diff --git a/arrays.scad b/arrays.scad index 4f1c317..835fd65 100644 --- a/arrays.scad +++ b/arrays.scad @@ -18,20 +18,6 @@ // Section: List Query Operations -// Function: is_simple_list() -// Description: -// Returns true just when all elements of `list` are simple values. -// Usage: -// is_simple_list(list) -// Arguments: -// list = The list to check. -// Example: -// a = is_simple_list([3,4,5,6,7,8,9]); Returns: true -// b = is_simple_list([3,4,5,[6],7,8]); Returns: false -function is_simple_list(list) = - is_list(list) - && []==[for(e=list) if(is_list(e)) 0]; - // Function: select() // Description: @@ -73,9 +59,6 @@ function select(list, start, end=undef) = : concat([for (i = [s:1:l-1]) list[i]], [for (i = [0:1:e]) list[i]]) ; - - - // Function: slice() // Description: // Returns a slice of a list. The first item is index 0. @@ -101,24 +84,23 @@ function slice(list,start,end) = ) [for (i=[s:1:e-1]) if (e>s) list[i]]; - - // Function: in_list() // Description: Returns true if value `val` is in list `list`. When `val==NAN` the answer will be false for any list. // Arguments: // val = The simple value to search for. // list = The list to search. -// idx = If given, searches the given subindexes for matches for `val`. +// idx = If given, searches the given subindex for matches for `val`. // Example: // in_list("bar", ["foo", "bar", "baz"]); // Returns true. // in_list("bee", ["foo", "bar", "baz"]); // Returns false. // in_list("bar", [[2,"foo"], [4,"bar"], [3,"baz"]], idx=1); // Returns true. function in_list(val,list,idx=undef) = + assert( is_list(list) && (is_undef(idx) || is_finite(idx)), + "Invalid input." ) let( s = search([val], list, num_returns_per_match=1, index_col_num=idx)[0] ) - s==[] || s[0]==[] ? false + s==[] || s==[[]] ? false : is_undef(idx) ? val==list[s] : val==list[s][idx]; - // Function: min_index() @@ -209,7 +191,6 @@ function repeat(val, n, i=0) = [for (j=[1:1:n[i]]) repeat(val, n, i+1)]; - // Function: list_range() // Usage: // list_range(n, [s], [e]) @@ -249,7 +230,6 @@ function list_range(n=undef, s=0, e=undef, step=undef) = - // Section: List Manipulation // Function: reverse() @@ -315,8 +295,6 @@ function deduplicate(list, closed=false, eps=EPSILON) = : [for (i=[0:1:l-1]) if (i==end || !approx(list[i], list[(i+1)%l], eps)) list[i]]; - - // Function: deduplicate_indexed() // Usage: // new_idxs = deduplicate_indexed(list, indices, [closed], [eps]); @@ -351,8 +329,6 @@ function deduplicate_indexed(list, indices, closed=false, eps=EPSILON) = ]; - - // Function: repeat_entries() // Usage: // newlist = repeat_entries(list, N) @@ -390,8 +366,6 @@ function repeat_entries(list, N, exact = true) = : [for (val=reps_guess) round(val)] ) [for(i=[0:length-1]) each repeat(list[i],reps[i])]; - - // Function: list_set() @@ -431,7 +405,6 @@ function list_set(list=[],indices,values,dflt=0,minlen=0) = dflt , each repeat(dflt, minlen-max(indices)) ]; - // Function: list_insert() @@ -465,8 +438,6 @@ function list_insert(list, indices, values, _i=0) = ]; - - // Function: list_remove() // Usage: // list_remove(list, indices) @@ -494,8 +465,6 @@ function list_remove(list, indices) = ]; - - // Function: list_remove_values() // Usage: // list_remove_values(list,values,all=false) = @@ -565,8 +534,6 @@ function list_bset(indexset, valuelist, dflt=0) = ); - - // Section: List Length Manipulation // Function: list_shortest() @@ -579,7 +546,6 @@ function list_shortest(array) = min([for (v = array) len(v)]); - // Function: list_longest() // Description: // Returns the length of the longest sublist in a list of lists. @@ -629,7 +595,6 @@ function list_fit(array, length, fill) = : list_pad(array,length,fill); - // Section: List Shuffling and Sorting // Function: shuffle() @@ -684,6 +649,7 @@ function _sort_vectors2(arr) = ) concat( _sort_vectors2(lesser), equal, _sort_vectors2(greater) ); + // Sort a vector of vectors based on the first three entries of each vector // Lexicographic order, remaining entries of vector ignored function _sort_vectors3(arr) = @@ -711,7 +677,6 @@ function _sort_vectors3(arr) = ) concat( _sort_vectors3(lesser), equal, _sort_vectors3(greater) ); - // Sort a vector of vectors based on the first four entries of each vector // Lexicographic order, remaining entries of vector ignored function _sort_vectors4(arr) = @@ -742,45 +707,38 @@ function _sort_vectors4(arr) = && y[3]>pivot[3] )))))) y ] ) concat( _sort_vectors4(lesser), equal, _sort_vectors4(greater) ); - +// when idx==undef, returns the sorted array +// otherwise, returns the indices of the sorted array function _sort_general(arr, idx=undef) = (len(arr)<=1) ? arr : + is_undef(idx) + ? _sort_scalar(arr) + : let( arrind=[for(k=[0:len(arr)-1], ark=[arr[k]]) [ k, [for (i=idx) ark[i]] ] ] ) + _indexed_sort(arrind); + +// given a list of pairs, return the first element of each pair of the list sorted by the second element of the pair +// the sorting is done using compare_vals() +function _indexed_sort(arrind) = + arrind==[] ? [] : len(arrind)==1? [arrind[0][0]] : + let( pivot = arrind[floor(len(arrind)/2)][1] ) let( - pivot = arr[floor(len(arr)/2)], - pivotval = idx==undef? pivot : [for (i=idx) pivot[i]], - compare = - is_undef(idx) ? [for(entry=arr) compare_vals(entry, pivotval) ] : - [ for (entry = arr) - let( val = [for (i=idx) entry[i] ] ) - compare_vals(val, pivotval) ] , - lesser = [ for (i = [0:1:len(arr)-1]) if (compare[i] < 0) arr[i] ], - equal = [ for (i = [0:1:len(arr)-1]) if (compare[i] ==0) arr[i] ], - greater = [ for (i = [0:1:len(arr)-1]) if (compare[i] > 0) arr[i] ] - ) - concat(_sort_general(lesser,idx), equal, _sort_general(greater,idx)); + lesser = [ for (entry=arrind) if (compare_vals(entry[1], pivot) <0 ) entry ], + equal = [ for (entry=arrind) if (compare_vals(entry[1], pivot)==0 ) entry[0] ], + greater = [ for (entry=arrind) if (compare_vals(entry[1], pivot) >0 ) entry ] + ) + concat(_indexed_sort(lesser), equal, _indexed_sort(greater)); + + +// returns true for valid index specifications idx in the interval [imin, imax) +// note that idx can't have any value greater or EQUAL to imax +function _valid_idx(idx,imin,imax) = + is_undef(idx) + || ( is_finite(idx) && idx>=imin && idx< imax ) + || ( is_list(idx) && min(idx)>=imin && max(idx)< imax ) + || ( valid_range(idx) && idx[0]>=imin && idx[2]< imax ); -function _sort_general(arr, idx=undef) = - (len(arr)<=1) ? arr : - let( - pivot = arr[floor(len(arr)/2)], - pivotval = idx==undef? pivot : [for (i=idx) pivot[i]], - compare = [ - for (entry = arr) let( - val = idx==undef? entry : [for (i=idx) entry[i]], - cmp = compare_vals(val, pivotval) - ) cmp - ], - lesser = [ for (i = [0:1:len(arr)-1]) if (compare[i] < 0) arr[i] ], - equal = [ for (i = [0:1:len(arr)-1]) if (compare[i] ==0) arr[i] ], - greater = [ for (i = [0:1:len(arr)-1]) if (compare[i] > 0) arr[i] ] - ) - concat(_sort_general(lesser,idx), equal, _sort_general(greater,idx)); - - - - // Function: sort() // Usage: @@ -799,20 +757,21 @@ function _sort_general(arr, idx=undef) = // sorted = sort(l); // Returns [2,3,8,9,12,16,23,34,37,45,89] function sort(list, idx=undef) = !is_list(list) || len(list)<=1 ? list : - assert( is_undef(idx) || is_finite(idx) || is_vector(idx) || is_range(idx) , "Invalid indices.") - is_def(idx) ? _sort_general(list,idx) : - let(size = array_dim(list)) - len(size)==1 ? _sort_scalars(list) : - len(size)==2 && size[1] <=4 - ? ( - size[1]==0 ? list : - size[1]==1 ? _sort_vectors1(list) : - size[1]==2 ? _sort_vectors2(list) : - size[1]==3 ? _sort_vectors3(list) - /*size[1]==4*/ : _sort_vectors4(list) - ) - : _sort_general(list); - + is_def(idx) + ? assert( _valid_idx(idx,0,len(list)) , "Invalid indices.") + let( sarr = _sort_general(list,idx) ) + [for(i=[0:len(sarr)-1]) list[sarr[i]] ] + : let(size = array_dim(list)) + len(size)==1 ? _sort_scalars(list) : + len(size)==2 && size[1] <=4 + ? ( + size[1]==0 ? list : + size[1]==1 ? _sort_vectors1(list) : + size[1]==2 ? _sort_vectors2(list) : + size[1]==3 ? _sort_vectors3(list) + /*size[1]==4*/ : _sort_vectors4(list) + ) + : _sort_general(list); // Function: sortidx() @@ -838,13 +797,13 @@ function sort(list, idx=undef) = // idxs3 = sortidx(lst, idx=[1,3]); // Returns: [3,0,2,1] function sortidx(list, idx=undef) = assert( is_list(list) || is_string(list) , "Invalid input to sort." ) - assert( is_undef(idx) || is_finite(idx) || is_vector(idx) , "Invalid indices.") + assert( _valid_idx(idx,0,len(list)) , "Invalid indices.") list==[] ? [] : let( size = array_dim(list), aug = is_undef(idx) && (len(size) == 1 || (len(size) == 2 && size[1]<=4)) ? zip(list, list_range(len(list))) - : enumerate(list,idx=idx) + : 0 ) is_undef(idx) && len(size) == 1? subindex(_sort_vectors1(aug),1) : is_undef(idx) && len(size) == 2 && size[1] <=4 @@ -856,25 +815,8 @@ function sortidx(list, idx=undef) = /*size[1]==4*/ : subindex(_sort_vectors4(aug),4) ) : // general case - subindex(_sort_general(aug, idx=list_range(s=1,n=len(aug)-1)), 0); + _sort_general(list,idx); -function sortidx(list, idx=undef) = - list==[] ? [] : let( - size = array_dim(list), - aug = is_undef(idx) && (len(size) == 1 || (len(size) == 2 && size[1]<=4))? - zip(list, list_range(len(list))) : - enumerate(list,idx=idx) - ) - is_undef(idx) && len(size) == 1? subindex(_sort_vectors1(aug),1) : - is_undef(idx) && len(size) == 2 && size[1] <=4? ( - size[1]==0? list_range(len(arr)) : - size[1]==1? subindex(_sort_vectors1(aug),1) : - size[1]==2? subindex(_sort_vectors2(aug),2) : - size[1]==3? subindex(_sort_vectors3(aug),3) : - /*size[1]==4*/ subindex(_sort_vectors4(aug),4) - ) : - // general case - subindex(_sort_general(aug, idx=list_range(s=1,n=len(aug)-1)), 0); // sort() does not accept strings but sortidx does; isn't inconsistent ? @@ -896,7 +838,6 @@ function unique(arr) = ]; - // Function: unique_count() // Usage: // unique_count(arr); @@ -913,8 +854,6 @@ function unique_count(arr) = [ select(arr,ind), deltas( concat(ind,[len(arr)]) ) ]; - - // Section: List Iteration Helpers // Function: idx() @@ -952,10 +891,10 @@ function idx(list, step=1, end=-1,start=0) = // for (p=enumerate(colors)) right(20*p[0]) color(p[1]) circle(d=10); function enumerate(l,idx=undef) = assert(is_list(l)||is_string(list), "Invalid input." ) - assert(is_undef(idx)||is_finite(idx)||is_vector(idx) ||is_range(idx), "Invalid index/indices." ) + assert( _valid_idx(idx,0,len(l)), "Invalid index/indices." ) (idx==undef) ? [for (i=[0:1:len(l)-1]) [i,l[i]]] - : [for (i=[0:1:len(l)-1]) concat([i], [for (j=idx) l[i][j]])]; + : [for (i=[0:1:len(l)-1]) [ i, for (j=idx) l[i][j]] ]; // Function: force_list() @@ -1109,8 +1048,6 @@ function set_union(a, b, get_indices=false) = ) [idxs, nset]; - - // Function: set_difference() // Usage: // s = set_difference(a, b); @@ -1130,7 +1067,6 @@ function set_difference(a, b) = [ for (i=idx(a)) if(found[i]==[]) a[i] ]; - // Function: set_intersection() // Usage: // s = set_intersection(a, b); @@ -1151,7 +1087,6 @@ function set_intersection(a, b) = - // Section: Array Manipulation // Function: add_scalar() @@ -1170,14 +1105,14 @@ function add_scalar(v,s) = is_finite(s) ? [for (x=v) is_list(x)? add_scalar(x,s) : is_finite(x) ? x+s: x] : v; - // Function: subindex() // Usage: // subindex(M, idx) // Description: // Extracts the entries listed in idx from each entry in M. For a matrix this means -// selecting a specified set of columsn. If idx is a number the return is a vector, otherwise -// it is a list of lists (the submatrix). +// selecting a specified set of columns. If idx is a number the return is a vector, +// otherwise it is a list of lists (the submatrix). +// This function will return `undef` at all entry positions indexed by idx not found in the input list M. // Arguments: // M = The given list of lists. // idx = The index, list of indices, or range of indices to fetch. @@ -1187,11 +1122,45 @@ function add_scalar(v,s) = // subindex(M,[2]); // Returns [[3], [7], [11], [15]] // subindex(M,[2,1]); // Returns [[3, 2], [7, 6], [11, 10], [15, 14]] // subindex(M,[1:3]); // Returns [[2, 3, 4], [6, 7, 8], [10, 11, 12], [14, 15, 16]] +// N = [ [1,2], [3], [4,5], [6,7,8] ]; +// subindex(N,[0,1]); // Returns [ [1,2], [3,undef], [4,5], [6,7] ] function subindex(M, idx) = - is_num(idx) + assert( is_list(M), "The input is not a list." ) + assert( !is_undef(idx) && _valid_idx(idx,0,1/0), "Invalid index input." ) + is_finite(idx) ? [for(row=M) row[idx]] : [for(row=M) [for(i=idx) row[i]]]; + +// Function: submatrix() +// Usage: submatrix(M, idx1, idx2) +// Description: +// The input must be a list of lists (a matrix or 2d array). Returns a submatrix by selecting the rows listed in idx1 and columsn listed in idx2. +// Arguments: +// M = Given list of lists +// idx1 = rows index list or range +// idx2 = column index list or range +// Example: +// M = [[ 1, 2, 3, 4, 5], +// [ 6, 7, 8, 9,10], +// [11,12,13,14,15], +// [16,17,18,19,20], +// [21,22,23,24,25]]; +// submatrix(M,[1:2],[3:4]); // Returns [[9, 10], [14, 15]] +// submatrix(M,[1], [3,4])); // Returns [[9,10]] +// submatrix(M,1, [3,4])); // Returns [[9,10]] +// submatrix(M,1,3)); // Returns [[9]] +// submatrix(M, [3,4],1); // Returns [[17],[22]]); +// submatrix(M, [1,3],[2,4]); // Returns [[8,10],[18,20]]); +// A = [[true, 17, "test"], +// [[4,2], 91, false], +// [6, [3,4], undef]]; +// submatrix(A,[0,2],[1,2]); // Returns [[17, "test"], [[3, 4], undef]] + +function submatrix(M,idx1,idx2) = + [for(i=idx1) [for(j=idx2) M[i][j] ] ]; + + // Function: zip() // Usage: // zip(v1, v2, v3, [fit], [fill]); @@ -1318,6 +1287,10 @@ function array_dim(v, depth=undef) = // Function: transpose() // Description: Returns the transposition of the given array. +// When reverse=true, the transposition is done in respect to the secondary diagonal, that is: +// . +// reverse(transpose(reverse(arr))) == transpose(arr, reverse=true) +// By default, reverse=false. // Example: // arr = [ // ["a", "b", "c"], @@ -1344,16 +1317,32 @@ function array_dim(v, depth=undef) = // // ["c", "f"], // // ] // Example: +// arr = [ +// ["a", "b", "c"], +// ["d", "e", "f"], +// ["g", "h", "i"] +// ]; +// t = transpose(arr, reverse=true); +// // Returns: +// // [ +// // ["i", "f", "c"], +// // ["h", "e", "b"], +// // ["g", "d", "a"] +// // ] +// Example: // transpose([3,4,5]); // Returns: [3,4,5] -function transpose(arr) = - let( a0 = arr[0] ) - is_list(a0) - ? assert([for(a=arr) if(len(a)!=len(a0)) 1]==[], "The array is not a matrix." ) - [for (i=[0:1:len(a0)-1]) - [ for (j=[0:1:len(arr)-1]) arr[j][i] ] ] - : arr; - - +function transpose(arr, reverse=false) = + assert( is_list(arr) && len(arr)>0, "The array is not a vector neither a matrix." ) + is_list(arr[0]) + ? let( l0 = len(arr[0]) ) + assert([for(a=arr) if(!is_list(a) || len(a)!=l0) 1 ]==[], "The array is not a vector neither a matrix." ) + reverse + ? [for (i=[0:1:l0-1]) + [ for (j=[0:1:len(arr)-1]) arr[len(arr)-1-j][l0-1-i] ] ] + : [for (i=[0:1:l0-1]) + [ for (j=[0:1:len(arr)-1]) arr[j][i] ] ] + : assert( is_vector(arr), "The array is not a vector neither a matrix." ) + arr; // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap diff --git a/common.scad b/common.scad index d8941ee..eebd141 100644 --- a/common.scad +++ b/common.scad @@ -140,7 +140,7 @@ function _list_pattern(list) = // is_consistent(list) // Description: // Tests whether input is a list of entries which all have the same list structure -// and are filled with finite numerical data. +// and are filled with finite numerical data. It returns `true`for the empty list. // Example: // is_consistent([3,4,5]); // Returns true // is_consistent([[3,4],[4,5],[6,7]]); // Returns true diff --git a/math.scad b/math.scad index e9b8579..158b1f2 100644 --- a/math.scad +++ b/math.scad @@ -84,7 +84,7 @@ function hypot(x,y,z=0) = // y = factorial(6); // Returns: 720 // z = factorial(9); // Returns: 362880 function factorial(n,d=0) = - assert(is_int(n) && is_int(d) && n>=0 && d>=0, "Factorial is not defined for negative numbers") + assert(is_int(n) && is_int(d) && n>=0 && d>=0, "Factorial is defined only for non negative integers") assert(d<=n, "d cannot be larger than n") product([1,for (i=[n:-1:d+1]) i]); @@ -164,7 +164,7 @@ function binomial_coefficient(n,k) = function lerp(a,b,u) = assert(same_shape(a,b), "Bad or inconsistent inputs to lerp") is_finite(u)? (1-u)*a + u*b : - assert(is_finite(u) || is_vector(u) || valid_range(u), "Input u to lerp must be a number, vector, or range.") + assert(is_finite(u) || is_vector(u) || valid_range(u), "Input u to lerp must be a number, vector, or valid range.") [for (v = u) (1-v)*a + v*b ]; @@ -387,12 +387,13 @@ function modang(x) = // modrange(90,270,360, step=-45); // Returns: [90,45,0,315,270] // modrange(270,90,360, step=-45); // Returns: [270,225,180,135,90] function modrange(x, y, m, step=1) = - assert( is_finite(x+y+step+m) && !approx(m,0), "Input must be finite numbers. The module value cannot be zero.") + assert( is_finite(x+y+step+m) && !approx(m,0), "Input must be finite numbers and the module value cannot be zero." ) let( a = posmod(x, m), b = posmod(y, m), - c = step>0? (a>b? b+m : b) : (a0? (a>b? b+m : b) + : (a=len(v) ? _total : _sum(v,_total+v[_i], _i+1); // cumsum([2,2,2]); // returns [2,4,6] // cumsum([1,2,3]); // returns [1,3,6] // cumsum([[1,2,3], [3,4,5], [5,6,7]]); // returns [[1,2,3], [4,6,8], [9,12,15]] -function cumsum(v,_i=0,_acc=[]) = +function cumsum(v) = + assert(is_consistent(v), "The input is not consistent." ) + _cumsum(v,_i=0,_acc=[]); + +function _cumsum(v,_i=0,_acc=[]) = _i==len(v) ? _acc : - cumsum( + _cumsum( v, _i+1, concat( _acc, @@ -598,7 +603,7 @@ function deltas(v) = // Description: // Returns the product of all entries in the given list. // If passed a list of vectors of same dimension, returns a vector of products of each part. -// If passed a list of square matrices, returns a the resulting product matrix. +// If passed a list of square matrices, returns the resulting product matrix. // Arguments: // v = The list to get the product of. // Example: @@ -606,7 +611,7 @@ function deltas(v) = // product([[1,2,3], [3,4,5], [5,6,7]]); // returns [15, 48, 105] function product(v) = assert( is_vector(v) || is_matrix(v) || ( is_matrix(v[0],square=true) && is_consistent(v)), - "Invalid input.") + "Invalid input.") _product(v, 1, v[0]); function _product(v, i=0, _tot) = @@ -691,9 +696,11 @@ function linear_solve(A,b) = zeros = [for(i=[0:mindim-1]) if (approx(R[i][i],0)) i] ) zeros != [] ? [] : - mj ? 0 : qr[1][i][j] + qr =_qr_factor(A, Q=ident(m), column=0, m = m, n=n), + Rzero = + let( R = qr[1] ) + [ for(i=[0:m-1]) [ + let( ri = R[i] ) + for(j=[0:n-1]) i>j ? 0 : ri[j] ] - ] + ] ) [qr[0],Rzero]; function _qr_factor(A,Q, column, m, n) = @@ -767,13 +763,12 @@ function back_substitute(R, b, transpose = false) = let(n=len(R)) assert(is_vector(b,n) || is_matrix(b,n),str("R and b are not compatible in back_substitute ",n, len(b))) transpose - ? reverse(_back_substitute([for(i=[0:n-1]) [for(j=[0:n-1]) R[n-1-j][n-1-i]]], - reverse(b))) + ? reverse(_back_substitute(transpose(R, reverse=true), reverse(b))) : _back_substitute(R,b); function _back_substitute(R, b, x=[]) = - let(n=len(R)) - len(x) == n ? x + let(n=len(R)) + len(x) == n ? x : let(ind = n - len(x) - 1) R[ind][ind] == 0 ? [] : let( @@ -793,7 +788,7 @@ function _back_substitute(R, b, x=[]) = // M = [ [6,-2], [1,8] ]; // det = det2(M); // Returns: 50 function det2(M) = - assert( is_matrix(M,2,2), "Matrix should be 2x2." ) + assert( 0*M==[[0,0],[0,0]], "Matrix should be 2x2." ) M[0][0] * M[1][1] - M[0][1]*M[1][0]; @@ -806,7 +801,7 @@ function det2(M) = // M = [ [6,4,-2], [1,-2,8], [1,5,7] ]; // det = det3(M); // Returns: -334 function det3(M) = - assert( is_matrix(M,3,3), "Matrix should be 3x3." ) + assert( 0*M==[[0,0,0],[0,0,0],[0,0,0]], "Matrix should be 3x3." ) M[0][0] * (M[1][1]*M[2][2]-M[2][1]*M[1][2]) - M[1][0] * (M[0][1]*M[2][2]-M[2][1]*M[0][2]) + M[2][0] * (M[0][1]*M[1][2]-M[1][1]*M[0][2]); @@ -846,7 +841,7 @@ function determinant(M) = // Description: // Returns true if A is a numeric matrix of height m and width n. If m or n // are omitted or set to undef then true is returned for any positive dimension. -// If `square` is true then the matrix is required to be square. Note if you +// If `square` is true then the matrix is required to be square. // specify m != n and require a square matrix then the result will always be false. // Arguments: // A = matrix to test @@ -855,10 +850,10 @@ function determinant(M) = // square = set to true to require a square matrix. Default: false function is_matrix(A,m,n,square=false) = is_list(A[0]) -    && ( let(v = A*A[0]) is_num(0*(v*v)) ) // a matrix of finite numbers -    && (is_undef(n) || len(A[0])==n ) -    && (is_undef(m) || len(A)==m ) -    && ( !square || len(A)==len(A[0])); + && ( let(v = A*A[0]) is_num(0*(v*v)) ) // a matrix of finite numbers + && (is_undef(n) || len(A[0])==n ) + && (is_undef(m) || len(A)==m ) + && ( !square || len(A)==len(A[0])); // Section: Comparisons and Logic @@ -948,13 +943,16 @@ function compare_lists(a, b) = // any([1,5,true]); // Returns true. // any([[0,0], [0,0]]); // Returns false. // any([[0,0], [1,0]]); // Returns true. -function any(l, i=0, succ=false) = - (i>=len(l) || succ)? succ : - any( l, - i+1, - succ = is_list(l[i]) ? any(l[i]) : !(!l[i]) - ); +function any(l) = + assert(is_list(l), "The input is not a list." ) + _any(l, i=0, succ=false); +function _any(l, i=0, succ=false) = + (i>=len(l) || succ)? succ : + _any( l, + i+1, + succ = is_list(l[i]) ? _any(l[i]) : !(!l[i]) + ); // Function: all() @@ -971,12 +969,15 @@ function any(l, i=0, succ=false) = // all([[0,0], [1,0]]); // Returns false. // all([[1,1], [1,1]]); // Returns true. function all(l, i=0, fail=false) = - (i>=len(l) || fail)? !fail : - all( l, - i+1, - fail = is_list(l[i]) ? !all(l[i]) : !l[i] - ) ; + assert( is_list(l), "The input is not a list." ) + _all(l, i=0, fail=false); +function _all(l, i=0, fail=false) = + (i>=len(l) || fail)? !fail : + _all( l, + i+1, + fail = is_list(l[i]) ? !_all(l[i]) : !l[i] + ) ; // Function: count_true() @@ -999,16 +1000,6 @@ function all(l, i=0, fail=false) = // count_true([[0,0], [1,0]]); // Returns 1. // count_true([[1,1], [1,1]]); // Returns 4. // count_true([[1,1], [1,1]], nmax=3); // Returns 3. -function count_true(l, nmax=undef, i=0, cnt=0) = - (i>=len(l) || (nmax!=undef && cnt>=nmax))? cnt : - count_true( - l=l, nmax=nmax, i=i+1, cnt=cnt+( - is_list(l[i])? count_true(l[i], nmax=nmax-cnt) : - (l[i]? 1 : 0) - ) - ); - - function count_true(l, nmax) = !is_list(l) ? !(!l) ? 1: 0 : let( c = [for( i = 0, @@ -1204,12 +1195,12 @@ function C_div(z1,z2) = // where a_n is the z^n coefficient. Polynomial coefficients are real. // The result is a number if `z` is a number and a complex number otherwise. function polynomial(p,z,k,total) = - is_undef(k) - ? assert( is_vector(p) , "Input polynomial coefficients must be a vector." ) - assert( is_finite(z) || is_vector(z,2), "The value of `z` must be a real or a complex number." ) - polynomial( _poly_trim(p), z, 0, is_num(z) ? 0 : [0,0]) - : k==len(p) ? total - : polynomial(p,z,k+1, is_num(z) ? total*z+p[k] : C_times(total,z)+[p[k],0]); +    is_undef(k) +    ?   assert( is_vector(p) , "Input polynomial coefficients must be a vector." ) +        assert( is_finite(z) || is_vector(z,2), "The value of `z` must be a real or a complex number." ) +        polynomial( _poly_trim(p), z, 0, is_num(z) ? 0 : [0,0]) +    : k==len(p) ? total +    : polynomial(p,z,k+1, is_num(z) ? total*z+p[k] : C_times(total,z)+[p[k],0]); // Function: poly_mult() // Usage: @@ -1219,35 +1210,15 @@ function polynomial(p,z,k,total) = // Given a list of polynomials represented as real coefficient lists, with the highest degree coefficient first, // computes the coefficient list of the product polynomial. function poly_mult(p,q) = - is_undef(q) ? - assert( is_list(p) - && []==[for(pi=p) if( !is_vector(pi) && pi!=[]) 0], - "Invalid arguments to poly_mult") - len(p)==2 ? poly_mult(p[0],p[1]) - : poly_mult(p[0], poly_mult(select(p,1,-1))) - : - _poly_trim( - [ - for(n = [len(p)+len(q)-2:-1:0]) - sum( [for(i=[0:1:len(p)-1]) - let(j = len(p)+len(q)- 2 - n - i) - if (j>=0 && j=0 && j // dim = list of allowed dimensions of the vectors in the path. Default: [2,3] // fast = set to true for fast check that only looks at first entry. Default: false function is_path(list, dim=[2,3], fast=false) = - fast? is_list(list) && is_vector(list[0]) : - is_list(list) && is_list(list[0]) && len(list)>1 && - (is_undef(dim) || in_list(len(list[0]), force_list(dim))) && - is_list_of(list, repeat(0,len(list[0]))); + fast + ? is_list(list) && is_vector(list[0]) + : is_matrix(list) + && len(list)>1 + && len(list[0])>0 + && (is_undef(dim) || in_list(len(list[0]), force_list(dim))); // Function: is_closed_path() @@ -105,32 +107,51 @@ function path_subselect(path, s1, u1, s2, u2, closed=false) = // Function: simplify_path() // Description: -// Takes a path and removes unnecessary collinear points. +// Takes a path and removes unnecessary subsequent collinear points. // Usage: // simplify_path(path, [eps]) // Arguments: -// path = A list of 2D path points. +// path = A list of path points of any dimension. // eps = Largest positional variance allowed. Default: `EPSILON` (1-e9) function simplify_path(path, eps=EPSILON) = - len(path)<=2? path : let( - indices = concat([0], [for (i=[1:1:len(path)-2]) if (!collinear_indexed(path, i-1, i, i+1, eps=eps)) i], [len(path)-1]) - ) [for (i = indices) path[i]]; + assert( is_path(path), "Invalid path." ) + assert( is_undef(eps) || (is_finite(eps) && (eps>=0) ), "Invalid tolerance." ) + len(path)<=2 ? path + : let( + indices = [ 0, + for (i=[1:1:len(path)-2]) + if (!collinear(path[i-1],path[i],path[i+1], eps=eps)) i, + len(path)-1 + ] + ) + [for (i = indices) path[i] ]; // Function: simplify_path_indexed() // Description: -// Takes a list of points, and a path as a list of indices into `points`, -// and removes all path points that are unecessarily collinear. +// Takes a list of points, and a list of indices into `points`, +// and removes from the list all indices of subsequent indexed points that are unecessarily collinear. +// Returns the list of the remained indices. // Usage: -// simplify_path_indexed(path, eps) +// simplify_path_indexed(points,indices, eps) // Arguments: // points = A list of points. -// path = A list of indices into `points` that forms a path. +// indices = A list of indices into `points` that forms a path. // eps = Largest angle variance allowed. Default: EPSILON (1-e9) degrees. -function simplify_path_indexed(points, path, eps=EPSILON) = - len(path)<=2? path : let( - indices = concat([0], [for (i=[1:1:len(path)-2]) if (!collinear_indexed(points, path[i-1], path[i], path[i+1], eps=eps)) i], [len(path)-1]) - ) [for (i = indices) path[i]]; +function simplify_path_indexed(points, indices, eps=EPSILON) = + len(indices)<=2? indices + : let( + indices = concat( indices[0], + [for (i=[1:1:len(indices)-2]) + let( + i1 = indices[i-1], + i2 = indices[i], + i3 = indices[i+1] + ) + if (!collinear(points[i1],points[i2],points[i3], eps=eps)) indices[i]], + indices[len(indices)-1] ) + ) + indices; // Function: path_length() diff --git a/tests/test_arrays.scad b/tests/test_arrays.scad index 4fffb7d..8df23a8 100644 --- a/tests/test_arrays.scad +++ b/tests/test_arrays.scad @@ -3,14 +3,6 @@ include <../std.scad> // Section: List Query Operations -module test_is_simple_list() { - assert(is_simple_list([1,2,3,4])); - assert(is_simple_list([])); - assert(!is_simple_list([1,2,[3,4]])); -} -test_is_simple_list(); - - module test_select() { l = [3,4,5,6,7,8,9]; assert(select(l, 5, 6) == [8,9]); @@ -365,6 +357,27 @@ module test_subindex() { test_subindex(); +// Need decision about behavior for out of bounds ranges, empty ranges +module test_submatrix(){ + M = [[1,2,3,4,5], + [6,7,8,9,10], + [11,12,13,14,15], + [16,17,18,19,20], + [21,22,23,24,25]]; + assert_equal(submatrix(M,[1:2], [3:4]), [[9,10],[14,15]]); + assert_equal(submatrix(M,[1], [3,4]), [[9,10]]); + assert_equal(submatrix(M,1, [3,4]), [[9,10]]); + assert_equal(submatrix(M, [3,4],1), [[17],[22]]); + assert_equal(submatrix(M, [1,3],[2,4]), [[8,10],[18,20]]); + assert_equal(submatrix(M, 1,3), [[9]]); + A = [[true, 17, "test"], + [[4,2], 91, false], + [6, [3,4], undef]]; + assert_equal(submatrix(A,[0,2],[1,2]),[[17, "test"], [[3, 4], undef]]); +} +test_submatrix(); + + module test_force_list() { assert_equal(force_list([3,4,5]), [3,4,5]); assert_equal(force_list(5), [5]); @@ -467,6 +480,7 @@ test_array_dim(); module test_transpose() { assert(transpose([[1,2,3],[4,5,6],[7,8,9]]) == [[1,4,7],[2,5,8],[3,6,9]]); assert(transpose([[1,2,3],[4,5,6]]) == [[1,4],[2,5],[3,6]]); + assert(transpose([[1,2,3],[4,5,6]],reverse=true) == [[6,3], [5,2], [4,1]]); assert(transpose([3,4,5]) == [3,4,5]); } test_transpose(); diff --git a/tests/test_math.scad b/tests/test_math.scad index e5b1a41..12f7d2e 100644 --- a/tests/test_math.scad +++ b/tests/test_math.scad @@ -853,22 +853,6 @@ module test_real_roots(){ } test_real_roots(); -// Need decision about behavior for out of bounds ranges, empty ranges -module test_submatrix(){ - M = [[1,2,3,4,5], - [6,7,8,9,10], - [11,12,13,14,15], - [16,17,18,19,20], - [21,22,23,24,25]]; - assert_equal(submatrix(M,[1:2], [3:4]), [[9,10],[14,15]]); - assert_equal(submatrix(M,[1], [3,4]), [[9,10]]); - assert_equal(submatrix(M,1, [3,4]), [[9,10]]); - assert_equal(submatrix(M, [3,4],1), [[17],[22]]); - assert_equal(submatrix(M, [1,3],[2,4]), [[8,10],[18,20]]); -} -test_submatrix(); - - module test_qr_factor() { // Check that R is upper triangular @@ -913,23 +897,21 @@ test_qr_factor(); module test_poly_mult(){ assert_equal(poly_mult([3,2,1],[4,5,6,7]),[12,23,32,38,20,7]); - assert_equal(poly_mult([3,2,1],[0]),[0]); -// assert_equal(poly_mult([3,2,1],[]),[]); assert_equal(poly_mult([[1,2],[3,4],[5,6]]), [15,68,100,48]); + assert_equal(poly_mult([3,2,1],[0]),[0]); assert_equal(poly_mult([[1,2],[0],[5,6]]), [0]); -// assert_equal(poly_mult([[1,2],[],[5,6]]), []); - assert_equal(poly_mult([[3,4,5],[0,0,0]]),[0]); -// assert_equal(poly_mult([[3,4,5],[0,0,0]]),[]); + assert_equal(poly_mult([[3,4,5],[0,0,0]]), [0]); + assert_equal(poly_mult([[0],[0,0,0]]),[0]); } test_poly_mult(); module test_poly_div(){ assert_equal(poly_div(poly_mult([4,3,3,2],[2,1,3]), [2,1,3]),[[4,3,3,2],[0]]); -// assert_equal(poly_div(poly_mult([4,3,3,2],[2,1,3]), [2,1,3]),[[4,3,3,2],[]]); assert_equal(poly_div([1,2,3,4],[1,2,3,4,5]), [[], [1,2,3,4]]); assert_equal(poly_div(poly_add(poly_mult([1,2,3,4],[2,0,2]), [1,1,2]), [1,2,3,4]), [[2,0,2],[1,1,2]]); assert_equal(poly_div([1,2,3,4], [1,-3]), [[1,5,18],[58]]); + assert_equal(poly_div([0], [1,-3]), [[0],[0]]); } test_poly_div(); @@ -942,4 +924,4 @@ module test_poly_add(){ } test_poly_add(); -// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap +// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap \ No newline at end of file