Merge pull request #530 from revarbat/revarbat_dev

Revarbat dev
This commit is contained in:
Revar Desmera 2021-05-10 23:34:34 -07:00 committed by GitHub
commit fdff5e4bed
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
11 changed files with 622 additions and 647 deletions

View file

@ -25,8 +25,8 @@
// Topics: Bezier Paths // Topics: Bezier Paths
// See Also: bez_tang(), bez_joint(), bez_end() // See Also: bez_tang(), bez_joint(), bez_end()
// Usage: // Usage:
// pts = bez_begin(pt,a,r,<p=>); // pts = bez_begin(pt, a, r, <p=>);
// pts = bez_begin(pt,VECTOR,<r>,<p=>); // pts = bez_begin(pt, VECTOR, <r>, <p=>);
// Description: // Description:
// This is used to create the first endpoint and control point of a cubic bezier path. // This is used to create the first endpoint and control point of a cubic bezier path.
// Arguments: // Arguments:
@ -94,8 +94,8 @@ function bez_begin(pt,a,r,p) =
// Topics: Bezier Paths // Topics: Bezier Paths
// See Also: bez_begin(), bez_joint(), bez_end() // See Also: bez_begin(), bez_joint(), bez_end()
// Usage: // Usage:
// pts = bez_tang(pt,a,r1,r2,<p=>); // pts = bez_tang(pt, a, r1, r2, <p=>);
// pts = bez_tang(pt,VECTOR,<r1>,<r2>,<p=>); // pts = bez_tang(pt, VECTOR, <r1>, <r2>, <p=>);
// Description: // Description:
// This creates a smooth joint in a cubic bezier path. It creates three points, being the // This creates a smooth joint in a cubic bezier path. It creates three points, being the
// approaching control point, the fixed bezier control point, and the departing control // approaching control point, the fixed bezier control point, and the departing control
@ -128,8 +128,8 @@ function bez_tang(pt,a,r1,r2,p) =
// Topics: Bezier Paths // Topics: Bezier Paths
// See Also: bez_begin(), bez_tang(), bez_end() // See Also: bez_begin(), bez_tang(), bez_end()
// Usage: // Usage:
// pts = bez_joint(pt,a1,a2,r1,r2,<p1=>,<p2=>); // pts = bez_joint(pt, a1, a2, r1, r2, <p1=>, <p2=>);
// pts = bez_joint(pt,VEC1,VEC2,<r1=>,<r2=>,<p1=>,<p2=>); // pts = bez_joint(pt, VEC1, VEC2, <r1=>, <r2=>, <p1=>, <p2=>);
// Description: // Description:
// This creates a disjoint corner joint in a cubic bezier path. It creates three points, being // This creates a disjoint corner joint in a cubic bezier path. It creates three points, being
// the aproaching control point, the fixed bezier control point, and the departing control point. // the aproaching control point, the fixed bezier control point, and the departing control point.
@ -167,8 +167,8 @@ function bez_joint(pt,a1,a2,r1,r2,p1,p2) =
// Topics: Bezier Paths // Topics: Bezier Paths
// See Also: bez_tang(), bez_joint(), bez_end() // See Also: bez_tang(), bez_joint(), bez_end()
// Usage: // Usage:
// pts = bez_end(pt,a,r,<p=>); // pts = bez_end(pt, a, r, <p=>);
// pts = bez_end(pt,VECTOR,<r>,<p=>); // pts = bez_end(pt, VECTOR, <r>, <p=>);
// Description: // Description:
// This is used to create the approaching control point, and the endpoint of a cubic bezier path. // This is used to create the approaching control point, and the endpoint of a cubic bezier path.
// See {{bez_begin()}} for examples. // See {{bez_begin()}} for examples.
@ -621,7 +621,7 @@ function bezier_path_point(path, seg, u, N=3) =
// Function: bezier_path_closest_point() // Function: bezier_path_closest_point()
// Usage: // Usage:
// res = bezier_path_closest_point(bezier,pt); // res = bezier_path_closest_point(bezier, pt);
// Topics: Bezier Paths // Topics: Bezier Paths
// See Also: bezier_points(), bezier_curve(), bezier_segment_closest_point() // See Also: bezier_points(), bezier_curve(), bezier_segment_closest_point()
// Description: // Description:
@ -919,7 +919,7 @@ function bezier_offset(offset, bezier, N=3) =
// Module: bezier_polygon() // Module: bezier_polygon()
// Usage: // Usage:
// bezier_polygon(bezier, <splinesteps>, <N>) { // bezier_polygon(bezier, <splinesteps>, <N>);
// Topics: Bezier Paths // Topics: Bezier Paths
// See Also: bezier_path() // See Also: bezier_path()
// Description: // Description:
@ -951,7 +951,7 @@ module bezier_polygon(bezier, splinesteps=16, N=3) {
// Module: trace_bezier() // Module: trace_bezier()
// Usage: // Usage:
// trace_bezier(bez, <size>, <N=>) { // trace_bezier(bez, <size>, <N=>);
// Topics: Bezier Paths, Debugging // Topics: Bezier Paths, Debugging
// See Also: bezier_path() // See Also: bezier_path()
// Description: // Description:
@ -1530,13 +1530,14 @@ function bezier_surface(patches=[], splinesteps=16, vnf=EMPTY_VNF, style="defaul
// Module: trace_bezier_patches() // Module: trace_bezier_patches()
// Usage: // Usage:
// trace_bezier_patches(patches, [size], [splinesteps], [showcps], [showdots], [showpatch], [convexity], [style]); // trace_bezier_patches(patches, <size=>, <splinesteps=>, <showcps=>, <showdots=>, <showpatch=>, <convexity=>, <style=>);
// Topics: Bezier Patches, Debugging // Topics: Bezier Patches, Debugging
// See Also: bezier_patch_points(), bezier_patch_flat(), bezier_surface() // See Also: bezier_patch_points(), bezier_patch_flat(), bezier_surface()
// Description: // Description:
// Shows the surface, and optionally, control points of a list of bezier patches. // Shows the surface, and optionally, control points of a list of bezier patches.
// Arguments: // Arguments:
// patches = A list of rectangular bezier patches. // patches = A list of rectangular bezier patches.
// ---
// splinesteps = Number of steps to divide each bezier segment into. default=16 // splinesteps = Number of steps to divide each bezier segment into. default=16
// showcps = If true, show the controlpoints as well as the surface. Default: true. // showcps = If true, show the controlpoints as well as the surface. Default: true.
// showdots = If true, shows the calculated surface vertices. Default: false. // showdots = If true, shows the calculated surface vertices. Default: false.

View file

@ -37,15 +37,15 @@ module chamfcube(size=[1,1,1],chamfer=0.25,chamfaxes=[1,1,1],chamfcorners=false)
); );
} }
module trapezoid(size1=[1,1], size2=[1,1], h=1, center=false) module trapezoid(size1=[1,1], size2=[1,1], h=1, shift=[0,0], align=CTR, orient=0, center)
prismoid(size1=size1, size2=size2, h=h, anchor=center?CENTER:BOT); prismoid(size1=size1, size2=size2, h=h, shift=shift, spin=orient, anchor=center==undef? -align : center?CENTER:BOT);
module pyramid(n=4, h=1, l=1, r, d, circum=false) { module pyramid(n=4, h=1, l=1, r, d, circum=false) {
radius = get_radius(r=r, d=d, dflt=l/2/sin(180/n)); radius = get_radius(r=r, d=d, dflt=l/2/sin(180/n));
cyl(r1=radius, r2=0, l=h, circum=circum, $fn=n, realign=true, anchor=BOT); cyl(r1=radius, r2=0, l=h, circum=circum, $fn=n, realign=true, anchor=BOT);
} }
module prism(n=3, h=1, l=1, r=undef, d=undef, circum=false, center=false) { module prism(n=3, h=1, l=1, r, d, circum=false, center=false) {
radius = get_radius(r=r, d=d, dflt=l/2/sin(180/n)); radius = get_radius(r=r, d=d, dflt=l/2/sin(180/n));
cyl(r=radius, l=h, circum=circum, $fn=n, realign=true, anchor=center?CENTER:BOT); cyl(r=radius, l=h, circum=circum, $fn=n, realign=true, anchor=center?CENTER:BOT);
} }
@ -60,7 +60,7 @@ module chamf_cyl(h=1, r, d, chamfer=0.25, chamfedge, angle=45, center=false, top
cyl(h=h, r=r, d=d, chamfer1=(bottom?chamf:0), chamfer2=(top?chamf:0), chamfang=angle, anchor=center?CENTER:BOT); cyl(h=h, r=r, d=d, chamfer1=(bottom?chamf:0), chamfer2=(top?chamf:0), chamfang=angle, anchor=center?CENTER:BOT);
} }
module filleted_cylinder(h=1, r=undef, d=undef, r1, r2, d1, d2, fillet=0.25, center=false) module filleted_cylinder(h=1, r, d, r1, r2, d1, d2, fillet=0.25, center=false)
cyl(l=h, r=r, d=d, r1=r1, r2=r2, d1=d1, d2=d2, rounding=fillet, anchor=center?CENTER:BOT); cyl(l=h, r=r, d=d, r1=r1, r2=r2, d1=d1, d2=d2, rounding=fillet, anchor=center?CENTER:BOT);
module rcylinder(h=1, r=1, r1, r2, d, d1, d2, fillet=0.25, center=false) module rcylinder(h=1, r=1, r1, r2, d, d1, d2, fillet=0.25, center=false)

View file

@ -329,7 +329,7 @@ function pco1881_neck(wall=2, anchor="support-ring", spin=0, orient=UP) =
// Module: pco1881_cap() // Module: pco1881_cap()
// Usage: // Usage:
// pco1881_cap(wall, [texture]); // pco1881_cap(wall, <texture>);
// Description: // Description:
// Creates a basic cap for a PCO1881 threaded beverage bottle. // Creates a basic cap for a PCO1881 threaded beverage bottle.
// Arguments: // Arguments:
@ -387,4 +387,565 @@ function pco1881_cap(wall=2, texture="none", anchor=BOTTOM, spin=0, orient=UP) =
// Section: Generic Bottle Connectors
// Module: generic_bottle_neck()
// Usage:
// generic_bottle_neck(<wall>, ...)
// Description:
// Creates a bottle neck given specifications.
// Arguments:
// wall = distance between ID and any wall that may be below the support
// neck_d = Outer diameter of neck without threads
// id = Inner diameter of neck
// thread_od = Outer diameter of thread
// height = Height of neck above support
// support_d = Outer diameter of support ring. Set to 0 for no support.
// pitch = Thread pitch
// round_supp = True to round the lower edge of the support ring
// ---
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Extra Anchors:
// "support-ring" = Centered at the bottom of the support ring.
// Example:
// generic_bottle_neck();
module generic_bottle_neck(
wall,
neck_d = 25,
id = 21.4,
thread_od = 27.2,
height = 17,
support_d = 33.0,
pitch = 3.2,
round_supp = false,
anchor = "support-ring",
spin = 0,
orient = UP
) {
inner_d = id;
neck_d = neck_d;
supp_d = max(neck_d, support_d);
thread_pitch = pitch;
thread_angle = 15;
diamMagMult = neck_d / 26.19;
heightMagMult = height / 17.00;
sup_r = 0.30 * (heightMagMult > 1 ? heightMagMult : 1);
support_r = floor(((supp_d == neck_d) ? sup_r : min(sup_r, (supp_d - neck_d) / 2)) * 5000) / 10000;
support_rad = (wall == undef || !round_supp) ? support_r :
min(support_r, floor((supp_d - (inner_d + 2 * wall)) * 5000) / 10000);
//Too small of a radius will cause errors with the arc, this limits granularity to .0001mm
support_width = 1 * (heightMagMult > 1 ? heightMagMult : 1) * sign(support_d);
roundover = 0.58 * diamMagMult;
lip_roundover_r = (roundover > (neck_d - inner_d) / 2) ? 0 : roundover;
h = height + support_width;
threadbase_d = neck_d - 0.8 * diamMagMult;
$fn = segs(33 / 2);
thread_h = (thread_od - threadbase_d) / 2;
anchors = [
anchorpt("support-ring", [0, 0, 0 - h / 2])
];
attachable(anchor, spin, orient, d1 = neck_d, d2 = 0, l = h, anchors = anchors) {
down(h / 2) {
rotate_extrude(convexity = 10) {
polygon(turtle(
state = [inner_d / 2, 0], (supp_d != neck_d) ? [
"untilx", supp_d / 2 - ((round_supp) ? support_rad : 0),
"arcleft", ((round_supp) ? support_rad : 0), 90,
"untily", support_width - support_rad,
"arcleft", support_rad, 90,
"untilx", neck_d / 2,
"right", 90,
"untily", h - lip_roundover_r,
"arcleft", lip_roundover_r, 90,
"untilx", inner_d / 2
] : [
"untilx", supp_d / 2 - ((round_supp) ? support_rad : 0),
"arcleft", ((round_supp) ? support_rad : 0), 90,
"untily", h - lip_roundover_r,
"arcleft", lip_roundover_r, 90,
"untilx", inner_d / 2
]
));
}
up(h - pitch / 2 - lip_roundover_r) {
difference() {
thread_helix(
d = threadbase_d - 0.1 * diamMagMult,
pitch = thread_pitch,
thread_depth = thread_h + 0.1 * diamMagMult,
thread_angle = thread_angle,
twist = 360 * (height - pitch - lip_roundover_r) * .6167 / pitch,
higbee = thread_h * 2,
anchor = TOP
);
zrot_copies(rots = [90, 270]) {
zrot_copies(rots = [-28, 28], r = threadbase_d / 2) {
prismoid(
[20 * heightMagMult, 1.82 * diamMagMult],
[20 * heightMagMult, 1.82 * diamMagMult * .6 + 2 * sin(29) * thread_h],
h = thread_h + 0.1 * diamMagMult,
anchor = BOT,
orient = RIGHT
);
}
}
}
}
}
children();
}
}
function generic_bottle_neck(
neck_d,
id,
thread_od,
height,
support_d,
pitch,
round_supp,
wall,
anchor, spin, orient
) = no_function("generic_bottle_neck");
// Module: generic_bottle_cap()
// Usage:
// generic_bottle_cap(wall, <texture>, ...);
// Description:
// Creates a basic threaded cap given specifications.
// Arguments:
// wall = Wall thickness in mm.
// texture = The surface texture of the cap. Valid values are "none", "knurled", or "ribbed". Default: "none"
// ---
// height = Interior height of the cap in mm.
// thread_od = Outer diameter of the threads in mm.
// tolerance = Extra space to add to the outer diameter of threads and neck in mm. Applied to radius.
// neck_od = Outer diameter of neck in mm.
// thread_angle = Angle of taper on threads.
// pitch = Thread pitch in mm.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Extra Anchors:
// "inside-top" = Centered on the inside top of the cap.
// Examples:
// generic_bottle_cap();
// generic_bottle_cap(texture="knurled");
// generic_bottle_cap(texture="ribbed");
module generic_bottle_cap(
wall = 2,
texture = "none",
height = 11.2,
thread_od = 28.58,
tolerance = .2,
neck_od = 25.5,
thread_angle = 15,
pitch = 4,
anchor = BOTTOM,
spin = 0,
orient = UP
) {
$fn = segs(33 / 2);
threadOuterDTol = thread_od + 2 * tolerance;
w = threadOuterDTol + 2 * wall;
h = height + wall;
neckOuterDTol = neck_od + 2 * tolerance;
threadDepth = (thread_od - neck_od) / 2 + .8;
diamMagMult = (w > 32.58) ? w / 32.58 : 1;
heightMagMult = (height > 11.2) ? height / 11.2 : 1;
anchors = [
anchorpt("inside-top", [0, 0, -(h / 2 - wall)])
];
attachable(anchor, spin, orient, d = w, l = h, anchors = anchors) {
down(h / 2) {
difference() {
union() {
// For the knurled and ribbed caps the PCO caps in BOSL2 cut into the wall
// thickness so the wall+texture are the specified wall thickness. That
// seems wrong so this does specified thickness+texture
if (texture == "knurled") {
knurled_cylinder(d = w + 1.5 * diamMagMult, helix = 45, l = h, anchor = BOTTOM);
cyl(d = w, l = h, anchor = BOTTOM);
} else if (texture == "ribbed") {
zrot_copies(n = 30, r = (w + .2 * diamMagMult) / 2) {
cube([1 * diamMagMult, 1 * diamMagMult, h], anchor = BOTTOM);
}
cyl(d = w, l = h, anchor = BOTTOM);
} else {
cyl(d = w, l = h, anchor = BOTTOM);
}
}
up(wall) cyl(d = threadOuterDTol, h = h, anchor = BOTTOM);
}
difference(){
up(wall + pitch / 2) {
thread_helix(d = neckOuterDTol, pitch = pitch, thread_depth = threadDepth, thread_angle = thread_angle, twist = 360 * ((height - pitch) / pitch), higbee = threadDepth, internal = true, anchor = BOTTOM);
}
}
}
children();
}
}
function generic_bottle_cap(
wall, texture, height,
thread_od, tolerance,
neck_od, thread_angle, pitch,
anchor, spin, orient
) = no_function("generic_bottle_cap");
// Module: thread_adapter_NC()
// Usage:
// thread_adapter_NC(wall, <texture>);
// Description:
// Creates a threaded neck to cap adapter
// Arguments:
// wall = Thickness of wall between neck and cap when d=0. Leave undefined to have the outside of the tube go from the OD of the neck support ring to the OD of the cap. Default: undef
// texture = The surface texture of the cap. Valid values are "none", "knurled", or "ribbed". Default: "none"
// cap_wall = Wall thickness of the cap in mm.
// cap_h = Interior height of the cap in mm.
// cap_thread_od = Outer diameter of cap threads in mm.
// tolerance = Extra space to add to the outer diameter of threads and neck in mm. Applied to radius.
// cap_neck_od = Inner diameter of the cap threads.
// cap_neck_id = Inner diameter of the hole through the cap.
// cap_thread_taper = Angle of taper on threads.
// cap_thread_pitch = Thread pitch in mm
// neck_d = Outer diameter of neck w/o threads
// neck_id = Inner diameter of neck
// neck_thread_od = 27.2
// neck_h = Height of neck down to support ring
// neck_thread_pitch = Thread pitch in mm.
// neck_support_od = Outer diameter of neck support ring. Leave undefined to set equal to OD of cap. Set to 0 for no ring. Default: undef
// d = Distance between bottom of neck and top of cap
// taper_lead_in = Length to leave straight before tapering on tube between neck and cap if exists.
// Examples:
// thread_adapter_NC();
module thread_adapter_NC(
wall,
texture = "none",
cap_wall = 2,
cap_h = 11.2,
cap_thread_od = 28.58,
tolerance = .2,
cap_neck_od = 25.5,
cap_neck_id,
cap_thread_taper = 15,
cap_thread_pitch = 4,
neck_d = 25,
neck_id = 21.4,
neck_thread_od = 27.2,
neck_h = 17,
neck_thread_pitch = 3.2,
neck_support_od,
d = 0,
taper_lead_in = 0
) {
neck_support_od = (neck_support_od == undef || (d == 0 && neck_support_od < cap_thread_od + 2 * tolerance)) ? cap_thread_od + 2 * (cap_wall + tolerance) : neck_support_od;
cap_neck_id = (cap_neck_id == undef) ? neck_id : cap_neck_id;
wall = (wall == undef) ? neck_support_od + neck_d + cap_thread_od + neck_id : wall;
$fn = segs(33 / 2);
wallt1 = min(wall, (max(neck_support_od, neck_d) - neck_id) / 2);
wallt2 = min(wall, (cap_thread_od + 2 * (cap_wall + tolerance) - cap_neck_id) / 2);
difference(){
union(){
up(d / 2) {
generic_bottle_neck(neck_d = neck_d,
id = neck_id,
thread_od = neck_thread_od,
height = neck_h,
support_d = neck_support_od,
pitch = neck_thread_pitch,
round_supp = ((wallt1 < (neck_support_od - neck_id) / 2) && (d > 0 || neck_support_od > (cap_thread_od + 2 * (cap_wall + tolerance)))),
wall = (d > 0) ? wallt1 : min(wallt1, ((cap_thread_od + 2 * (cap_wall + tolerance) - neck_id) / 2))
);
}
if (d != 0) {
rotate_extrude(){
polygon(points = [
[0, d / 2],
[neck_id / 2 + wallt1, d / 2],
[neck_id / 2 + wallt1, d / 2 - taper_lead_in],
[cap_neck_id / 2 + wallt2, taper_lead_in - d / 2],
[cap_neck_id / 2 + wallt2, -d / 2],
[0, -d / 2]
]);
}
}
down(d / 2){
generic_bottle_cap(wall = cap_wall,
texture = texture,
height = cap_h,
thread_od = cap_thread_od,
tolerance = tolerance,
neck_od = cap_neck_od,
thread_angle = cap_thread_taper,
orient = DOWN,
pitch = cap_thread_pitch
);
}
}
rotate_extrude() {
polygon(points = [
[0, d / 2 + 0.1],
[neck_id / 2, d / 2],
[neck_id / 2, d / 2 - taper_lead_in],
[cap_neck_id / 2, taper_lead_in - d / 2],
[cap_neck_id / 2, -d / 2 - cap_wall],
[0, -d / 2 - cap_wall - 0.1]
]);
}
}
}
function thread_adapter_NC(
wall, texture, cap_wall, cap_h, cap_thread_od,
tolerance, cap_neck_od, cap_neck_id, cap_thread_taper,
cap_thread_pitch, neck_d, neck_id, neck_thread_od,
neck_h, neck_thread_pitch, neck_support_od, d, taper_lead_in
) = no_fuction("thread_adapter_NC");
// Module: thread_adapter_CC()
// Usage:
// thread_adapter_CC(wall, <texture>);
// Description:
// Creates a threaded cap to cap adapter.
// Arguments:
// wall = Wall thickness in mm.
// texture = The surface texture of the cap. Valid values are "none", "knurled", or "ribbed". Default: "none"
// cap_h1 = Interior height of top cap.
// cap_thread_od1 = Outer diameter of threads on top cap.
// tolerance = Extra space to add to the outer diameter of threads and neck in mm. Applied to radius.
// cap_neck_od1 = Inner diameter of threads on top cap.
// cap_thread_pitch1 = Thread pitch of top cap in mm.
// cap_h2 = Interior height of bottom cap. Leave undefined to duplicate cap_h1.
// cap_thread_od2 = Outer diameter of threads on bottom cap. Leave undefined to duplicate capThread1.
// cap_neck_od2 = Inner diameter of threads on top cap. Leave undefined to duplicate cap_neck_od1.
// cap_thread_pitch2 = Thread pitch of bottom cap in mm. Leave undefinced to duplicate cap_thread_pitch1.
// d = Distance between caps.
// neck_id1 = Inner diameter of cutout in top cap.
// neck_id2 = Inner diameter of cutout in bottom cap.
// taper_lead_in = Length to leave straight before tapering on tube between caps if exists.
// Examples:
// thread_adapter_CC();
module thread_adapter_CC(
wall = 2,
texture = "none",
cap_h1 = 11.2,
cap_thread_od1 = 28.58,
tolerance = .2,
cap_neck_od1 = 25.5,
cap_thread_pitch1 = 4,
cap_h2,
cap_thread_od2,
cap_neck_od2,
cap_thread_pitch2,
d = 0,
neck_id1, neck_id2,
taper_lead_in = 0
) {
cap_h2 = (cap_h2 == undef) ? cap_h1 : cap_h2;
cap_thread_od2 = (cap_thread_od2 == undef) ? cap_thread_od1 : cap_thread_od2;
cap_neck_od2 = (cap_neck_od2 == undef) ? cap_neck_od1 : cap_neck_od2;
cap_thread_pitch2 = (cap_thread_pitch2 == undef) ? cap_thread_pitch1 : cap_thread_pitch2;
neck_id2 = (neck_id2 == undef && neck_id1 != undef) ? neck_id1 : neck_id2;
taper_lead_in = (d >= taper_lead_in * 2) ? taper_lead_in : d / 2;
$fn = segs(33 / 2);
difference(){
union(){
up(d / 2){
generic_bottle_cap(
orient = UP,
wall = wall,
texture = texture,
height = cap_h1,
thread_od = cap_thread_od1,
tolerance = tolerance,
neck_od = cap_neck_od1,
pitch = cap_thread_pitch1
);
}
if (d != 0) {
rotate_extrude() {
polygon(points = [
[0, d / 2],
[cap_thread_od1 / 2 + (wall + tolerance), d / 2],
[cap_thread_od1 / 2 + (wall + tolerance), d / 2 - taper_lead_in],
[cap_thread_od2 / 2 + (wall + tolerance), taper_lead_in - d / 2],
[cap_thread_od2 / 2 + (wall + tolerance), -d / 2],
[0, -d / 2]
]);
}
}
down(d / 2){
generic_bottle_cap(
orient = DOWN,
wall = wall,
texture = texture,
height = cap_h2,
thread_od = cap_thread_od2,
tolerance = tolerance,
neck_od = cap_neck_od2,
pitch = cap_thread_pitch2
);
}
}
if (neck_id1 != undef || neck_id2 != undef) {
neck_id1 = (neck_id1 == undef) ? neck_id2 : neck_id1;
neck_id2 = (neck_id2 == undef) ? neck_id1 : neck_id2;
rotate_extrude() {
polygon(points = [
[0, wall + d / 2 + 0.1],
[neck_id1 / 2, wall + d / 2],
[neck_id1 / 2, wall + d / 2 - taper_lead_in],
[neck_id2 / 2, taper_lead_in - d / 2 - wall],
[neck_id2 / 2, -d / 2 - wall],
[0, -d / 2 - wall - 0.1]
]);
}
}
}
}
function thread_adapter_CC(
wall, texture, cap_h1, cap_thread_od1, tolerance,
cap_neck_od1, cap_thread_pitch1, cap_h2, cap_thread_od2,
cap_neck_od2, cap_thread_pitch2, d, neck_id1, neck_id2, taper_lead_in
) = no_function("thread_adapter_CC");
// Module: thread_adapter_NN()
// Usage:
// thread_adapter_NN();
// Description:
// Creates a threaded neck to neck adapter.
// Arguments:
// d = Distance between bottoms of necks
// neck_od1 = Outer diameter of top neck w/o threads
// neck_id1 = Inner diameter of top neck
// thread_od1 = Outer diameter of threads on top neck
// height1 = Height of top neck above support ring.
// support_od1 = Outer diameter of the support ring on the top neck. Set to 0 for no ring.
// thread_pitch1 = Thread pitch of top neck.
// neck_od2 = Outer diameter of bottom neck w/o threads. Leave undefined to duplicate neck_od1
// neck_id2 = Inner diameter of bottom neck. Leave undefined to duplicate neck_id1
// thread_od2 = Outer diameter of threads on bottom neck. Leave undefined to duplicate thread_od1
// height2 = Height of bottom neck above support ring. Leave undefined to duplicate height1
// support_od2 = Outer diameter of the support ring on bottom neck. Set to 0 for no ring. Leave undefined to duplicate support_od1
// pitch2 = Thread pitch of bottom neck. Leave undefined to duplicate thread_pitch1
// taper_lead_in = Length to leave straight before tapering on tube between necks if exists.
// wall = Thickness of tube wall between necks. Leave undefined to match outer diameters with the neckODs/supportODs.
// Examples:
// thread_adapter_NN();
module thread_adapter_NN(
d = 0,
neck_od1 = 25,
neck_id1 = 21.4,
thread_od1 = 27.2,
height1 = 17,
support_od1 = 33.0,
thread_pitch1 = 3.2,
neck_od2, neck_id2,
thread_od2, height2,
support_od2, pitch2,
taper_lead_in = 0, wall
) {
neck_od2 = (neck_od2 == undef) ? neck_od1 : neck_od2;
neck_id2 = (neck_id2 == undef) ? neck_id1 : neck_id2;
thread_od2 = (thread_od2 == undef) ? thread_od1 : thread_od2;
height2 = (height2 == undef) ? height1 : height2;
support_od2 = (support_od2 == undef) ? support_od1 : support_od2;
pitch2 = (pitch2 == undef) ? thread_pitch1 : pitch2;
wall = (wall == undef) ? support_od1 + support_od2 + neck_id1 + neck_id2 : wall;
supprtOD2 = (d == 0 && support_od2 != 0) ? max(neck_od1, support_od2) : support_od2;
supprtOD1 = (d == 0 && support_od1 != 0) ? max(neck_od2, support_od1) : support_od1;
$fn = segs(33 / 2);
wallt1 = min(wall, (max(supprtOD1, neck_od1) - neck_id1) / 2);
wallt2 = min(wall, (max(supprtOD2, neck_od2) - neck_id2) / 2);
taper_lead_in = (d >= taper_lead_in * 2) ? taper_lead_in : d / 2;
difference(){
union(){
up(d / 2){
generic_bottle_neck(orient = UP,
neck_d = neck_od1,
id = neck_id1,
thread_od = thread_od1,
height = height1,
support_d = supprtOD1,
pitch = thread_pitch1,
round_supp = ((wallt1 < (supprtOD1 - neck_id1) / 2) || (support_od1 > max(neck_od2, support_od2) && d == 0)),
wall = (d > 0) ? wallt1 : min(wallt1, ((max(neck_od2, support_od2)) - neck_id1) / 2)
);
}
if (d != 0) {
rotate_extrude() {
polygon(points = [
[0, d / 2],
[neck_id1 / 2 + wallt1, d / 2],
[neck_id1 / 2 + wallt1, d / 2 - taper_lead_in],
[neck_id2 / 2 + wallt2, taper_lead_in - d / 2],
[neck_id2 / 2 + wallt2, -d / 2],
[0, -d / 2]
]);
}
}
down(d / 2){
generic_bottle_neck(orient = DOWN,
neck_d = neck_od2,
id = neck_id2,
thread_od = thread_od2,
height = height2,
support_d = supprtOD2,
pitch = pitch2,
round_supp = ((wallt2 < (supprtOD2 - neck_id2) / 2) || (support_od2 > max(neck_od1, support_od1) && d == 0)),
wall = (d > 0) ? wallt2 : min(wallt2, ((max(neck_od1, support_od1)) - neck_id2) / 2)
);
}
}
if (neck_id1 != undef || neck_id2 != undef) {
neck_id1 = (neck_id1 == undef) ? neck_id2 : neck_id1;
neck_id2 = (neck_id2 == undef) ? neck_id1 : neck_id2;
rotate_extrude() {
polygon(points = [
[0, d / 2],
[neck_id1 / 2, d / 2],
[neck_id1 / 2, d / 2 - taper_lead_in],
[neck_id2 / 2, taper_lead_in - d / 2],
[neck_id2 / 2, -d / 2],
[0, -d / 2]
]);
}
}
}
}
function thread_adapter_NN(
d, neck_od1, neck_id1, thread_od1, height1,
support_od1, thread_pitch1, neck_od2, neck_id2,
thread_od2, height2, support_od2,
pitch2, taper_lead_in, wall
) = no_fuction("thread_adapter_NN");
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap

View file

@ -1,572 +0,0 @@
//////////////////////////////////////////////////////////////////////
// LibFile: bottlecaps_adapters.scad
// Adapters for various combinations of bottle necks and caps.
// Includes:
// include <BOSL2/std.scad>
// include <BOSL2/bottlecaps_adapters.scad>
//////////////////////////////////////////////////////////////////////
include <BOSL2/threading.scad>
include <BOSL2/knurling.scad>
// Module: generic_bottle_neck()
// Usage:
// generic_bottle_neck(<wall>)
// Description:
// Creates a bottle neck given specifications.
// Arguments:
// neckDiam = Outer diameter of neck without threads
// innerDiam = Inner diameter of neck
// threadOuterD = Outer diameter of thread
// height = Height of neck above support
// supportDiam = Outer diameter of support ring. Set to 0 for no support.
// threadPitch = Thread pitch
// wall = distance between ID and any wall that may be below the support
// roundLowerSupport = True to round the lower edge of the support ring
// ---
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Extra Anchors:
// "support-ring" = Centered at the bottom of the support ring.
// Example:
// generic_bottle_neck();
module generic_bottle_neck(
neckDiam = 25,
innerDiam = 21.4,
threadOuterD = 27.2,
height = 17,
supportDiam = 33.0,
threadPitch = 3.2,
roundLowerSupport = false,
wall,
anchor = "support-ring",
spin = 0,
orient = UP
) {
inner_d = innerDiam;
neck_d = neckDiam;
support_d = max(neckDiam, supportDiam);
thread_pitch = threadPitch;
thread_angle = 15;
thread_od = threadOuterD;
diamMagMult = neckDiam / 26.19;
heightMagMult = height / 17.00;
sup_r = 0.30 * (heightMagMult > 1 ? heightMagMult : 1);
support_r = floor(((support_d == neck_d) ? sup_r : min(sup_r, (support_d - neck_d) / 2)) * 5000) / 10000;
support_rad = (wall == undef || !roundLowerSupport) ? support_r :
min(support_r, floor((support_d - (inner_d + 2 * wall)) * 5000) / 10000);
//Too small of a radius will cause errors with the arc, this limits granularity to .0001mm
support_width = 1 * (heightMagMult > 1 ? heightMagMult : 1) * sign(supportDiam);
roundover = 0.58 * diamMagMult;
lip_roundover_r = (roundover > (neck_d - inner_d) / 2) ? 0 : roundover;
h = height + support_width;
threadbase_d = neck_d - 0.8 * diamMagMult;
$fn = segs(33 / 2);
thread_h = (thread_od - threadbase_d) / 2;
anchors = [
anchorpt("support-ring", [0, 0, 0 - h / 2])
];
attachable(anchor, spin, orient, d1 = neck_d, d2 = 0, l = h, anchors = anchors) {
down(h / 2) {
rotate_extrude(convexity = 10) {
polygon(turtle(
state = [inner_d / 2, 0], (support_d != neck_d) ? [
"untilx", support_d / 2 - ((roundLowerSupport) ? support_rad : 0),
"arcleft", ((roundLowerSupport) ? support_rad : 0), 90,
"untily", support_width - support_rad,
"arcleft", support_rad, 90,
"untilx", neck_d / 2,
"right", 90,
"untily", h - lip_roundover_r,
"arcleft", lip_roundover_r, 90,
"untilx", inner_d / 2
] : [
"untilx", support_d / 2 - ((roundLowerSupport) ? support_rad : 0),
"arcleft", ((roundLowerSupport) ? support_rad : 0), 90,
"untily", h - lip_roundover_r,
"arcleft", lip_roundover_r, 90,
"untilx", inner_d / 2
]
));
}
up(h - threadPitch / 2 - lip_roundover_r) {
difference() {
thread_helix(
d = threadbase_d - 0.1 * diamMagMult,
pitch = thread_pitch,
thread_depth = thread_h + 0.1 * diamMagMult,
thread_angle = thread_angle,
twist = 360 * (height - threadPitch - lip_roundover_r) * .6167 / threadPitch,
higbee = thread_h * 2,
anchor = TOP
);
zrot_copies(rots = [90, 270]) {
zrot_copies(rots = [-28, 28], r = threadbase_d / 2) {
prismoid(
[20 * heightMagMult, 1.82 * diamMagMult],
[20 * heightMagMult, 1.82 * diamMagMult * .6 + 2 * sin(29) * thread_h],
h = thread_h + 0.1 * diamMagMult,
anchor = BOT,
orient = RIGHT
);
}
}
}
}
}
children();
}
}
function generic_bottle_neck(
neckDiam,
innerDiam,
threadOuterD,
height,
supportDiam,
threadPitch,
roundLowerSupport,
wall,
anchor, spin, orient
) = no_function("generic_bottle_neck");
// Module: generic_bottle_cap()
// Usage:
// generic_bottle_cap(wall, <texture>, ...);
// Description:
// Creates a basic threaded cap given specifications.
// Arguments:
// wall = Wall thickness in mm.
// texture = The surface texture of the cap. Valid values are "none", "knurled", or "ribbed". Default: "none"
// ---
// height = Interior height of the cap in mm.
// threadOuterD = Outer diameter of the threads in mm.
// tolerance = Extra space to add to the outer diameter of threads and neck in mm. Applied to radius.
// neckOuterD = Outer diameter of neck in mm.
// threadAngle = Angle of taper on threads.
// threadPitch = Thread pitch in mm.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Extra Anchors:
// "inside-top" = Centered on the inside top of the cap.
// Examples:
// generic_bottle_cap();
// generic_bottle_cap(texture="knurled");
// generic_bottle_cap(texture="ribbed");
module generic_bottle_cap(
wall = 2,
texture = "none",
height = 11.2,
threadOuterD = 28.58,
tolerance = .2,
neckOuterD = 25.5,
threadAngle = 15,
threadPitch = 4,
anchor = BOTTOM,
spin = 0,
orient = UP
) {
$fn = segs(33 / 2);
threadOuterDTol = threadOuterD + 2 * tolerance;
w = threadOuterDTol + 2 * wall;
h = height + wall;
neckOuterDTol = neckOuterD + 2 * tolerance;
threadDepth = (threadOuterD - neckOuterD) / 2 + .8;
diamMagMult = (w > 32.58) ? w / 32.58 : 1;
heightMagMult = (height > 11.2) ? height / 11.2 : 1;
anchors = [
anchorpt("inside-top", [0, 0, -(h / 2 - wall)])
];
attachable(anchor, spin, orient, d = w, l = h, anchors = anchors) {
down(h / 2) {
difference() {
union() {
// For the knurled and ribbed caps the PCO caps in BOSL2 cut into the wall
// thickness so the wall+texture are the specified wall thickness. That
// seems wrong so this does specified thickness+texture
if (texture == "knurled") {
knurled_cylinder(d = w + 1.5 * diamMagMult, helix = 45, l = h, anchor = BOTTOM);
cyl(d = w, l = h, anchor = BOTTOM);
} else if (texture == "ribbed") {
zrot_copies(n = 30, r = (w + .2 * diamMagMult) / 2) {
cube([1 * diamMagMult, 1 * diamMagMult, h], anchor = BOTTOM);
}
cyl(d = w, l = h, anchor = BOTTOM);
} else {
cyl(d = w, l = h, anchor = BOTTOM);
}
}
up(wall) cyl(d = threadOuterDTol, h = h, anchor = BOTTOM);
}
difference(){
up(wall + threadPitch / 2) {
thread_helix(d = neckOuterDTol, pitch = threadPitch, thread_depth = threadDepth, thread_angle = threadAngle, twist = 360 * ((height - threadPitch) / threadPitch), higbee = threadDepth, internal = true, anchor = BOTTOM);
}
}
}
children();
}
}
function generic_bottle_cap(
wall, texture, height,
threadOuterD, tolerance,
neckOuterD, threadAngle, threadPitch,
anchor, spin, orient
) = no_function("generic_bottle_cap");
// Module: thread_adapter_NC()
// Usage:
// thread_adapter_NC(wall, [texture]);
// Description:
// Creates a threaded neck to cap adapter
// Arguments:
// wall = Thickness of wall between neck and cap when d=0. Leave undefined to have the outside of the tube go from the OD of the neck support ring to the OD of the cap. Default: undef
// texture = The surface texture of the cap. Valid values are "none", "knurled", or "ribbed". Default: "none"
// capWall = Wall thickness of the cap in mm.
// capHeight = Interior height of the cap in mm.
// capThreadOD = Outer diameter of cap threads in mm.
// tolerance = Extra space to add to the outer diameter of threads and neck in mm. Applied to radius.
// capNeckOD = Inner diameter of the cap threads.
// capNeckID = Inner diameter of the hole through the cap.
// capThreadTaperAngle = Angle of taper on threads.
// capThreadPitch = Thread pitch in mm
// neckDiam = Outer diameter of neck w/o threads
// neckID = Inner diameter of neck
// neckThreadOD = 27.2
// neckHeight = Height of neck down to support ring
// neckThreadPitch = Thread pitch in mm.
// neckSupportOD = Outer diameter of neck support ring. Leave undefined to set equal to OD of cap. Set to 0 for no ring. Default: undef
// d = Distance between bottom of neck and top of cap
// taperLeadIn = Length to leave straight before tapering on tube between neck and cap if exists.
// Examples:
// thread_adapter_NC();
module thread_adapter_NC(
wall,
texture = "none",
capWall = 2,
capHeight = 11.2,
capThreadOD = 28.58,
tolerance = .2,
capNeckOD = 25.5,
capNeckID,
capThreadTaperAngle = 15,
capThreadPitch = 4,
neckDiam = 25,
neckID = 21.4,
neckThreadOD = 27.2,
neckHeight = 17,
neckThreadPitch = 3.2,
neckSupportOD,
d = 0,
taperLeadIn = 0
) {
neckSupportOD = (neckSupportOD == undef || (d == 0 && neckSupportOD < capThreadOD + 2 * tolerance)) ? capThreadOD + 2 * (capWall + tolerance) : neckSupportOD;
capNeckID = (capNeckID == undef) ? neckID : capNeckID;
wall = (wall == undef) ? neckSupportOD + neckDiam + capThreadOD + neckID : wall;
$fn = segs(33 / 2);
wallt1 = min(wall, (max(neckSupportOD, neckDiam) - neckID) / 2);
wallt2 = min(wall, (capThreadOD + 2 * (capWall + tolerance) - capNeckID) / 2);
difference(){
union(){
up(d / 2) {
generic_bottle_neck(neckDiam = neckDiam,
innerDiam = neckID,
threadOuterD = neckThreadOD,
height = neckHeight,
supportDiam = neckSupportOD,
threadPitch = neckThreadPitch,
roundLowerSupport = ((wallt1 < (neckSupportOD - neckID) / 2) && (d > 0 || neckSupportOD > (capThreadOD + 2 * (capWall + tolerance)))),
wall = (d > 0) ? wallt1 : min(wallt1, ((capThreadOD + 2 * (capWall + tolerance) - neckID) / 2))
);
}
if (d != 0) {
rotate_extrude(){
polygon(points = [
[0, d / 2],
[neckID / 2 + wallt1, d / 2],
[neckID / 2 + wallt1, d / 2 - taperLeadIn],
[capNeckID / 2 + wallt2, taperLeadIn - d / 2],
[capNeckID / 2 + wallt2, -d / 2],
[0, -d / 2]
]);
}
}
down(d / 2){
generic_bottle_cap(wall = capWall,
texture = texture,
height = capHeight,
threadOuterD = capThreadOD,
tolerance = tolerance,
neckOuterD = capNeckOD,
threadAngle = capThreadTaperAngle,
orient = DOWN,
threadPitch = capThreadPitch
);
}
}
rotate_extrude() {
polygon(points = [
[0, d / 2 + 0.1],
[neckID / 2, d / 2],
[neckID / 2, d / 2 - taperLeadIn],
[capNeckID / 2, taperLeadIn - d / 2],
[capNeckID / 2, -d / 2 - capWall],
[0, -d / 2 - capWall - 0.1]
]);
}
}
}
function thread_adapter_NC(
wall, texture, capWall, capHeight, capThreadOD,
tolerance, capNeckOD, capNeckId, capThreadTaperAngle,
capThreadPitch, neckDiam, neckID, neckThreadOD,
neckHeight, neckThreadPitch, neckSupportOD, d, taperLeadIn
) = no_fuction("thread_adapter_NC");
// Module: thread_adapter_CC()
// Usage:
// thread_adapter_CC(wall, [texture]);
// Description:
// Creates a threaded cap to cap adapter.
// Arguments:
// wall = Wall thickness in mm.
// texture = The surface texture of the cap. Valid values are "none", "knurled", or "ribbed". Default: "none"
// capHeight1 = Interior height of top cap.
// capThreadOD1 = Outer diameter of threads on top cap.
// tolerance = Extra space to add to the outer diameter of threads and neck in mm. Applied to radius.
// capNeckOD1 = Inner diameter of threads on top cap.
// capThreadPitch1 = Thread pitch of top cap in mm.
// capHeight2 = Interior height of bottom cap. Leave undefined to duplicate capHeight1.
// capThreadOD2 = Outer diameter of threads on bottom cap. Leave undefined to duplicate capThread1.
// capNeckOD2 = Inner diameter of threads on top cap. Leave undefined to duplicate capNeckOD1.
// capThreadPitch2 = Thread pitch of bottom cap in mm. Leave undefinced to duplicate capThreadPitch1.
// d = Distance between caps.
// neckID1 = Inner diameter of cutout in top cap.
// neckID2 = Inner diameter of cutout in bottom cap.
// taperLeadIn = Length to leave straight before tapering on tube between caps if exists.
// Examples:
// thread_adapter_CC();
module thread_adapter_CC(
wall = 2,
texture = "none",
capHeight1 = 11.2,
capThreadOD1 = 28.58,
tolerance = .2,
capNeckOD1 = 25.5,
capThreadPitch1 = 4,
capHeight2,
capThreadOD2,
capNeckOD2,
capThreadPitch2,
d = 0,
neckID1, neckID2,
taperLeadIn = 0
) {
capHeight2 = (capHeight2 == undef) ? capHeight1 : capHeight2;
capThreadOD2 = (capThreadOD2 == undef) ? capThreadOD1 : capThreadOD2;
capNeckOD2 = (capNeckOD2 == undef) ? capNeckOD1 : capNeckOD2;
capThreadPitch2 = (capThreadPitch2 == undef) ? capThreadPitch1 : capThreadPitch2;
neckID2 = (neckID2 == undef && neckID1 != undef) ? neckID1 : neckID2;
taperLeadIn = (d >= taperLeadIn * 2) ? taperLeadIn : d / 2;
$fn = segs(33 / 2);
difference(){
union(){
up(d / 2){
generic_bottle_cap(
orient = UP,
wall = wall,
texture = texture,
height = capHeight1,
threadOuterD = capThreadOD1,
tolerance = tolerance,
neckOuterD = capNeckOD1,
threadPitch = capThreadPitch1
);
}
if (d != 0) {
rotate_extrude() {
polygon(points = [
[0, d / 2],
[capThreadOD1 / 2 + (wall + tolerance), d / 2],
[capThreadOD1 / 2 + (wall + tolerance), d / 2 - taperLeadIn],
[capThreadOD2 / 2 + (wall + tolerance), taperLeadIn - d / 2],
[capThreadOD2 / 2 + (wall + tolerance), -d / 2],
[0, -d / 2]
]);
}
}
down(d / 2){
generic_bottle_cap(
orient = DOWN,
wall = wall,
texture = texture,
height = capHeight2,
threadOuterD = capThreadOD2,
tolerance = tolerance,
neckOuterD = capNeckOD2,
threadPitch = capThreadPitch2
);
}
}
if (neckID1 != undef || neckID2 != undef) {
neckID1 = (neckID1 == undef) ? neckID2 : neckID1;
neckID2 = (neckID2 == undef) ? neckID1 : neckID2;
rotate_extrude() {
polygon(points = [
[0, wall + d / 2 + 0.1],
[neckID1 / 2, wall + d / 2],
[neckID1 / 2, wall + d / 2 - taperLeadIn],
[neckID2 / 2, taperLeadIn - d / 2 - wall],
[neckID2 / 2, -d / 2 - wall],
[0, -d / 2 - wall - 0.1]
]);
}
}
}
}
function thread_adapter_CC(
wall, texture, capHeight1, capThreadOD1, tolerance,
capNeckOD1, capThreadPitch1, capHeight2, capThreadOD2,
capNeckOD2, capThreadPitch2, d, neckID1, neckID2, taperLeadIn
) = no_function("thread_adapter_CC");
// Module: thread_adapter_NN()
// Usage:
// thread_adapter_NN();
// Description:
// Creates a threaded neck to neck adapter.
// Arguments:
// d = Distance between bottoms of necks
// neckOD1 = Outer diameter of top neck w/o threads
// neckID1 = Inner diameter of top neck
// threadOD1 = Outer diameter of threads on top neck
// height1 = Height of top neck above support ring.
// supportOD1 = Outer diameter of the support ring on the top neck. Set to 0 for no ring.
// threadPitch1 = Thread pitch of top neck.
// neckOD2 = Outer diameter of bottom neck w/o threads. Leave undefined to duplicate neckOD1
// neckID2 = Inner diameter of bottom neck. Leave undefined to duplicate neckID1
// threadOD2 = Outer diameter of threads on bottom neck. Leave undefined to duplicate threadOD1
// height2 = Height of bottom neck above support ring. Leave undefined to duplicate height1
// supportOD2 = Outer diameter of the support ring on bottom neck. Set to 0 for no ring. Leave undefined to duplicate supportOD1
// threadPitch2 = Thread pitch of bottom neck. Leave undefined to duplicate threadPitch1
// taperLeadIn = Length to leave straight before tapering on tube between necks if exists.
// wall = Thickness of tube wall between necks. Leave undefined to match outer diameters with the neckODs/supportODs.
// Examples:
// thread_adapter_NN();
module thread_adapter_NN(
d = 0,
neckOD1 = 25,
neckID1 = 21.4,
threadOD1 = 27.2,
height1 = 17,
supportOD1 = 33.0,
threadPitch1 = 3.2,
neckOD2, neckID2,
threadOD2, height2,
supportOD2, threadPitch2,
taperLeadIn = 0, wall
) {
neckOD2 = (neckOD2 == undef) ? neckOD1 : neckOD2;
neckID2 = (neckID2 == undef) ? neckID1 : neckID2;
threadOD2 = (threadOD2 == undef) ? threadOD1 : threadOD2;
height2 = (height2 == undef) ? height1 : height2;
supportOD2 = (supportOD2 == undef) ? supportOD1 : supportOD2;
threadPitch2 = (threadPitch2 == undef) ? threadPitch1 : threadPitch2;
wall = (wall == undef) ? supportOD1 + supportOD2 + neckID1 + neckID2 : wall;
supprtOD2 = (d == 0 && supportOD2 != 0) ? max(neckOD1, supportOD2) : supportOD2;
supprtOD1 = (d == 0 && supportOD1 != 0) ? max(neckOD2, supportOD1) : supportOD1;
$fn = segs(33 / 2);
wallt1 = min(wall, (max(supprtOD1, neckOD1) - neckID1) / 2);
wallt2 = min(wall, (max(supprtOD2, neckOD2) - neckID2) / 2);
taperLeadIn = (d >= taperLeadIn * 2) ? taperLeadIn : d / 2;
difference(){
union(){
up(d / 2){
generic_bottle_neck(orient = UP,
neckDiam = neckOD1,
innerDiam = neckID1,
threadOuterD = threadOD1,
height = height1,
supportDiam = supprtOD1,
threadPitch = threadPitch1,
roundLowerSupport = ((wallt1 < (supprtOD1 - neckID1) / 2) || (supportOD1 > max(neckOD2, supportOD2) && d == 0)),
wall = (d > 0) ? wallt1 : min(wallt1, ((max(neckOD2, supportOD2)) - neckID1) / 2)
);
}
if (d != 0) {
rotate_extrude() {
polygon(points = [
[0, d / 2],
[neckID1 / 2 + wallt1, d / 2],
[neckID1 / 2 + wallt1, d / 2 - taperLeadIn],
[neckID2 / 2 + wallt2, taperLeadIn - d / 2],
[neckID2 / 2 + wallt2, -d / 2],
[0, -d / 2]
]);
}
}
down(d / 2){
generic_bottle_neck(orient = DOWN,
neckDiam = neckOD2,
innerDiam = neckID2,
threadOuterD = threadOD2,
height = height2,
supportDiam = supprtOD2,
threadPitch = threadPitch2,
roundLowerSupport = ((wallt2 < (supprtOD2 - neckID2) / 2) || (supportOD2 > max(neckOD1, supportOD1) && d == 0)),
wall = (d > 0) ? wallt2 : min(wallt2, ((max(neckOD1, supportOD1)) - neckID2) / 2)
);
}
}
if (neckID1 != undef || neckID2 != undef) {
neckID1 = (neckID1 == undef) ? neckID2 : neckID1;
neckID2 = (neckID2 == undef) ? neckID1 : neckID2;
rotate_extrude() {
polygon(points = [
[0, d / 2],
[neckID1 / 2, d / 2],
[neckID1 / 2, d / 2 - taperLeadIn],
[neckID2 / 2, taperLeadIn - d / 2],
[neckID2 / 2, -d / 2],
[0, -d / 2]
]);
}
}
}
}
function thread_adapter_NN(
d, neckOD1, neckID1, threadOD1, height1,
supportOD1, threadPitch1, neckOD2, neckID2,
threadOD2, height2, supportOD2,
threadPitch2, taperLeadIn, wall
) = no_fuction("thread_adapter_NN");
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap

View file

@ -60,7 +60,6 @@ function _edges_text(edges) =
// Section: Edge Constants // Section: Edge Constants
// Constants for working with edges.
// Constant: EDGES_NONE // Constant: EDGES_NONE
// Topics: Edges // Topics: Edges
@ -83,6 +82,7 @@ EDGES_ALL = [[1,1,1,1], [1,1,1,1], [1,1,1,1]];
// Constant: EDGES_OFFSETS // Constant: EDGES_OFFSETS
// Topics: Edges
// See Also: EDGES_NONE, EDGES_ALL, edges() // See Also: EDGES_NONE, EDGES_ALL, edges()
// Description: // Description:
// The vectors pointing to the center of each edge of a unit sized cube. // The vectors pointing to the center of each edge of a unit sized cube.
@ -110,11 +110,15 @@ EDGE_OFFSETS = [
// Section: Edge Helpers // Section: Edge Helpers
// Function: is_edge_array() // Function: is_edge_array()
// Topics: Edges, Type Checking
// Usage: // Usage:
// is_edge_array(v) // bool = is_edge_array(x);
// Description: // Description:
// Returns true if the given value has the form of an edge array. // Returns true if the given value has the form of an edge array.
function is_edge_array(v) = is_list(v) && is_vector(v[0]) && len(v)==3 && len(v[0])==4; // Arguments:
// x = The item to check the type of.
// See Also: edges(), EDGES_NONE, EDGES_ALL
function is_edge_array(x) = is_list(x) && is_vector(x[0]) && len(x)==3 && len(x[0])==4;
function _edge_set(v) = function _edge_set(v) =
@ -150,18 +154,22 @@ function _edge_set(v) =
// Function: normalize_edges() // Function: normalize_edges()
// Topics: Edges
// Usage: // Usage:
// normalize_edges(v); // edges = normalize_edges(v);
// Description: // Description:
// Normalizes all values in an edge array to be `1`, if it was originally greater than `0`, // Normalizes all values in an edge array to be `1`, if it was originally greater than `0`,
// or `0`, if it was originally less than or equal to `0`. // or `0`, if it was originally less than or equal to `0`.
// See Also: is_edge_array(), edges(), EDGES_NONE, EDGES_ALL
function normalize_edges(v) = [for (ax=v) [for (edge=ax) edge>0? 1 : 0]]; function normalize_edges(v) = [for (ax=v) [for (edge=ax) edge>0? 1 : 0]];
// Function: edges() // Function: edges()
// Topics: Edges
// Usage: // Usage:
// edges(v) // edgs = edges(v);
// edges(v, except) // edgs = edges(v, except);
//
// Description: // Description:
// Takes a list of edge set descriptors, and returns a normalized edges array // Takes a list of edge set descriptors, and returns a normalized edges array
// that represents all those given edges. If the `except` argument is given // that represents all those given edges. If the `except` argument is given
@ -251,6 +259,8 @@ function normalize_edges(v) = [for (ax=v) [for (edge=ax) edge>0? 1 : 0]];
// v = The edge set to include. // v = The edge set to include.
// except = The edge set to specifically exclude, even if they are in `v`. // except = The edge set to specifically exclude, even if they are in `v`.
// //
// See Also: is_edge_array(), normalize_edges(), EDGES_NONE, EDGES_ALL
//
// Example(3D): Just the front-top edge // Example(3D): Just the front-top edge
// edg = edges(FRONT+TOP); // edg = edges(FRONT+TOP);
// show_edges(edges=edg); // show_edges(edges=edg);
@ -283,6 +293,7 @@ function edges(v, except=[]) =
// Module: show_edges() // Module: show_edges()
// Topics: Edges, Debugging
// Usage: // Usage:
// show_edges(edges, <size=>, <text=>, <txtsize=>); // show_edges(edges, <size=>, <text=>, <txtsize=>);
// Description: // Description:
@ -292,6 +303,7 @@ function edges(v, except=[]) =
// size = The scalar size of the cube. // size = The scalar size of the cube.
// text = The text to show on the front of the cube. // text = The text to show on the front of the cube.
// txtsize = The size of the text. // txtsize = The size of the text.
// See Also: is_edge_array(), edges(), EDGES_NONE, EDGES_ALL
// Example: // Example:
// show_edges(size=30, edges=["X","Y"]); // show_edges(size=30, edges=["X","Y"]);
module show_edges(edges="ALL", size=20, text, txtsize=3) { module show_edges(edges="ALL", size=20, text, txtsize=3) {
@ -319,28 +331,31 @@ module show_edges(edges="ALL", size=20, text, txtsize=3) {
// Constant: CORNERS_NONE // Constant: CORNERS_NONE
// See Also: CORNERS_ALL, corners() // Topics: Corners
// Description: // Description:
// The set of no corners. // The set of no corners.
// Figure(3D): // Figure(3D):
// show_corners(corners="NONE"); // show_corners(corners="NONE");
// See Also: CORNERS_ALL, corners()
CORNERS_NONE = [0,0,0,0,0,0,0,0]; // No corners. CORNERS_NONE = [0,0,0,0,0,0,0,0]; // No corners.
// Constant: CORNERS_ALL // Constant: CORNERS_ALL
// See Also: CORNERS_NONE, corners() // Topics: Corners
// Description: // Description:
// The set of all corners. // The set of all corners.
// Figure(3D): // Figure(3D):
// show_corners(corners="ALL"); // show_corners(corners="ALL");
// See Also: CORNERS_NONE, corners()
CORNERS_ALL = [1,1,1,1,1,1,1,1]; CORNERS_ALL = [1,1,1,1,1,1,1,1];
// Constant: CORNER_OFFSETS // Constant: CORNER_OFFSETS
// See Also: CORNERS_NONE, CORNERS_ALL, corners() // Topics: Corners
// Description: // Description:
// The vectors pointing to each corner of a unit sized cube. // The vectors pointing to each corner of a unit sized cube.
// Each item in a corner array will have a corresponding vector in this array. // Each item in a corner array will have a corresponding vector in this array.
// See Also: CORNERS_NONE, CORNERS_ALL, corners()
CORNER_OFFSETS = [ CORNER_OFFSETS = [
[-1,-1,-1], [ 1,-1,-1], [-1, 1,-1], [ 1, 1,-1], [-1,-1,-1], [ 1,-1,-1], [-1, 1,-1], [ 1, 1,-1],
[-1,-1, 1], [ 1,-1, 1], [-1, 1, 1], [ 1, 1, 1] [-1,-1, 1], [ 1,-1, 1], [-1, 1, 1], [ 1, 1, 1]
@ -351,19 +366,23 @@ CORNER_OFFSETS = [
// Section: Corner Helpers // Section: Corner Helpers
// Function: is_corner_array() // Function: is_corner_array()
// Topics: Corners, Type Checking
// Usage: // Usage:
// is_corner_array(v) // bool = is_corner_array(x)
// Description: // Description:
// Returns true if the given value has the form of a corner array. // Returns true if the given value has the form of a corner array.
function is_corner_array(v) = is_vector(v) && len(v)==8 && all([for (x=v) x==1||x==0]); // See Also: CORNERS_NONE, CORNERS_ALL, corners()
function is_corner_array(x) = is_vector(x) && len(x)==8 && all([for (xx=x) xx==1||xx==0]);
// Function: normalize_corners() // Function: normalize_corners()
// Topics: Corners
// Usage: // Usage:
// normalize_corners(v); // corns = normalize_corners(v);
// Description: // Description:
// Normalizes all values in a corner array to be `1`, if it was originally greater than `0`, // Normalizes all values in a corner array to be `1`, if it was originally greater than `0`,
// or `0`, if it was originally less than or equal to `0`. // or `0`, if it was originally less than or equal to `0`.
// See Also: CORNERS_NONE, CORNERS_ALL, is_corner_array(), corners()
function normalize_corners(v) = [for (x=v) x>0? 1 : 0]; function normalize_corners(v) = [for (x=v) x>0? 1 : 0];
@ -387,9 +406,10 @@ function _corner_set(v) =
// Function: corners() // Function: corners()
// Topics: Corners
// Usage: // Usage:
// corners(v) // corns = corners(v);
// corners(v, except) // corns = corners(v, except);
// Description: // Description:
// Takes a list of corner set descriptors, and returns a normalized corners array // Takes a list of corner set descriptors, and returns a normalized corners array
// that represents all those given corners. If the `except` argument is given // that represents all those given corners. If the `except` argument is given
@ -460,6 +480,7 @@ function _corner_set(v) =
// show_corners(corners="ALL"); // show_corners(corners="ALL");
// show_corners(corners="NONE"); // show_corners(corners="NONE");
// } // }
// See Also: CORNERS_NONE, CORNERS_ALL, is_corner_array(), normalize_corners()
// Example(3D): Just the front-top-right corner // Example(3D): Just the front-top-right corner
// crn = corners(FRONT+TOP+RIGHT); // crn = corners(FRONT+TOP+RIGHT);
// show_corners(corners=crn); // show_corners(corners=crn);
@ -486,22 +507,26 @@ function corners(v, except=[]) =
// Function: corner_edges() // Function: corner_edges()
// Topics: Corners
// Description: // Description:
// Returns [XCOUNT,YCOUNT,ZCOUNT] where each is the count of edges aligned with that // Returns [XCOUNT,YCOUNT,ZCOUNT] where each is the count of edges aligned with that
// axis that are in the edge set and touch the given corner. // axis that are in the edge set and touch the given corner.
// Arguments: // Arguments:
// edges = Standard edges array. // edges = Standard edges array.
// v = Vector pointing to the corner to count edge intersections at. // v = Vector pointing to the corner to count edge intersections at.
// See Also: CORNERS_NONE, CORNERS_ALL, is_corner_array(), corners(), corner_edge_count()
function corner_edges(edges, v) = function corner_edges(edges, v) =
let(u = (v+[1,1,1])/2) [edges[0][u.y+u.z*2], edges[1][u.x+u.z*2], edges[2][u.x+u.y*2]]; let(u = (v+[1,1,1])/2) [edges[0][u.y+u.z*2], edges[1][u.x+u.z*2], edges[2][u.x+u.y*2]];
// Function: corner_edge_count() // Function: corner_edge_count()
// Topics: Corners
// Description: // Description:
// Counts how many given edges intersect at a specific corner. // Counts how many given edges intersect at a specific corner.
// Arguments: // Arguments:
// edges = Standard edges array. // edges = Standard edges array.
// v = Vector pointing to the corner to count edge intersections at. // v = Vector pointing to the corner to count edge intersections at.
// See Also: CORNERS_NONE, CORNERS_ALL, is_corner_array(), corners(), corner_edges()
function corner_edge_count(edges, v) = function corner_edge_count(edges, v) =
let(u = (v+[1,1,1])/2) edges[0][u.y+u.z*2] + edges[1][u.x+u.z*2] + edges[2][u.x+u.y*2]; let(u = (v+[1,1,1])/2) edges[0][u.y+u.z*2] + edges[1][u.x+u.z*2] + edges[2][u.x+u.y*2];
@ -528,6 +553,7 @@ function _corners_text(corners) =
// Module: show_corners() // Module: show_corners()
// Topics: Corners, Debugging
// Usage: // Usage:
// show_corners(corners, <size=>, <text=>, <txtsize=>); // show_corners(corners, <size=>, <text=>, <txtsize=>);
// Description: // Description:
@ -537,6 +563,7 @@ function _corners_text(corners) =
// size = The scalar size of the cube. // size = The scalar size of the cube.
// text = If given, overrides the text to be shown on the front of the cube. // text = If given, overrides the text to be shown on the front of the cube.
// txtsize = The size of the text. // txtsize = The size of the text.
// See Also: CORNERS_NONE, CORNERS_ALL, is_corner_array(), corners()
// Example: // Example:
// show_corners(corners=FWD+RIGHT, size=30); // show_corners(corners=FWD+RIGHT, size=30);
module show_corners(corners="ALL", size=20, text, txtsize=3) { module show_corners(corners="ALL", size=20, text, txtsize=3) {

View file

@ -1,8 +0,0 @@
include <BOSL2/std.scad>
include <BOSL2/debug.scad>
cylinder(h=30, d1=50, d2=30) show_anchors();
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap

View file

@ -1,8 +0,0 @@
include <BOSL2/std.scad>
include <BOSL2/debug.scad>
cube(40, center=true) show_anchors();
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap

View file

@ -1,8 +0,0 @@
include <BOSL2/std.scad>
include <BOSL2/debug.scad>
cylinder(h=30, d=30) show_anchors();
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap

View file

@ -1,8 +0,0 @@
include <BOSL2/std.scad>
include <BOSL2/debug.scad>
prismoid([60,40], [30,20], h=40) show_anchors();
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap

View file

@ -9,10 +9,8 @@ module leaf(s) {
[-1.5,-1], [0,0] [-1.5,-1], [0,0]
]; ];
xrot(90) xrot(90)
linear_sweep_bezier( linear_extrude(height=0.02)
path * s/2, bezier_polygon(path*s/2);
height=0.02
);
} }
module branches(minsize, s1, s2){ module branches(minsize, s1, s2){

View file

@ -1,8 +0,0 @@
include <BOSL2/std.scad>
include <BOSL2/debug.scad>
spheroid(d=30) show_anchors();
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap