mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
Added conical capability (r1,r2) to cylindrical_heightfield()
This commit is contained in:
parent
b2ac78613b
commit
fd318a1170
2 changed files with 42 additions and 20 deletions
|
@ -2771,6 +2771,7 @@ module interior_fillet(l=1.0, r, ang=90, overlap=0.01, d, anchor=CENTER, spin=0,
|
|||
// heightfield(data, [size], [bottom], [maxz], [xrange], [yrange], [style], [convexity], ...) [ATTACHMENTS];
|
||||
// Usage: As Function
|
||||
// vnf = heightfield(data, [size], [bottom], [maxz], [xrange], [yrange], [style], ...);
|
||||
// Topics: Textures, Heightfield
|
||||
// Description:
|
||||
// Given a regular rectangular 2D grid of scalar values, or a function literal, generates a 3D
|
||||
// surface where the height at any given point is the scalar value for that position.
|
||||
|
@ -2787,6 +2788,7 @@ module interior_fillet(l=1.0, r, ang=90, overlap=0.01, d, anchor=CENTER, spin=0,
|
|||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0`
|
||||
// orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP`
|
||||
// See Also: heightfield(), cylindrical_heightfield(), textured_revolution(), textured_cylinder(), textured_linear_sweep()
|
||||
// Example:
|
||||
// heightfield(size=[100,100], bottom=-20, data=[
|
||||
// for (y=[-180:4:180]) [
|
||||
|
@ -2895,6 +2897,7 @@ function heightfield(data, size=[100,100], bottom=-20, maxz=100, xrange=[-1:0.04
|
|||
// vnf = cylindrical_heightfield(data, l, r|d=, [base=], [transpose=], [aspect=]);
|
||||
// Usage: As Module
|
||||
// cylindrical_heightfield(data, l, r|d=, [base=], [transpose=], [aspect=]) [ATTACHMENTS];
|
||||
// Topics: Extrusion, Textures, Knurling, Heightfield
|
||||
// Description:
|
||||
// Given a regular rectangular 2D grid of scalar values, or a function literal of signature (x,y), generates
|
||||
// a cylindrical 3D surface where the height at any given point above the radius `r=`, is the scalar value
|
||||
|
@ -2904,7 +2907,11 @@ function heightfield(data, size=[100,100], bottom=-20, maxz=100, xrange=[-1:0.04
|
|||
// l = The length of the cylinder to wrap around.
|
||||
// r = The radius of the cylinder to wrap around.
|
||||
// ---
|
||||
// r1 = The radius of the bottom of the cylinder to wrap around.
|
||||
// r2 = The radius of the top of the cylinder to wrap around.
|
||||
// d = The diameter of the cylinder to wrap around.
|
||||
// d1 = The diameter of the bottom of the cylinder to wrap around.
|
||||
// d2 = The diameter of the top of the cylinder to wrap around.
|
||||
// base = The radius for the bottom of the heightfield object to create. Any heights smaller than this will be truncated to very slightly above this height. Default: -20
|
||||
// transpose = If true, swaps the radial and length axes of the data. Default: false
|
||||
// aspect = The aspect ratio of the generated heightfield at the surface of the cylinder. Default: 1
|
||||
|
@ -2916,6 +2923,7 @@ function heightfield(data, size=[100,100], bottom=-20, maxz=100, xrange=[-1:0.04
|
|||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0`
|
||||
// orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP`
|
||||
// See Also: heightfield(), cylindrical_heightfield(), textured_revolution(), textured_cylinder(), textured_linear_sweep()
|
||||
// Example(VPD=400;VPR=[55,0,150]):
|
||||
// cylindrical_heightfield(l=100, r=30, base=5, data=[
|
||||
// for (y=[-180:4:180]) [
|
||||
|
@ -2923,6 +2931,13 @@ function heightfield(data, size=[100,100], bottom=-20, maxz=100, xrange=[-1:0.04
|
|||
// 5*cos(5*norm([x,y]))+5
|
||||
// ]
|
||||
// ]);
|
||||
// Example(VPD=400;VPR=[55,0,150]):
|
||||
// cylindrical_heightfield(l=100, r1=60, r2=30, base=5, data=[
|
||||
// for (y=[-180:4:180]) [
|
||||
// for(x=[-180:4:180])
|
||||
// 5*cos(5*norm([x,y]))+5
|
||||
// ]
|
||||
// ]);
|
||||
// Example(VPD=400;VPR=[55,0,150]): Heightfield by Function
|
||||
// fn = function (x,y) 5*sin(x*360)*cos(y*360)+5;
|
||||
// cylindrical_heightfield(l=100, r=30, data=fn);
|
||||
|
@ -2935,18 +2950,20 @@ function heightfield(data, size=[100,100], bottom=-20, maxz=100, xrange=[-1:0.04
|
|||
function cylindrical_heightfield(
|
||||
data, l, r, base=1,
|
||||
transpose=false, aspect=1,
|
||||
style="min_edge",
|
||||
style="min_edge", maxh=99,
|
||||
xrange=[-1:0.01:1],
|
||||
yrange=[-1:0.01:1],
|
||||
maxh=99, d, h, height,
|
||||
r1, r2, d, d1, d2, h, height,
|
||||
anchor=CTR, spin=0, orient=UP
|
||||
) =
|
||||
let(
|
||||
l = first_defined([l, h, height]),
|
||||
r = get_radius(r=r, d=d)
|
||||
r1 = get_radius(r1=r1, r=r, d1=d1, d=d),
|
||||
r2 = get_radius(r1=r2, r=r, d1=d2, d=d)
|
||||
)
|
||||
assert(is_finite(l) && l>0, "Must supply one of l=, h=, or height= as a finite positive number.")
|
||||
assert(is_finite(r) && r>0, "Must supply one of r=, or d= as a finite positive number.")
|
||||
assert(is_finite(r1) && r1>0, "Must supply one of r=, r1=, d=, or d1= as a finite positive number.")
|
||||
assert(is_finite(r2) && r2>0, "Must supply one of r=, r2=, d=, or d2= as a finite positive number.")
|
||||
assert(is_finite(base) && base>0, "Must supply base= as a finite positive number.")
|
||||
assert(is_matrix(data)||is_function(data), "data= must be a function literal, or contain a 2D array of numbers.")
|
||||
let(
|
||||
|
@ -2960,17 +2977,21 @@ function cylindrical_heightfield(
|
|||
ylen = len(yvals),
|
||||
stepy = l / (ylen-1),
|
||||
stepx = stepy * aspect,
|
||||
circ = 2 * PI * r,
|
||||
maxr = max(r1,r2),
|
||||
circ = 2 * PI * maxr,
|
||||
astep = 360 / circ * stepx,
|
||||
arc = astep * xlen,
|
||||
bsteps = round(segs(r-base) * arc / 360),
|
||||
bsteps = round(segs(maxr-base) * arc / 360),
|
||||
bstep = arc / bsteps
|
||||
)
|
||||
assert(stepx*xlen <= circ, str("heightfield (",xlen," x ",ylen,") needs a radius of at least ",r*stepx*xlen/circ))
|
||||
assert(stepx*xlen <= circ, str("heightfield (",xlen," x ",ylen,") needs a radius of at least ",maxr*stepx*xlen/circ))
|
||||
let(
|
||||
verts = [
|
||||
for (yi = idx(yvals)) let( z = yi * stepy - l/2 ) [
|
||||
cylindrical_to_xyz(r-base, 0, z),
|
||||
for (yi = idx(yvals)) let(
|
||||
z = yi * stepy - l/2,
|
||||
rr = lerp(r1, r2, yi/(ylen-1))
|
||||
) [
|
||||
cylindrical_to_xyz(rr-base, 0, z),
|
||||
for (xi = idx(xvals)) let( a = xi*astep )
|
||||
let(
|
||||
rad = transpose? (
|
||||
|
@ -2980,14 +3001,14 @@ function cylindrical_heightfield(
|
|||
),
|
||||
rad2 = constrain(rad, 0.01-base, maxh)
|
||||
)
|
||||
cylindrical_to_xyz(r+rad2, a, z),
|
||||
cylindrical_to_xyz(r-base, arc, z),
|
||||
cylindrical_to_xyz(rr+rad2, a, z),
|
||||
cylindrical_to_xyz(rr-base, arc, z),
|
||||
for (b = [1:1:bsteps-1]) let( a = arc-b*bstep )
|
||||
cylindrical_to_xyz(r-base, a, l/2*(z>0?1:-1)),
|
||||
cylindrical_to_xyz((z>0?r2:r1)-base, a, l/2*(z>0?1:-1)),
|
||||
]
|
||||
],
|
||||
vnf = vnf_vertex_array(verts, caps=true, col_wrap=true, reverse=true, style=style)
|
||||
) reorient(anchor,spin,orient, r=r, l=l, p=vnf);
|
||||
) reorient(anchor,spin,orient, r1=r1, r2=r2, l=l, p=vnf);
|
||||
|
||||
|
||||
module cylindrical_heightfield(
|
||||
|
@ -2995,18 +3016,19 @@ module cylindrical_heightfield(
|
|||
transpose=false, aspect=1,
|
||||
style="min_edge", convexity=10,
|
||||
xrange=[-1:0.01:1], yrange=[-1:0.01:1],
|
||||
maxh=99, d, h, height,
|
||||
maxh=99, r1, r2, d, d1, d2, h, height,
|
||||
anchor=CTR, spin=0, orient=UP
|
||||
) {
|
||||
l = first_defined([l, h, height]);
|
||||
r = get_radius(r=r, d=d);
|
||||
r1 = get_radius(r1=r1, r=r, d1=d1, d=d);
|
||||
r2 = get_radius(r1=r2, r=r, d1=d2, d=d);
|
||||
vnf = cylindrical_heightfield(
|
||||
data, l=l, r=r, base=base,
|
||||
data, l=l, r1=r1, r2=r2, base=base,
|
||||
xrange=xrange, yrange=yrange,
|
||||
maxh=maxh, transpose=transpose,
|
||||
aspect=aspect, style=style
|
||||
);
|
||||
attachable(anchor,spin,orient, r=r, l=l) {
|
||||
attachable(anchor,spin,orient, r1=r1, r2=r2, l=l) {
|
||||
vnf_polyhedron(vnf, convexity=convexity);
|
||||
children();
|
||||
}
|
||||
|
|
|
@ -2161,7 +2161,7 @@ function _get_texture(tex,n,m) =
|
|||
// centroid_top = The centroid of the top of the shape, oriented UP.
|
||||
// centroid = The centroid of the center of the shape, oriented UP.
|
||||
// centroid_bot = The centroid of the bottom of the shape, oriented DOWN.
|
||||
// See Also: textured_revolution(), textured_cylinder()
|
||||
// See Also: textured_revolution(), textured_cylinder(), textured_linear_sweep(), heightfield(), cylindrical_heightfield()
|
||||
// Example: "ribs" texture.
|
||||
// path = glued_circles(r=15, spread=40, tangent=45);
|
||||
// textured_linear_sweep(path, h=40, "ribs", tex_size=[3,5]);
|
||||
|
@ -2349,7 +2349,7 @@ module textured_linear_sweep(
|
|||
// "waves" = A raised sine-wave patten, oriented vertically.
|
||||
// "dots" = Raised small round bumps.
|
||||
// "cones" = Raised conical spikes.
|
||||
// See Also: textured_linear_sweep(), textured_cylinder()
|
||||
// See Also: textured_revolution(), textured_cylinder(), textured_linear_sweep(), heightfield(), cylindrical_heightfield()
|
||||
// Example:
|
||||
// include <BOSL2/beziers.scad>
|
||||
// bezpath = [
|
||||
|
@ -2494,7 +2494,7 @@ module textured_revolution(
|
|||
// "waves" = A raised sine-wave patten, oriented vertically.
|
||||
// "dots" = Raised small round bumps.
|
||||
// "cones" = Raised conical spikes.
|
||||
// See Also: textured_linear_sweep(), textured_revolution()
|
||||
// See Also: textured_revolution(), textured_cylinder(), textured_linear_sweep(), heightfield(), cylindrical_heightfield()
|
||||
// Examples:
|
||||
// textured_cylinder(h=40, r=20, texture="diamonds", tex_size=[5,5]);
|
||||
// textured_cylinder(h=40, r1=20, r2=15, texture="pyramids", tex_size=[5,5], style="convex");
|
||||
|
|
Loading…
Reference in a new issue