0,3],[0,0,1,4],[0,0,0,1]]
module move(a=[0,0,0], x=0, y=0, z=0) module move(v=[0,0,0], x=0, y=0, z=0)
{ {
translate(a+[x,y,z]) children(); translate(v+[x,y,z]) children();
} }
function move(a=[0,0,0], p=undef, x=0, y=0, z=0) = function move(v=[0,0,0], p=undef, x=0, y=0, z=0) =
is_undef(p)? ( is_undef(p)? (
len(a)==2? affine2d_translate(a+[x,y]) : len(v)==2? affine2d_translate(v+[x,y]) :
affine3d_translate(point3d(a)+[x,y,z]) affine3d_translate(point3d(v)+[x,y,z])
) : ( ) : (
is_vector(p)? p+a+[x,y,z] : assert(is_list(p))
[for (pt = p) pt+a+[x,y,z]] let(v=v+[x,y,z])
is_num(p.x)? p+v :
is_vnf(p)? [move(v=v,p=p.x), p.y] :
[for (l=p) is_vector(l)? l+v : move(v=v, p=l)]
); );
function translate(a=[0,0,0], p=undef) = move(a=a, p=p); function translate(v=[0,0,0], p=undef) = move(v=v, p=p);
// Function&Module: left() // Function&Module: left()
@ -102,7 +115,7 @@ function translate(a=[0,0,0], p=undef) = move(a=a, p=p);
// mat3d = left(4); // Returns: [[1,0,0,-4],[0,1,0,0],[0,0,1,0],[0,0,0,1]] // mat3d = left(4); // Returns: [[1,0,0,-4],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
module left(x=0) translate([-x,0,0]) children(); module left(x=0) translate([-x,0,0]) children();
function left(x=0,p=undef) = translate([-x,0,0],p=p); function left(x=0,p=undef) = move([-x,0,0],p=p);
// Function&Module: right() // Function&Module: right()
@ -134,7 +147,7 @@ function left(x=0,p=undef) = translate([-x,0,0],p=p);
// mat3d = right(4); // Returns: [[1,0,0,4],[0,1,0,0],[0,0,1,0],[0,0,0,1]] // mat3d = right(4); // Returns: [[1,0,0,4],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
module right(x=0) translate([x,0,0]) children(); module right(x=0) translate([x,0,0]) children();
function right(x=0,p=undef) = translate([x,0,0],p=p); function right(x=0,p=undef) = move([x,0,0],p=p);
// Function&Module: fwd() // Function&Module: fwd()
@ -166,7 +179,7 @@ function right(x=0,p=undef) = translate([x,0,0],p=p);
// mat3d = fwd(4); // Returns: [[1,0,0,0],[0,1,0,-4],[0,0,1,0],[0,0,0,1]] // mat3d = fwd(4); // Returns: [[1,0,0,0],[0,1,0,-4],[0,0,1,0],[0,0,0,1]]
module fwd(y=0) translate([0,-y,0]) children(); module fwd(y=0) translate([0,-y,0]) children();
function fwd(y=0,p=undef) = translate([0,-y,0],p=p); function fwd(y=0,p=undef) = move([0,-y,0],p=p);
// Function&Module: back() // Function&Module: back()
@ -198,7 +211,7 @@ function fwd(y=0,p=undef) = translate([0,-y,0],p=p);
// mat3d = back(4); // Returns: [[1,0,0,0],[0,1,0,4],[0,0,1,0],[0,0,0,1]] // mat3d = back(4); // Returns: [[1,0,0,0],[0,1,0,4],[0,0,1,0],[0,0,0,1]]
module back(y=0) translate([0,y,0]) children(); module back(y=0) translate([0,y,0]) children();
function back(y=0,p=undef) = translate([0,y,0],p=p); function back(y=0,p=undef) = move([0,y,0],p=p);
// Function&Module: down() // Function&Module: down()
@ -229,7 +242,7 @@ function back(y=0,p=undef) = translate([0,y,0],p=p);
// mat3d = down(4); // Returns: [[1,0,0,0],[0,1,0,0],[0,0,1,-4],[0,0,0,1]] // mat3d = down(4); // Returns: [[1,0,0,0],[0,1,0,0],[0,0,1,-4],[0,0,0,1]]
module down(z=0) translate([0,0,-z]) children(); module down(z=0) translate([0,0,-z]) children();
function down(z=0,p=undef) = translate([0,0,-z],p=p); function down(z=0,p=undef) = move([0,0,-z],p=p);
// Function&Module: up() // Function&Module: up()
@ -260,7 +273,7 @@ function down(z=0,p=undef) = translate([0,0,-z],p=p);
// mat3d = up(4); // Returns: [[1,0,0,0],[0,1,0,0],[0,0,1,4],[0,0,0,1]] // mat3d = up(4); // Returns: [[1,0,0,0],[0,1,0,0],[0,0,1,4],[0,0,0,1]]
module up(z=0) translate([0,0,z]) children(); module up(z=0) translate([0,0,z]) children();
function up(z=0,p=undef) = translate([0,0,z],p=p); function up(z=0,p=undef) = move([0,0,z],p=p);
@ -271,19 +284,31 @@ function up(z=0,p=undef) = translate([0,0,z],p=p);
// Function&Module: rot() // Function&Module: rot()
// //
// Description:
// When called as a module, rotates all children around an arbitrary axis by the given number of degrees.
// Can be used as a drop-in replacement for `rotate()`, with extra features.
// When called as a function with a `p` argument containing a point, returns the rotated point.
// When called as a function with a `p` argument containing a list of points, returns the list of rotated points.
// When called as a function without a `p` argument, returns the rotational matrix. 2D if planar is true, 3D otherwise.
//
// Usage: // Usage:
// rot(a, [cp], [reverse]) ... // rot(a, [cp], [reverse]) ...
// rot([X,Y,Z], [cp], [reverse]) ... // rot([X,Y,Z], [cp], [reverse]) ...
// rot(a, v, [cp], [reverse]) ... // rot(a, v, [cp], [reverse]) ...
// rot(from, to, [a], [reverse]) ... // rot(from, to, [a], [reverse]) ...
// //
// Description:
// This is a shorthand version of the built-in `rotate()`, and operates similarly, with a few additional capabilities.
// You can specify the rotation to perform in one of several ways:
// * `rot(30)` or `rot(a=30)` rotates 30 degrees around the Z axis.
// * `rot([20,30,40])` or `rot(a=[20,30,40])` rotates 20 degrees around the X axis, then 30 degrees around the Y axis, then 40 degrees around the Z axis.
// * `rot(30, [1,1,0])` or `rot(a=30, v=[1,1,0])` rotates 30 degrees around the axis vector `[1,1,0]`.
// * `rot(from=[0,0,1], to=[1,0,0])` rotates the top towards the right, similar to `rot(a=90,v=[0,1,0]`.
// * `rot(from=[0,0,1], to=[1,1,0], a=45)` rotates 45 degrees around the Z axis, then rotates the top towards the back-right. Similar to `rot(a=90,v=[-1,1,0])`
// If the `cp` centerpoint argument is given, then rotations are performed around that centerpoint.
// If the `reverse` argument is true, then the rotations performed will be exactly reversed.
// The behavior and return value varies depending on how `rot()` is called:
// * Called as a module, rotates all children.
// * Called as a function with a `p` argument containing a point, returns the rotated point.
// * Called as a function with a `p` argument containing a list of points, returns the list of rotated points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF.
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix.
// * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix.
//
// Arguments: // Arguments:
// a = Scalar angle or vector of XYZ rotation angles to rotate by, in degrees. // a = Scalar angle or vector of XYZ rotation angles to rotate by, in degrees.
// v = vector for the axis of rotation. Default: [0,0,1] or UP // v = vector for the axis of rotation. Default: [0,0,1] or UP
@ -305,6 +330,11 @@ function up(z=0,p=undef) = translate([0,0,z],p=p);
// Example: // Example:
// #cube([2,4,9]); // #cube([2,4,9]);
// rot(from=UP, to=LEFT+BACK) cube([2,4,9]); // rot(from=UP, to=LEFT+BACK) cube([2,4,9]);
//
// Example(2D):
// path = square([50,30], center=true);
// #stroke(path, closed=true);
// stroke(rot(30,p=path), closed=true);
module rot(a=0, v=undef, cp=undef, from=undef, to=undef, reverse=false) module rot(a=0, v=undef, cp=undef, from=undef, to=undef, reverse=false)
{ {
if (!is_undef(cp)) { if (!is_undef(cp)) {
@ -368,8 +398,13 @@ function rot(a=0, v=undef, cp=undef, from=undef, to=undef, reverse=false, p=unde
) )
) )
) : ( ) : (
is_vector(p)? ( assert(is_list(p))
is_num(p.x)? (
rot(a=a, v=v, cp=cp, from=from, to=to, reverse=reverse, p=[p], planar=planar)[0] rot(a=a, v=v, cp=cp, from=from, to=to, reverse=reverse, p=[p], planar=planar)[0]
) : is_vnf(p)? (
[rot(a=a, v=v, cp=cp, from=from, to=to, reverse=reverse, p=p.x, planar=planar), p.y]
) : is_list(p.x) && is_list(p.x.x)? (
[for (l=p) rot(a=a, v=v, cp=cp, from=from, to=to, reverse=reverse, p=l, planar=planar)]
) : ( ) : (
( (
(planar || (p!=[] && len(p[0])==2)) && !( (planar || (p!=[] && len(p[0])==2)) && !(
@ -394,12 +429,6 @@ function rot(a=0, v=undef, cp=undef, from=undef, to=undef, reverse=false, p=unde
// Function&Module: xrot() // Function&Module: xrot()
// //
// Description:
// When called as a module, rotates children around the X axis by the given number of degrees.
// When called as a function with the `p` argument, rotates the coordinates in `p` around the X axis by the given number of degrees.
// When called as a function without the `p` argument, returns an affine matrix to rotate around the X axis by the given number of degrees.
// If given, rotations are centered around the centerpoint `cp`.
//
// Usage: As Module // Usage: As Module
// xrot(a, [cp]) ... // xrot(a, [cp]) ...
// Usage: Rotate Points // Usage: Rotate Points
@ -407,6 +436,16 @@ function rot(a=0, v=undef, cp=undef, from=undef, to=undef, reverse=false, p=unde
// Usage: Get Rotation Matrix // Usage: Get Rotation Matrix
// mat = xrot(a, [cp]); // mat = xrot(a, [cp]);
// //
// Description:
// Rotates around the X axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint.
// * Called as a module, rotates all children.
// * Called as a function with a `p` argument containing a point, returns the rotated point.
// * Called as a function with a `p` argument containing a list of points, returns the list of rotated points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF.
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix.
// * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix.
//
// Arguments: // Arguments:
// a = angle to rotate by in degrees. // a = angle to rotate by in degrees.
// cp = centerpoint to rotate around. Default: [0,0,0] // cp = centerpoint to rotate around. Default: [0,0,0]
@ -431,12 +470,6 @@ function xrot(a=0, cp=undef, p=undef) = rot([a,0,0], cp=cp, p=p);
// Function&Module: yrot() // Function&Module: yrot()
// //
// Description:
// When called as a module, rotates children around the Y axis by the given number of degrees.
// When called as a function with the `p` argument, rotates the coordinates in `p` around the Y axis by the given number of degrees.
// When called as a function without the `p` argument, returns an affine matrix to rotate around the Y axis by the given number of degrees.
// If given, rotations are centered around the centerpoint `cp`.
//
// Usage: As Module // Usage: As Module
// yrot(a, [cp]) ... // yrot(a, [cp]) ...
// Usage: Rotate Points // Usage: Rotate Points
@ -444,6 +477,16 @@ function xrot(a=0, cp=undef, p=undef) = rot([a,0,0], cp=cp, p=p);
// Usage: Get Rotation Matrix // Usage: Get Rotation Matrix
// mat = yrot(a, [cp]); // mat = yrot(a, [cp]);
// //
// Description:
// Rotates around the Y axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint.
// * Called as a module, rotates all children.
// * Called as a function with a `p` argument containing a point, returns the rotated point.
// * Called as a function with a `p` argument containing a list of points, returns the list of rotated points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF.
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix.
// * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix.
//
// Arguments: // Arguments:
// a = angle to rotate by in degrees. // a = angle to rotate by in degrees.
// cp = centerpoint to rotate around. Default: [0,0,0] // cp = centerpoint to rotate around. Default: [0,0,0]
@ -468,12 +511,6 @@ function yrot(a=0, cp=undef, p=undef) = rot([0,a,0], cp=cp, p=p);
// Function&Module: zrot() // Function&Module: zrot()
// //
// Description:
// When called as a module, rotates children around the Z axis by the given number of degrees.
// When called as a function with the `p` argument, rotates the coordinates in `p` around the Z axis by the given number of degrees.
// When called as a function without the `p` argument, returns an affine matrix to rotate around the Z axis by the given number of degrees.
// If given, rotations are centered around the centerpoint `cp`.
//
// Usage: As Module // Usage: As Module
// zrot(a, [cp]) ... // zrot(a, [cp]) ...
// Usage: Rotate Points // Usage: Rotate Points
@ -481,6 +518,16 @@ function yrot(a=0, cp=undef, p=undef) = rot([0,a,0], cp=cp, p=p);
// Usage: Get Rotation Matrix // Usage: Get Rotation Matrix
// mat = zrot(a, [cp]); // mat = zrot(a, [cp]);
// //
// Description:
// Rotates around the Z axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint.
// * Called as a module, rotates all children.
// * Called as a function with a `p` argument containing a point, returns the rotated point.
// * Called as a function with a `p` argument containing a list of points, returns the list of rotated points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF.
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix.
// * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix.
//
// Arguments: // Arguments:
// a = angle to rotate by in degrees. // a = angle to rotate by in degrees.
// cp = centerpoint to rotate around. Default: [0,0,0] // cp = centerpoint to rotate around. Default: [0,0,0]
@ -513,16 +560,20 @@ function zrot(a=0, cp=undef, p=undef) = rot(a, cp=cp, p=p);
// scale(SCALAR) ... // scale(SCALAR) ...
// scale([X,Y,Z]) ... // scale([X,Y,Z]) ...
// Usage: Scale Points // Usage: Scale Points
// pts = scale(a, p); // pts = scale(v, p);
// Usage: Get Scaling Matrix // Usage: Get Scaling Matrix
// mat = scale(a); // mat = scale(v);
// Description: // Description:
// When called as the built-in module, scales all children by the [X,Y,Z] scaling factors. When // Scales by the [X,Y,Z] scaling factors given in `v`. If `v` is given as a scalar number, all axes are scaled uniformly by that amount.
// called as a function with a point in the `p` argument, returns the point scaled by the [X,Y,Z] // * Called as the built-in module, scales all children.
// scaling factors in `a`. When called as a function with a list of points in the `p` argument, // * Called as a function with a point in the `p` argument, returns the scaled point.
// returns the list of points, with each one scaled by the [X,Y,Z] scaling factors in `a`. // * Called as a function with a list of points in the `p` argument, returns the list of scaled points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF.
// * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix.
// * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix.
// Arguments: // Arguments:
// a = The [X,Y,Z] scaling factors, or a scalar value for uniform scaling across all axes. Default: 1 // v = Either a numeric uniform scaling factor, or a list of [X,Y,Z] scaling factors. Default: 1
// p = If called as a function, the point or list of points to scale. // p = If called as a function, the point or list of points to scale.
// Example(NORENDER): // Example(NORENDER):
// pt1 = scale(3, p=[3,1,4]); // Returns: [9,3,12] // pt1 = scale(3, p=[3,1,4]); // Returns: [9,3,12]
@ -532,30 +583,39 @@ function zrot(a=0, cp=undef, p=undef) = rot(a, cp=cp, p=p);
// mat3d = scale([2,3,4]); // Returns: [[2,0,0,0],[0,3,0,0],[0,0,4,0],[0,0,0,1]] // mat3d = scale([2,3,4]); // Returns: [[2,0,0,0],[0,3,0,0],[0,0,4,0],[0,0,0,1]]
// Example(2D): // Example(2D):
// path = circle(d=50,$fn=12); // path = circle(d=50,$fn=12);
// #stroke(path); // #stroke(path,closed=true);
// stroke(scale([1.5,3],p=path)); // stroke(scale([1.5,3],p=path),closed=true);
function scale(a=1, p=undef) = function scale(v=1, p=undef) =
let(a = is_num(a)? [a,a,a] : a) let(v = is_num(v)? [v,v,v] : v)
is_undef(p)? ( is_undef(p)? (
len(a)==2? affine2d_scale(a) : affine3d_scale(point3d(a)) len(v)==2? affine2d_scale(v) : affine3d_scale(point3d(v))
) : ( ) : (
is_vector(p)? vmul(p,a) : [for (pt = p) vmul(pt,a)] assert(is_list(p))
is_num(p.x)? vmul(p,v) :
is_vnf(p)? [scale(v=v,p=p.x), p.y] :
[for (l=p) is_vector(l)? vmul(l,v) : scale(v=v, p=l)]
); );
// Function&Module: xscale() // Function&Module: xscale()
// //
//
// Usage: As Module // Usage: As Module
// xscale(x) ... // xscale(x) ...
// Usage: Scale Points // Usage: Scale Points
// scaled = xscale(x, p); // scaled = xscale(x, p);
// Usage: Get Scaling Matrix // Usage: Get Affine Matrix
// mat = xscale(x, planar); // mat = xscale(x);
// //
// Description: // Description:
// When called as a module, scales children by the given `x` factor on the X axis. // Scales along the X axis by the scaling factor `x`.
// When called as a function with the `p` argument, scales the coordinates in `p` by the given scale `x` in the X axis. // * Called as the built-in module, scales all children.
// When called as a function without the `p` argument, returns an affine matrix to scale by the given scale `x` in the X axis. // * Called as a function with a point in the `p` argument, returns the scaled point.
// * Called as a function with a list of points in the `p` argument, returns the list of scaled points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF.
// * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix.
// * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix.
// //
// Arguments: // Arguments:
// x = Factor to scale by, along the X axis. // x = Factor to scale by, along the X axis.
@ -576,15 +636,22 @@ function xscale(x=1, p=undef, planar=false) = (planar || (!is_undef(p) && len(p)
// Function&Module: yscale() // Function&Module: yscale()
// //
// Description: // Usage: As Module
// When called as a module, scales children by the given `y` factor on the Y axis.
// When called as a function with the `p` argument, scales the coordinates in `p` by the given scale `y` in the Y axis.
// When called as a function without the `p` argument, returns an affine matrix to scale by the given scale `y` in the Y axis.
//
// Usage:
// yscale(y) ... // yscale(y) ...
// mat = yscale(y); // Usage: Scale Points
// scaled = yscale(y, p); // scaled = yscale(y, p);
// Usage: Get Affine Matrix
// mat = yscale(y);
//
// Description:
// Scales along the Y axis by the scaling factor `y`.
// * Called as the built-in module, scales all children.
// * Called as a function with a point in the `p` argument, returns the scaled point.
// * Called as a function with a list of points in the `p` argument, returns the list of scaled points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF.
// * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix.
// * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix.
// //
// Arguments: // Arguments:
// y = Factor to scale by, along the Y axis. // y = Factor to scale by, along the Y axis.
@ -605,13 +672,22 @@ function yscale(y=1, p=undef, planar=false) = (planar || (!is_undef(p) && len(p)
// Function&Module: zscale() // Function&Module: zscale()
// //
// Description: // Usage: As Module
// When called as a module, scales children by the given `z` factor on the Z axis.
// When called as a function with the `p` argument, scales the coordinates in `p` by the given scale `z` in the Z axis.
// When called as a function without the `p` argument, returns an affine matrix to scale by the given scale `z` in the Z axis.
//
// Usage:
// zscale(z) ... // zscale(z) ...
// Usage: Scale Points
// scaled = zscale(z, p);
// Usage: Get Affine Matrix
// mat = zscale(z);
//
// Description:
// Scales along the Z axis by the scaling factor `z`.
// * Called as the built-in module, scales all children.
// * Called as a function with a point in the `p` argument, returns the scaled point.
// * Called as a function with a list of points in the `p` argument, returns the list of scaled points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF.
// * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix.
// * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix.
// //
// Arguments: // Arguments:
// z = Factor to scale by, along the Z axis. // z = Factor to scale by, along the Z axis.
@ -630,13 +706,95 @@ module zscale(z=1) scale([1,1,z]) children();
function zscale(z=1, p=undef) = scale([1,1,z],p=p); function zscale(z=1, p=undef) = scale([1,1,z],p=p);
// Module: xflip() // Function&Module: mirror()
// Usage: As Module
// mirror(v) ...
// Usage: As Function
// pt = mirror(v, p);
// Usage: Get Reflection/Mirror Matrix
// mat = mirror(v);
// Description:
// Mirrors/reflects across the plane or line whose normal vector is given in `v`.
// * Called as the built-in module, mirrors all children across the line/plane.
// * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane.
// * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF.
// * Called as a function without a `p` argument, and with a 2D normal vector `v`, returns the affine2d 3x3 mirror matrix.
// * Called as a function without a `p` argument, and with a 3D normal vector `v`, returns the affine3d 4x4 mirror matrix.
// Arguments:
// v = The normal vector of the line or plane to mirror across.
// p = If called as a function, the point or list of points to scale.
// Example:
// n = [1,0,0];
// module obj() right(20) rotate([0,15,-15]) cube([40,30,20]);
// obj();
// mirror(n) obj();
// rot(a=atan2(n.y,n.x),from=UP,to=n) {
// color("red") anchor_arrow(s=20, flag=false);
// color("#7777") cube([75,75,0.1], center=true);
// }
// Example:
// n = [1,1,0];
// module obj() right(20) rotate([0,15,-15]) cube([40,30,20]);
// obj();
// mirror(n) obj();
// rot(a=atan2(n.y,n.x),from=UP,to=n) {
// color("red") anchor_arrow(s=20, flag=false);
// color("#7777") cube([75,75,0.1], center=true);
// }
// Example:
// n = [1,1,1];
// module obj() right(20) rotate([0,15,-15]) cube([40,30,20]);
// obj();
// mirror(n) obj();
// rot(a=atan2(n.y,n.x),from=UP,to=n) {
// color("red") anchor_arrow(s=20, flag=false);
// color("#7777") cube([75,75,0.1], center=true);
// }
// Example(2D):
// n = [0,1];
// path = rot(30, p=square([50,30]));
// color("gray") rot(from=[0,1],to=n) stroke([[-60,0],[60,0]]);
// color("red") stroke([[0,0],10*n],endcap2="arrow2");
// #stroke(path,closed=true);
// stroke(mirror(n, p=path),closed=true);
// Example(2D):
// n = [1,1];
// path = rot(30, p=square([50,30]));
// color("gray") rot(from=[0,1],to=n) stroke([[-60,0],[60,0]]);
// color("red") stroke([[0,0],10*n],endcap2="arrow2");
// #stroke(path,closed=true);
// stroke(mirror(n, p=path),closed=true);
function mirror(v, p) =
is_undef(p)? (
len(v)==2? affine2d_mirror(v) : affine3d_mirror(v)
) : (
assert(is_list(p))
is_num(p.x)? p - (2*(p*v)/(v*v))*v :
is_vnf(p)? [mirror(v=v,p=p.x), [for (l=p.y) reverse(l)]] :
[for (l=p) mirror(v=v, p=l)]
);
// Function&Module: xflip()
//
// Usage: As Module
// xflip([x]) ...
// Usage: As Function
// pt = xflip([x], p);
// Usage: Get Affine Matrix
// pt = xflip([x]);
// //
// Description: // Description:
// Mirrors the children along the X axis, like `mirror([1,0,0])` or `xscale(-1)` // Mirrors/reflects across the origin [0,0,0], along the X axis. If `x` is given, reflects across [x,0,0] instead.
// // * Called as the built-in module, mirrors all children across the line/plane.
// Usage: // * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane.
// xflip([x]) ... // * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF.
// * Called as a function without a `p` argument, and with a 2D normal vector `v`, returns the affine2d 3x3 mirror matrix.
// * Called as a function without a `p` argument, and with a 3D normal vector `v`, returns the affine3d 4x4 mirror matrix.
// //
// Arguments: // Arguments:
// x = The X coordinate of the plane of reflection. Default: 0 // x = The X coordinate of the plane of reflection. Default: 0
@ -652,14 +810,29 @@ function zscale(z=1, p=undef) = scale([1,1,z],p=p);
// color("red", 0.333) yrot(90) cylinder(d1=10, d2=0, h=20); // color("red", 0.333) yrot(90) cylinder(d1=10, d2=0, h=20);
module xflip(x=0) translate([x,0,0]) mirror([1,0,0]) translate([-x,0,0]) children(); module xflip(x=0) translate([x,0,0]) mirror([1,0,0]) translate([-x,0,0]) children();
function xflip(x=0,p) =
x==0? mirror([1,0,0],p=p) :
move([x,0,0],p=mirror([1,0,0],p=move([-x,0,0],p=p)));
// Module: yflip()
// Module: Function&yflip()
//
// Usage: As Module
// yflip([y]) ...
// Usage: As Function
// pt = yflip([y], p);
// Usage: Get Affine Matrix
// pt = yflip([y]);
// //
// Description: // Description:
// Mirrors the children along the Y axis, like `mirror([0,1,0])` or `yscale(-1)` // Mirrors/reflects across the origin [0,0,0], along the Y axis. If `y` is given, reflects across [0,y,0] instead.
// // * Called as the built-in module, mirrors all children across the line/plane.
// Usage: // * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane.
// yflip([y]) ... // * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF.
// * Called as a function without a `p` argument, and with a 2D normal vector `v`, returns the affine2d 3x3 mirror matrix.
// * Called as a function without a `p` argument, and with a 3D normal vector `v`, returns the affine3d 4x4 mirror matrix.
// //
// Arguments: // Arguments:
// y = The Y coordinate of the plane of reflection. Default: 0 // y = The Y coordinate of the plane of reflection. Default: 0
@ -675,14 +848,30 @@ module xflip(x=0) translate([x,0,0]) mirror([1,0,0]) translate([-x,0,0]) childre
// color("red", 0.333) xrot(90) cylinder(d1=10, d2=0, h=20); // color("red", 0.333) xrot(90) cylinder(d1=10, d2=0, h=20);
module yflip(y=0) translate([0,y,0]) mirror([0,1,0]) translate([0,-y,0]) children(); module yflip(y=0) translate([0,y,0]) mirror([0,1,0]) translate([0,-y,0]) children();
function yflip(y=0,p) =
y==0? mirror([0,1,0],p=p) :
move([0,y,0],p=mirror([0,1,0],p=move([0,-y,0],p=p)));
// Module: zflip()
// Function&Module: zflip()
//
// Usage: As Module
// zflip([z]) ...
// Usage: As Function
// pt = zflip([z], p);
// Usage: Get Affine Matrix
// pt = zflip([z]);
// //
// Description: // Description:
// Mirrors the children along the Z axis, like `mirror([0,0,1])` or `zscale(-1)` // Mirrors/reflects across the origin [0,0,0], along the Z axis. If `z` is given, reflects across [0,0,z] instead.
// // * Called as the built-in module, mirrors all children across the line/plane.
// Usage: // * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane.
// zflip([z]) ... // * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF.
// * Called as a function without a `p` argument, and with a 2D normal vector `v`, returns the affine2d 3x3 mirror matrix.
// * Called as a function without a `p` argument, and with a 3D normal vector `v`, returns the affine3d 4x4 mirror matrix.
// //
// Arguments: // Arguments:
// z = The Z coordinate of the plane of reflection. Default: 0 // z = The Z coordinate of the plane of reflection. Default: 0
@ -698,6 +887,10 @@ module yflip(y=0) translate([0,y,0]) mirror([0,1,0]) translate([0,-y,0]) childre
// color("red", 0.333) cylinder(d1=10, d2=0, h=20); // color("red", 0.333) cylinder(d1=10, d2=0, h=20);
module zflip(z=0) translate([0,0,z]) mirror([0,0,1]) translate([0,0,-z]) children(); module zflip(z=0) translate([0,0,z]) mirror([0,0,1]) translate([0,0,-z]) children();
function zflip(z=0,p) =
z==0? mirror([0,0,1],p=p) :
move([0,0,z],p=mirror([0,0,1],p=move([0,0,-z],p=p)));
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////
@ -705,17 +898,30 @@ module zflip(z=0) translate([0,0,z]) mirror([0,0,1]) translate([0,0,-z]) childre
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////
// Module: skew_xy() // Function&Module: skew_xy()
//
// Usage: As Module
// skew_xy([xa], [ya], [planar]) ...
// Usage: As Function
// pt = skew_xy([xa], [ya], [planar], p);
// Usage: Get Affine Matrix
// mat = skew_xy([xa], [ya], [planar]);
// //
// Description: // Description:
// Skews children on the X-Y plane, keeping constant in Z. // Skews geometry on the X-Y plane, keeping constant in Z.
// // The argument `xa` is the angle in degrees to skew towards the X+ direction.
// Usage: // The argument `ya` is the angle in degrees to skew towards the Y+ direction.
// skew_xy([xa], [ya], [planar]) ... // * Called as the built-in module, skews all children.
// * Called as a function with a point in the `p` argument, returns the skewed point.
// * Called as a function with a list of points in the `p` argument, returns the list of skewed points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the skewed patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the skewed VNF.
// * Called as a function without a `p` argument, and with `planar` true, returns the affine2d 3x3 skew matrix.
// * Called as a function without a `p` argument, and with `planar` false, returns the affine3d 4x4 skew matrix.
// //
// Arguments: // Arguments:
// xa = skew angle towards the X direction. // xa = skew angle towards the X+ direction.
// ya = skew angle towards the Y direction. // ya = skew angle towards the Y+ direction.
// planar = If true, this becomes a 2D operation. // planar = If true, this becomes a 2D operation.
// //
// Example(FlatSpin): // Example(FlatSpin):
@ -723,16 +929,44 @@ module zflip(z=0) translate([0,0,z]) mirror([0,0,1]) translate([0,0,-z]) childre
// skew_xy(xa=30, ya=15) cube(size=10); // skew_xy(xa=30, ya=15) cube(size=10);
// Example(2D): // Example(2D):
// skew_xy(xa=15,ya=30,planar=true) square(30); // skew_xy(xa=15,ya=30,planar=true) square(30);
// Example(2D):
// path = square([50,30], center=true);
// #stroke(path, closed=true);
// stroke(skew_xy(15,30,planar=true,p=path), closed=true);
module skew_xy(xa=0, ya=0, planar=false) multmatrix(m = planar? affine2d_skew(xa, ya) : affine3d_skew_xy(xa, ya)) children(); module skew_xy(xa=0, ya=0, planar=false) multmatrix(m = planar? affine2d_skew(xa, ya) : affine3d_skew_xy(xa, ya)) children();
function skew_xy(xa=0, ya=0, planar=false, p) =
let(m = planar? affine2d_skew(xa, ya) : affine3d_skew_xy(xa, ya))
is_undef(p)? m :
assert(is_list(p))
is_num(p.x)? (
planar?
point2d(m*concat(point2d(p),[1])) :
point3d(m*concat(point3d(p),[1]))
) :
is_vnf(p)? [skew_xy(xa=xa, ya=ya, planar=planar, p=p.x), p.y] :
[for (l=p) skew_xy(xa=xa, ya=ya, planar=planar, p=l)];
// Module: skew_yz()
// Function&Module: skew_yz()
//
// Usage: As Module
// skew_yz([ya], [za]) ...
// Usage: As Function
// pt = skew_yz([ya], [za], p);
// Usage: Get Affine Matrix
// mat = skew_yz([ya], [za]);
// //
// Description: // Description:
// Skews children on the Y-Z plane, keeping constant in X. // Skews geometry on the Y-Z plane, keeping constant in X.
// // The argument `ya` is the angle in degrees to skew towards the Y+ direction.
// Usage: // The argument `za` is the angle in degrees to skew towards the Z+ direction.
// skew_yz([ya], [za]) ... // * Called as the built-in module, skews all children.
// * Called as a function with a point in the `p` argument, returns the skewed point.
// * Called as a function with a list of points in the `p` argument, returns the list of skewed points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the skewed patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the skewed VNF.
// * Called as a function without a `p` argument, returns the affine3d 4x4 skew matrix.
// //
// Arguments: // Arguments:
// ya = skew angle towards the Y direction. // ya = skew angle towards the Y direction.
@ -743,14 +977,34 @@ module skew_xy(xa=0, ya=0, planar=false) multmatrix(m = planar? affine2d_skew(xa
// skew_yz(ya=30, za=15) cube(size=10); // skew_yz(ya=30, za=15) cube(size=10);
module skew_yz(ya=0, za=0) multmatrix(m = affine3d_skew_yz(ya, za)) children(); module skew_yz(ya=0, za=0) multmatrix(m = affine3d_skew_yz(ya, za)) children();
function skew_yz(ya=0, za=0, p) =
let(m = affine3d_skew_yz(ya, za))
is_undef(p)? m :
assert(is_list(p))
is_num(p.x)? point3d(m*concat(point3d(p),[1])) :
is_vnf(p)? [skew_yz(ya=ya, za=za, p=p.x), p.y] :
[for (l=p) skew_yz(ya=ya, za=za, p=l)];
// Module: skew_xz()
// Function&Module: skew_xz()
//
// Usage: As Module
// skew_xz([xa], [za]) ...
// Usage: As Function
// pt = skew_xz([xa], [za], p);
// Usage: Get Affime Matrix
// mat = skew_xz([xa], [za]);
// //
// Description: // Description:
// Skews children on the X-Z plane, keeping constant in Y. // Skews geometry on the X-Z plane, keeping constant in Y.
// // The argument `xa` is the angle in degrees to skew towards the X+ direction.
// Usage: // The argument `za` is the angle in degrees to skew towards the Z+ direction.
// skew_xz([xa], [za]) ... // * Called as the built-in module, skews all children.
// * Called as a function with a point in the `p` argument, returns the skewed point.
// * Called as a function with a list of points in the `p` argument, returns the list of skewed points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the skewed patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the skewed VNF.
// * Called as a function without a `p` argument, returns the affine3d 4x4 skew matrix.
// //
// Arguments: // Arguments:
// xa = skew angle towards the X direction. // xa = skew angle towards the X direction.
@ -761,6 +1015,14 @@ module skew_yz(ya=0, za=0) multmatrix(m = affine3d_skew_yz(ya, za)) children();
// skew_xz(xa=15, za=-10) cube(size=10); // skew_xz(xa=15, za=-10) cube(size=10);
module skew_xz(xa=0, za=0) multmatrix(m = affine3d_skew_xz(xa, za)) children(); module skew_xz(xa=0, za=0) multmatrix(m = affine3d_skew_xz(xa, za)) children();
function skew_xz(xa=0, za=0, p) =
let(m = affine3d_skew_xz(xa, za))
is_undef(p)? m :
assert(is_list(p))
is_num(p.x)? point3d(m*concat(point3d(p),[1])) :
is_vnf(p)? [skew_xz(xa=xa, za=za, p=p.x), p.y] :
[for (l=p) skew_xz(xa=xa, za=za, p=l)];
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////

View file

@ -8,7 +8,7 @@
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////
BOSL_VERSION = [2,0,51]; BOSL_VERSION = [2,0,52];
// Section: BOSL Library Version Functions // Section: BOSL Library Version Functions