mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-23 04:49:39 +00:00
Merge 835cbc0f00
into c442c5159a
This commit is contained in:
commit
fbdaf60359
1 changed files with 147 additions and 0 deletions
147
shapes2d.scad
147
shapes2d.scad
|
@ -1988,6 +1988,153 @@ function reuleaux_polygon(n=3, r, d, anchor=CENTER, spin=0) =
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
// Function&Module: squircle()
|
||||||
|
// Synopsis: Creates a shape between a circle and a square, centered on the origin.
|
||||||
|
// SynTags: Geom, Path
|
||||||
|
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable
|
||||||
|
// See Also: circle(), square(), supershape()
|
||||||
|
// Usage: As Module
|
||||||
|
// squircle(squareness, size, [style]) [ATTACHMENTS];
|
||||||
|
// Usage: As Function
|
||||||
|
// path = squircle(squareness, size, [style]);
|
||||||
|
// Description:
|
||||||
|
// A [squircle](https://en.wikipedia.org/wiki/Squircle) is a shape intermediate between a square/rectangle and a circle/ellipse.Squircles are sometimes used to make dinner plates (more area for the same radius as a circle), keyboard buttons, and smartphone icons. Old CRT television screens also resembled elongated squircles.
|
||||||
|
// .
|
||||||
|
// There are multiple approaches to constructing a squircle. One approach is a special case of superellipse (shown in {{supershape}} example 3), and uses exponents to adjust the shape. Another, called Fernández-Guasti squircle or FG squircle, arises from work in optics and uses a "squareness" parameter between 0 and 1 to adjust the shape.
|
||||||
|
// .
|
||||||
|
// The FG style and superellipse style squircles are visually almost indistinguishable, with the superellipse having slightly rounder "corners" than FG for a given value of squareness. Either style requires just the two parameters `squareness` and `size`. The vertex distribution is adjusted to be more dense at the corners for smoothness at low values of `$fn`.
|
||||||
|
// .
|
||||||
|
// When called as a module, creates a 2D squircle with the desired squareness.
|
||||||
|
// When called as a function, returns a 2D path for a squircle.
|
||||||
|
// Arguments:
|
||||||
|
// squareness = Value between 0 and 1. Controls the shape of the squircle. When `squareness=0` the shape is a circle, and when `squareness=1` the shape is a square. Otherwise, this parameter sets the location of a squircle "corner" at the specified interpolated position between a circle and a square. For the "superellipse" style, the special case where the superellipse exponent is 4 (also known as *Lamé's quartic curve*) results in a squircle at the geometric mean between radial points on the circle and square, corresponding to squareness=0.456786. Default: 0.5
|
||||||
|
// size = Same as the `size` parameter in `square()`, can be a single number or an `[xsize,ysize]` vector. Default: [1,1]
|
||||||
|
// style = method for generating a squircle, "fg" for Fernández-Guasti and "superellipse" for superellipse. Default: "fg"
|
||||||
|
// atype = anchor type, "box" for bounding box corners and sides, "perim" for the squircle corners
|
||||||
|
// $fn = Number of points. The special variables `$fs` and `$fa` are ignored. If set, `$fn` must be 12 or greater, and is rounded to the nearest multiple of 4. Points are generated non-uniformly around the squircle so they are more dense at sharper curves. Default if not set: 40
|
||||||
|
// Examples(2D):
|
||||||
|
// squircle(squareness=0.4, size=50);
|
||||||
|
// squircle(0.8, [80,60], $fn=64);
|
||||||
|
// Examples(2D): Ten increments of squareness parameter for a superellipse squircle
|
||||||
|
// for(sq=[0:0.1:1])
|
||||||
|
// stroke(squircle(sq, 100, style="superellipse", $fn=128), closed=true, width=0.5);
|
||||||
|
// Examples(2D): Standard vector anchors are based on the bounding box
|
||||||
|
// squircle(0.6, 50) show_anchors();
|
||||||
|
// Examples(2D): Perimeter anchors, anchoring at bottom left and spinning 20°
|
||||||
|
// squircle(0.5, [60,40], anchor=(BOTTOM+LEFT), atype="perim", spin=20)
|
||||||
|
// show_anchors();
|
||||||
|
|
||||||
|
module squircle(squareness=0.5, size=[1,1], style="fg", atype="box", anchor=CENTER, spin=0) {
|
||||||
|
check = assert(squareness >= 0 && squareness <= 1);
|
||||||
|
anchorchk = assert(in_list(atype, ["box", "perim"]));
|
||||||
|
size = is_num(size) ? [size,size] : point2d(size);
|
||||||
|
assert(all_positive(size), "All components of size must be positive.");
|
||||||
|
if (atype == "box") {
|
||||||
|
path = squircle(squareness, size, style);
|
||||||
|
attachable(anchor, spin, two_d=true, size=size) {
|
||||||
|
polygon(path);
|
||||||
|
children();
|
||||||
|
}
|
||||||
|
} else { // atype=="perim"
|
||||||
|
override_path = squircle(squareness, size, style, atype, _return_override=true);
|
||||||
|
attachable(anchor, spin, two_d=true, size=size, extent=false, override=override_path[1]) {
|
||||||
|
polygon(override_path[0]);
|
||||||
|
children();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
function squircle(squareness=0.5, size=[1,1], style="fg", atype="box", anchor=CENTER, spin=0, _return_override=false) =
|
||||||
|
assert(squareness >= 0 && squareness <= 1)
|
||||||
|
assert(is_num(size) || is_vector(size,2))
|
||||||
|
assert(in_list(atype, ["box", "perim"]))
|
||||||
|
let(
|
||||||
|
path =
|
||||||
|
style == "fg" ? _squircle_fg(squareness, size)
|
||||||
|
: style == "superellipse" ? _squircle_se(squareness, size)
|
||||||
|
: assert(false, "Style must be \"fg\" or \"superellipse\""),
|
||||||
|
size = is_num(size) ? [size,size] : point2d(size),
|
||||||
|
a = 0.5 * size[0],
|
||||||
|
b = 0.5 * size[1],
|
||||||
|
override = atype == "box" ? undef
|
||||||
|
: let(
|
||||||
|
sn = style=="fg" ? _linearize_squareness(squareness)
|
||||||
|
: _squircle_se_exponent(squareness),
|
||||||
|
derivq1 = style=="fg" ? // 1+derivative of squircle in first quadrant
|
||||||
|
function (x) let(s2=sn*sn, a2=a*a, b2=b*b, x2=x*x, denom=a2-s2*x2) a2*b*(s2-1)*x/(denom*denom*sqrt((a2-x2)/denom)) + 1
|
||||||
|
: function (x) let(n=sn) 1 - (b/a)*((a/x)^n - 1)^(1/n-1),
|
||||||
|
xc = root_find(derivq1, 0.01, a-0.01), // find where slope=-1
|
||||||
|
yc = style=="fg" ?
|
||||||
|
let(s2=sn*sn, a2=a*a, b2=b*b, x2=xc*xc) sqrt(b2*(a2-x2)/(a2-s2*x2))
|
||||||
|
: b*(1-(xc/a)^sn)^(1/sn),
|
||||||
|
corners = [[xc,yc], [-xc,yc], [-xc,-yc], [xc,-yc]],
|
||||||
|
anchorpos = [[1,1],[-1,1],[-1,-1],[1,-1]]
|
||||||
|
) [ for(i=[0:3]) [anchorpos[i], [corners[i]]] ]
|
||||||
|
) _return_override
|
||||||
|
? [reorient(anchor, spin, two_d=true, size=size, p=path, extent=false, override=override), override]
|
||||||
|
: reorient(anchor, spin, two_d=true, size=size, p=path, extent=false, override=override);
|
||||||
|
|
||||||
|
|
||||||
|
/* FG squircle functions */
|
||||||
|
|
||||||
|
function _squircle_fg(squareness, size) = [
|
||||||
|
let(
|
||||||
|
sq = _linearize_squareness(squareness),
|
||||||
|
size = is_num(size) ? [size,size] : point2d(size),
|
||||||
|
aspect = size[1] / size[0],
|
||||||
|
r = 0.5 * size[0],
|
||||||
|
astep = $fn>=12 ? 90/round($fn/4) : 9
|
||||||
|
) for(a=[360:-astep:0.01]) let(
|
||||||
|
theta = a + sq * sin(4*a) * 30/PI, // tighter angle steps at corners
|
||||||
|
p = squircle_radius_fg(sq, r, theta)
|
||||||
|
) p*[cos(theta), aspect*sin(theta)]
|
||||||
|
];
|
||||||
|
|
||||||
|
function squircle_radius_fg(squareness, r, angle) = let(
|
||||||
|
s2a = abs(squareness*sin(2*angle))
|
||||||
|
) s2a>0 ? r*sqrt(2)/s2a * sqrt(1 - sqrt(1 - s2a*s2a)) : r;
|
||||||
|
|
||||||
|
function _linearize_squareness(s) =
|
||||||
|
// from Chamberlain Fong (2016). "Squircular Calculations". arXiv.
|
||||||
|
// https://arxiv.org/pdf/1604.02174v5
|
||||||
|
let(c = 2 - 2*sqrt(2), d = 1 - 0.5*c*s)
|
||||||
|
2 * sqrt((1+c)*s*s - c*s) / (d*d);
|
||||||
|
|
||||||
|
|
||||||
|
/* Superellipse squircle functions */
|
||||||
|
|
||||||
|
function _squircle_se(squareness, size) = [
|
||||||
|
let(
|
||||||
|
n = _squircle_se_exponent(squareness),
|
||||||
|
size = is_num(size) ? [size,size] : point2d(size),
|
||||||
|
ra = 0.5*size[0],
|
||||||
|
rb = 0.5*size[1],
|
||||||
|
astep = $fn>=12 ? 90/round($fn/4) : 9,
|
||||||
|
fgsq = _linearize_squareness(min(0.998,squareness)) // works well for distributing theta
|
||||||
|
) for(a=[360:-astep:0.01]) let(
|
||||||
|
theta = a + fgsq*sin(4*a)*30/PI, // tighter angle steps at corners
|
||||||
|
x = cos(theta),
|
||||||
|
y = sin(theta),
|
||||||
|
r = (abs(x)^n + abs(y)^n)^(1/n), // superellipse
|
||||||
|
//r = _superformula(theta=theta, m1=4,m2=4,n1=n,n2=n,n3=n,a=1,b=1)
|
||||||
|
) [ra*x, rb*y] / r
|
||||||
|
];
|
||||||
|
|
||||||
|
function squircle_radius_se(n, r, angle) = let(
|
||||||
|
x = cos(angle),
|
||||||
|
y = sin(angle)
|
||||||
|
) (abs(x)^n + abs(y)^n)^(1/n) / r;
|
||||||
|
|
||||||
|
function _squircle_se_exponent(squareness) = let(
|
||||||
|
// limit squareness; error if >0.99889, limit is smaller for r>1
|
||||||
|
s=min(0.998,squareness),
|
||||||
|
rho = 1 + s*(sqrt(2)-1),
|
||||||
|
x = rho / sqrt(2)
|
||||||
|
) log(0.5) / log(x);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Section: Text
|
// Section: Text
|
||||||
|
|
||||||
// Module: text()
|
// Module: text()
|
||||||
|
|
Loading…
Reference in a new issue