Added cylindrical_heightfield()

This commit is contained in:
Garth Minette 2022-05-16 21:02:12 -07:00
parent 48f87049a5
commit fc12056170
2 changed files with 126 additions and 4 deletions

View file

@ -84,9 +84,9 @@ module half_joiner_clear(l=20, w=10, ang=30, clearance=0, overlap=0.01, anchor=C
// half_joiner(l=20,w=10,base=10);
// Example(3D):
// diff()
// cuboid(30)
// cuboid(40)
// attach([FWD,TOP,RIGHT])
// xcopies(30) half_joiner();
// xcopies(20) half_joiner();
function half_joiner(l=20, w=10, base=10, ang=30, screwsize, anchor=CENTER, spin=0, orient=UP) =
let(
guide = [w/3-get_slop()*2, ang_adj_to_opp(ang, l/3)*2, l/3],
@ -264,9 +264,9 @@ module half_joiner(l=20, w=10, base=10, ang=30, screwsize, anchor=CENTER, spin=0
// half_joiner2(w=10,base=10,l=20);
// Example(3D):
// diff()
// cuboid(30)
// cuboid(40)
// attach([FWD,TOP,RIGHT])
// xcopies(30) half_joiner2();
// xcopies(20) half_joiner2();
function half_joiner2(l=20, w=10, base=10, ang=30, screwsize, anchor=CENTER, spin=0, orient=UP) =
let(
guide = [w/3, ang_adj_to_opp(ang, l/3)*2, l/3],

View file

@ -2890,6 +2890,128 @@ function heightfield(data, size=[100,100], bottom=-20, maxz=100, xrange=[-1:0.04
) reorient(anchor,spin,orient, vnf=vnf, p=vnf);
// Function&Module: cylindrical_heightfield()
// Usage: As Function
// vnf = cylindrical_heightfield(data, l, r|d=, [base=], [transpose=], [aspect=]);
// Usage: As Module
// cylindrical_heightfield(data, l, r|d=, [base=], [transpose=], [aspect=]) [ATTACHMENTS];
// Description:
// Given a regular rectangular 2D grid of scalar values, or a function literal of signature (x,y), generates
// a cylindrical 3D surface where the height at any given point above the radius `r=`, is the scalar value
// for that position.
// Arguments:
// data = This is either the 2D rectangular array of heights, or a function literal of signature `(x, y)`.
// l = The length of the cylinder to wrap around.
// r = The radius of the cylinder to wrap around.
// ---
// d = The diameter of the cylinder to wrap around.
// base = The radius for the bottom of the heightfield object to create. Any heights smaller than this will be truncated to very slightly above this height. Default: -20
// transpose = If true, swaps the radial and length axes of the data. Default: false
// aspect = The aspect ratio of the generated heightfield at the surface of the cylinder. Default: 1
// xrange = A range of values to iterate X over when calculating a surface from a function literal. Default: [-1 : 0.01 : 1]
// yrange = A range of values to iterate Y over when calculating a surface from a function literal. Default: [-1 : 0.01 : 1]
// maxh = The maximum height above the radius to model. Truncates anything taller to this height. Default: 99
// style = The style of subdividing the quads into faces. Valid options are "default", "alt", and "quincunx". Default: "default"
// convexity = Max number of times a line could intersect a wall of the surface being formed. Module only. Default: 10
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP`
// Example(VPR=[55,0,150];VPR=370):
// cylindrical_heightfield(l=100, r=30, base=5, data=[
// for (y=[-180:4:180]) [
// for(x=[-180:4:180])
// 5*cos(5*norm([x,y]))+5
// ]
// ]);
// Example: Heightfield by Function
// fn = function (x,y) 5*sin(x*360)*cos(y*360)+5;
// cylindrical_heightfield(l=100, r=30, data=fn);
// Example: Heightfield by Function, with Specific Ranges
// fn = function (x,y) 2*cos(5*norm([x,y]));
// cylindrical_heightfield(
// l=100, r=30, base=5, data=fn,
// xrange=[-180:2:180], yrange=[-180:2:180]
// );
function cylindrical_heightfield(
data, l, r, base=1,
transpose=false, aspect=1,
style="min_edge",
xrange=[-1:0.01:1],
yrange=[-1:0.01:1],
maxh=99, d, h, height,
anchor=CTR, spin=0, orient=UP
) =
let(
l = first_defined([l, h, height]),
r = get_radius(r=r, d=d)
)
assert(is_finite(l) && l>0, "Must supply one of l=, h=, or height= as a finite positive number.")
assert(is_finite(r) && r>0, "Must supply one of r=, or d= as a finite positive number.")
assert(is_finite(base) && base>0, "Must supply base= as a finite positive number.")
assert(is_matrix(data)||is_function(data), "data= must be a function literal, or contain a 2D array of numbers.")
let(
xvals = is_list(data)? [for (x = idx(data[0])) x] :
is_range(xrange)? [for (x = xrange) x] :
assert(false, "xrange= must be given as a range if data= is a function literal."),
yvals = is_list(data)? [for (y = idx(data)) y] :
is_range(yrange)? [for (y = yrange) y] :
assert(false, "yrange= must be given as a range if data= is a function literal."),
xlen = len(xvals),
ylen = len(yvals),
stepy = l / (ylen-1),
stepx = stepy * aspect,
circ = 2 * PI * r,
astep = 360 / circ * stepx,
arc = astep * xlen,
bsteps = round(segs(r-base) * arc / 360),
bstep = arc / bsteps
)
assert(stepx*xlen <= circ, str("heightfield (",xlen," x ",ylen,") needs a radius of at least ",r*stepx*xlen/circ))
let(
verts = [
for (yi = idx(yvals)) let( z = yi * stepy - l/2 ) [
cylindrical_to_xyz(r-base, 0, z),
for (xi = idx(xvals)) let( a = xi*astep )
let(
rad = transpose? (
is_list(data)? data[xi][yi] : data(yvals[yi],xvals[xi])
) : (
is_list(data)? data[yi][xi] : data(xvals[xi],yvals[yi])
),
rad2 = constrain(rad, 0.01-base, maxh)
)
cylindrical_to_xyz(r+rad2, a, z),
cylindrical_to_xyz(r-base, arc, z),
for (b = [1:1:bsteps-1]) let( a = arc-b*bstep )
cylindrical_to_xyz(r-base, a, l/2*(z>0?1:-1)),
]
],
vnf = vnf_vertex_array(verts, caps=true, col_wrap=true, reverse=true, style=style)
) reorient(anchor,spin,orient, r=r, l=l, p=vnf);
module cylindrical_heightfield(
data, l, r, base=1,
transpose=false, aspect=1,
style="min_edge", convexity=10,
xrange=[-1:0.01:1], yrange=[-1:0.01:1],
maxh=99, d, h, height,
anchor=CTR, spin=0, orient=UP
) {
l = first_defined([l, h, height]);
r = get_radius(r=r, d=d);
vnf = cylindrical_heightfield(
data, l=l, r=r, base=base,
xrange=xrange, yrange=yrange,
maxh=maxh, transpose=transpose,
aspect=aspect, style=style
);
attachable(anchor,spin,orient, r=r, l=l) {
vnf_polyhedron(vnf, convexity=convexity);
children();
}
}
// Module: ruler()
// Usage: