Removed overrides for square() and circle() builtin modules.

This commit is contained in:
Revar Desmera 2020-04-25 04:00:16 -07:00
parent 104a43bd1f
commit ff96db86d2
7 changed files with 357 additions and 323 deletions

View file

@ -729,7 +729,7 @@ function reorient(
//
// Example(NORENDER): Spherical Shape
// attachable(anchor, spin, orient, r=r) {
// staggered_sphere(r=r);
// sphere(r=r);
// children();
// }
//

View file

@ -2,7 +2,7 @@ include <BOSL2/std.scad>
include <BOSL2/debug.scad>
sphere(d=30) show_anchors();
spheroid(d=30) show_anchors();
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap

View file

@ -14,138 +14,59 @@
// Function&Module: square()
// Usage:
// square(size, [center], [rounding], [chamfer], [anchor], [spin])
// square(size, [center])
// Description:
// When called as a module, creates a 2D square of the given size, with optional rounding or chamfering.
// When called as the builtin module, creates a 2D square or rectangle of the given size.
// When called as a function, returns a 2D path/list of points for a square/rectangle of the given size.
// Arguments:
// size = The size of the square to create. If given as a scalar, both X and Y will be the same size.
// rounding = The rounding radius for the corners. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no rounding)
// chamfer = The chamfer size for the corners. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no chamfer)
// center = If given and true, overrides `anchor` to be `CENTER`. If given and false, overrides `anchor` to be `FRONT+LEFT`.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// anchor = (Function only) Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = (Function only) Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// Example(2D):
// square(40);
// Example(2D): Centered
// square([40,30], center=true);
// Example(2D): Anchored
// square([40,30], anchor=FRONT);
// Example(2D): Spun
// square([40,30], anchor=FRONT, spin=30);
// Example(2D): Chamferred Rect
// square([40,30], chamfer=5, center=true);
// Example(2D): Rounded Rect
// square([40,30], rounding=5, center=true);
// Example(2D): Mixed Chamferring and Rounding
// square([40,30],center=true,rounding=[5,0,10,0],chamfer=[0,8,0,15],$fa=1,$fs=1);
// Example(2D): Called as Function
// path = square([40,30], chamfer=5, anchor=FRONT, spin=30);
// path = square([40,30], anchor=FRONT, spin=30);
// stroke(path, closed=true);
// move_copies(path) color("blue") circle(d=2,$fn=8);
module square(size=1, center, rounding=0, chamfer=0, anchor, spin=0) {
size = is_num(size)? [size,size] : point2d(size);
anchor = get_anchor(anchor, center, FRONT+LEFT, FRONT+LEFT);
pts = square(size=size, rounding=rounding, chamfer=chamfer, center=true);
attachable(anchor,spin, two_d=true, size=size) {
translate(-size/2) polygon(move(size/2,p=pts)); // Extraneous translation works around fine grid quantizing.
children();
}
}
function square(size=1, center, rounding=0, chamfer=0, anchor, spin=0) =
assert(is_num(size) || is_vector(size))
assert(is_num(chamfer) || len(chamfer)==4)
assert(is_num(rounding) || len(rounding)==4)
function square(size=1, center, anchor, spin=0) =
let(
anchor = get_anchor(anchor, center, [-1,-1], [-1,-1]),
size = is_num(size)? [size,size] : point2d(size),
anchor = get_anchor(anchor, center, FRONT+LEFT, FRONT+LEFT),
complex = rounding!=0 || chamfer!=0
)
(rounding==0 && chamfer==0)? let(
path = [
[ size.x/2, -size.y/2],
[-size.x/2, -size.y/2],
[-size.x/2, size.y/2],
[ size.x/2, size.y/2]
]
) rot(spin, p=move(-vmul(anchor,size/2), p=path)) :
let(
chamfer = is_list(chamfer)? chamfer : [for (i=[0:3]) chamfer],
rounding = is_list(rounding)? rounding : [for (i=[0:3]) rounding],
quadorder = [3,2,1,0],
quadpos = [[1,1],[-1,1],[-1,-1],[1,-1]],
insets = [for (i=[0:3]) chamfer[i]>0? chamfer[i] : rounding[i]>0? rounding[i] : 0],
insets_x = max(insets[0]+insets[1],insets[2]+insets[3]),
insets_y = max(insets[0]+insets[3],insets[1]+insets[2])
)
assert(insets_x <= size.x, "Requested roundings and/or chamfers exceed the square width.")
assert(insets_y <= size.y, "Requested roundings and/or chamfers exceed the square height.")
let(
path = [
for(i = [0:3])
let(
quad = quadorder[i],
inset = insets[quad],
cverts = quant(segs(inset),4)/4,
cp = vmul(size/2-[inset,inset], quadpos[quad]),
step = 90/cverts,
angs =
chamfer[quad] > 0? [0,-90]-90*[i,i] :
rounding[quad] > 0? [for (j=[0:1:cverts]) 360-j*step-i*90] :
[0]
)
each [for (a = angs) cp + inset*[cos(a),sin(a)]]
]
) complex?
reorient(anchor,spin, two_d=true, path=path, p=path) :
reorient(anchor,spin, two_d=true, size=size, p=path);
[ size.x,-size.y],
[-size.x,-size.y],
[-size.x, size.y],
[ size.x, size.y]
] / 2
) reorient(anchor,spin, two_d=true, size=size, p=path);
// Function&Module: circle()
// Usage:
// circle(r|d, [realign], [circum])
// circle(r|d)
// Description:
// When called as a module, creates a 2D polygon that approximates a circle of the given size.
// When called as the builtin module, creates a 2D polygon that approximates a circle of the given size.
// When called as a function, returns a 2D list of points (path) for a polygon that approximates a circle of the given size.
// Arguments:
// r = The radius of the circle to create.
// d = The diameter of the circle to create.
// realign = If true, rotates the polygon that approximates the circle by half of one size.
// circum = If true, the polygon that approximates the circle will be upsized slightly to circumscribe the theoretical circle. If false, it inscribes the theoretical circle. Default: false
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// anchor = (Function only) Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = (Function only) Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// Example(2D): By Radius
// circle(r=25);
// Example(2D): By Diameter
// circle(d=50);
// Example(2D): Anchoring
// circle(d=50, anchor=FRONT);
// Example(2D): Spin
// circle(d=50, anchor=FRONT, spin=45);
// Example(NORENDER): Called as Function
// path = circle(d=50, anchor=FRONT, spin=45);
module circle(r, d, realign=false, circum=false, anchor=CENTER, spin=0) {
r = get_radius(r=r, d=d, dflt=1);
sides = segs(r);
rr = circum? r/cos(180/sides) : r;
pts = circle(r=rr, realign=realign, $fn=sides);
attachable(anchor,spin, two_d=true, r=rr) {
polygon(pts);
children();
}
}
function circle(r, d, realign=false, circum=false, anchor=CENTER, spin=0) =
function circle(r, d, anchor=CENTER, spin=0) =
let(
r = get_radius(r=r, d=d, dflt=1),
sides = segs(r),
offset = realign? 180/sides : 0,
rr = r / (circum? cos(180/sides) : 1),
pts = [for (i=[0:1:sides-1]) let(a=360-offset-i*360/sides) rr*[cos(a),sin(a)]]
) reorient(anchor,spin, two_d=true, r=rr, p=pts);
path = [for (i=[0:1:sides-1]) let(a=360-i*360/sides) r*[cos(a),sin(a)]]
) reorient(anchor,spin, two_d=true, r=r, p=path);
@ -185,10 +106,11 @@ function circle(r, d, realign=false, circum=false, anchor=CENTER, spin=0) =
module cube(size=1, center, anchor, spin=0, orient=UP)
{
anchor = get_anchor(anchor, center, ALLNEG, ALLNEG);
vnf = cube(size, center=true);
siz = scalar_vec3(size);
attachable(anchor,spin,orient, size=siz) {
vnf_polyhedron(vnf, convexity=2);
size = scalar_vec3(size);
attachable(anchor,spin,orient, size=size) {
linear_extrude(height=size.z, center=true, convexity=2) {
square([size.x,size.y], center=true);
}
children();
}
}
@ -266,9 +188,18 @@ module cylinder(h, r1, r2, center, l, r, d, d1, d2, anchor, spin=0, orient=UP)
r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=1);
l = first_defined([h, l, 1]);
sides = segs(max(r1,r2));
vnf = cylinder(l=l, r1=r1, r2=r2, center=true);
attachable(anchor,spin,orient, r1=r1, r2=r2, l=l) {
vnf_polyhedron(vnf, convexity=2);
if(r1>r2) {
linear_extrude(height=l, center=true, convexity=2, scale=r2/r1) {
circle(r=r1);
}
} else {
zflip() {
linear_extrude(height=l, center=true, convexity=2, scale=r1/r2) {
circle(r=r2);
}
}
}
children();
}
}
@ -307,7 +238,7 @@ function cylinder(h, r1, r2, center, l, r, d, d1, d2, anchor, spin=0, orient=UP)
// r = Radius of the sphere.
// d = Diameter of the sphere.
// circum = If true, the sphere is made large enough to circumscribe the sphere of the ideal side. Otherwise inscribes. Default: false (inscribes)
// style = The style of the sphere's construction. One of "orig", "alt", "stagger", or "icosa". Default: "orig"
// style = The style of the sphere's construction. One of "orig", "aligned", "stagger", or "icosa". Default: "orig"
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
@ -317,8 +248,8 @@ function cylinder(h, r1, r2, center, l, r, d, d1, d2, anchor, spin=0, orient=UP)
// sphere(d=100);
// Example: style="orig"
// sphere(d=100, style="orig", $fn=10);
// Example: style="alt"
// sphere(d=100, style="alt", $fn=10);
// Example: style="aligned"
// sphere(d=100, style="aligned", $fn=10);
// Example: style="stagger"
// sphere(d=100, style="stagger", $fn=10);
// Example: style="icosa"
@ -336,110 +267,12 @@ function cylinder(h, r1, r2, center, l, r, d, d1, d2, anchor, spin=0, orient=UP)
// Example: Called as Function
// vnf = sphere(d=100, style="icosa");
// vnf_polyhedron(vnf);
module sphere(r, d, circum=false, style="orig", anchor=CENTER, spin=0, orient=UP)
{
r = get_radius(r=r, d=d, dflt=1);
sides = segs(r);
vnf = sphere(r=r, circum=circum, style=style);
attachable(anchor,spin,orient, r=r) {
vnf_polyhedron(vnf, convexity=2);
children();
}
}
module sphere(r, d, circum=false, style="aligned", anchor=CENTER, spin=0, orient=UP)
spheroid(r=r, d=d, circum=circum, style=style, anchor=anchor, spin=spin, orient=orient) children();
function sphere(r, d, circum=false, style="orig", anchor=CENTER, spin=0, orient=UP) =
let(
r = get_radius(r=r, d=d, dflt=1),
hsides = segs(r),
vsides = max(2,ceil(hsides/2)),
icosa_steps = round(max(5,hsides)/5),
rr = circum? (r / cos(90/vsides) / cos(180/hsides)) : r,
stagger = style=="stagger",
verts = style=="orig"? [
for (i=[0:1:vsides-1]) let(phi = (i+0.5)*180/(vsides))
for (j=[0:1:hsides-1]) let(theta = j*360/hsides)
spherical_to_xyz(rr, theta, phi),
] : style=="alt" || style=="stagger"? [
spherical_to_xyz(rr, 0, 0),
for (i=[1:1:vsides-1]) let(phi = i*180/vsides)
for (j=[0:1:hsides-1]) let(theta = (j+((stagger && i%2!=0)?0.5:0))*360/hsides)
spherical_to_xyz(rr, theta, phi),
spherical_to_xyz(rr, 0, 180)
] : style=="icosa"? [
for (tb=[0,1], j=[0,2], i = [0:1:4]) let(
theta0 = i*360/5,
theta1 = (i-0.5)*360/5,
theta2 = (i+0.5)*360/5,
phi0 = 180/3 * j,
phi1 = 180/3,
v0 = spherical_to_xyz(1,theta0,phi0),
v1 = spherical_to_xyz(1,theta1,phi1),
v2 = spherical_to_xyz(1,theta2,phi1),
ax0 = vector_axis(v0, v1),
ang0 = vector_angle(v0, v1),
ax1 = vector_axis(v0, v2),
ang1 = vector_angle(v0, v2)
)
for (k = [0:1:icosa_steps]) let(
u = k/icosa_steps,
vv0 = rot(ang0*u, ax0, p=v0),
vv1 = rot(ang1*u, ax1, p=v0),
ax2 = vector_axis(vv0, vv1),
ang2 = vector_angle(vv0, vv1)
)
for (l = [0:1:k]) let(
v = k? l/k : 0,
pt = rot(ang2*v, v=ax2, p=vv0) * rr * (tb? -1 : 1)
) pt
] : assert(in_list(style,["orig","alt","stagger","icosa"])),
lv = len(verts),
faces = style=="orig"? [
[for (i=[0:1:hsides-1]) hsides-i-1],
[for (i=[0:1:hsides-1]) lv-hsides+i],
for (i=[0:1:vsides-2], j=[0:1:hsides-1]) each [
[(i+1)*hsides+j, i*hsides+j, i*hsides+(j+1)%hsides],
[(i+1)*hsides+j, i*hsides+(j+1)%hsides, (i+1)*hsides+(j+1)%hsides],
]
] : style=="alt" || style=="stagger"? [
for (i=[0:1:hsides-1]) let(
b2 = lv-2-hsides
) each [
[i+1, 0, ((i+1)%hsides)+1],
[lv-1, b2+i+1, b2+((i+1)%hsides)+1],
],
for (i=[0:1:vsides-3], j=[0:1:hsides-1]) let(
base = 1 + hsides*i
) each (
(stagger && i%2!=0)? [
[base+j, base+hsides+j%hsides, base+hsides+(j+hsides-1)%hsides],
[base+j, base+(j+1)%hsides, base+hsides+j],
] : [
[base+j, base+(j+1)%hsides, base+hsides+(j+1)%hsides],
[base+j, base+hsides+(j+1)%hsides, base+hsides+j],
]
)
] : style=="icosa"? let(
pyr = [for (x=[0:1:icosa_steps+1]) x],
tri = sum(pyr),
soff = cumsum(pyr)
) [
for (tb=[0,1], j=[0,1], i = [0:1:4]) let(
base = ((((tb*2) + j) * 5) + i) * tri
)
for (k = [0:1:icosa_steps-1])
for (l = [0:1:k]) let(
v1 = base + soff[k] + l,
v2 = base + soff[k+1] + l,
v3 = base + soff[k+1] + (l + 1),
faces = [
if(l>0) [v1-1,v1,v2],
[v1,v3,v2],
],
faces2 = (tb+j)%2? [for (f=faces) reverse(f)] : faces
) each faces2
] : []
) [reorient(anchor,spin,orient, r=r, p=verts), faces];
function sphere(r, d, circum=false, style="aligned", anchor=CENTER, spin=0, orient=UP) =
spheroid(r=r, d=d, circum=circum, style=style, anchor=anchor, spin=spin, orient=orient);
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap

View file

@ -205,12 +205,12 @@ module cuboid(
minkowski() {
cube(isize, center=true);
if (trimcorners) {
sphere(r=rounding, $fn=sides);
spheroid(r=rounding, $fn=sides);
} else {
intersection() {
cylinder(r=rounding, h=rounding*2, center=true, $fn=sides);
rotate([90,0,0]) cylinder(r=rounding, h=rounding*2, center=true, $fn=sides);
rotate([0,90,0]) cylinder(r=rounding, h=rounding*2, center=true, $fn=sides);
cyl(r=rounding, h=rounding*2, $fn=sides);
rotate([90,0,0]) cyl(r=rounding, h=rounding*2, $fn=sides);
rotate([0,90,0]) cyl(r=rounding, h=rounding*2, $fn=sides);
}
}
}
@ -269,7 +269,7 @@ module cuboid(
rotate(majrots[axis]) cube([rounding*2, rounding*2, size[axis]+0.1], center=true);
}
translate(vmul(EDGE_OFFSETS[axis][i], size/2 - [1,1,1]*rounding)) {
rotate(majrots[axis]) cylinder(h=size[axis]+0.2, r=rounding, center=true, $fn=sides);
rotate(majrots[axis]) cyl(h=size[axis]+0.2, r=rounding, $fn=sides);
}
}
}
@ -284,7 +284,7 @@ module cuboid(
cube(rounding*2, center=true);
}
translate(vmul([xa,ya,za], size/2-[1,1,1]*rounding)) {
sphere(r=rounding, $fn=sides);
spheroid(r=rounding, $fn=sides);
}
}
}
@ -422,12 +422,12 @@ module rounded_prismoid(
down(h/2) {
hull() {
linear_extrude(height=eps, center=false, convexity=2) {
square(size1, rounding=rr1, center=true);
rect(size1, rounding=rr1, center=true);
}
up(h-0.01) {
translate(shiftby) {
linear_extrude(height=eps, center=false, convexity=2) {
square(size2, rounding=rr2, center=true);
rect(size2, rounding=rr2, center=true);
}
}
}
@ -705,10 +705,7 @@ module cyl(
module xcyl(l=undef, r=undef, d=undef, r1=undef, r2=undef, d1=undef, d2=undef, h=undef, anchor=CENTER)
{
anchor = rot(from=RIGHT, to=UP, p=anchor);
cyl(l=l, h=h, r=r, r1=r1, r2=r2, d=d, d1=d1, d2=d2, orient=RIGHT, anchor=anchor) {
for (i=[0:1:$children-2]) children(i);
if ($children>0) children($children-1);
}
cyl(l=l, h=h, r=r, r1=r1, r2=r2, d=d, d1=d1, d2=d2, orient=RIGHT, anchor=anchor) children();
}
@ -746,10 +743,7 @@ module xcyl(l=undef, r=undef, d=undef, r1=undef, r2=undef, d1=undef, d2=undef, h
module ycyl(l=undef, r=undef, d=undef, r1=undef, r2=undef, d1=undef, d2=undef, h=undef, anchor=CENTER)
{
anchor = rot(from=BACK, to=UP, p=anchor);
cyl(l=l, h=h, r=r, r1=r1, r2=r2, d=d, d1=d1, d2=d2, orient=BACK, anchor=anchor) {
for (i=[0:1:$children-2]) children(i);
if ($children>0) children($children-1);
}
cyl(l=l, h=h, r=r, r1=r1, r2=r2, d=d, d1=d1, d2=d2, orient=BACK, anchor=anchor) children();
}
@ -786,10 +780,7 @@ module ycyl(l=undef, r=undef, d=undef, r1=undef, r2=undef, d1=undef, d2=undef, h
// }
module zcyl(l=undef, r=undef, d=undef, r1=undef, r2=undef, d1=undef, d2=undef, h=undef, anchor=CENTER)
{
cyl(l=l, h=h, r=r, r1=r1, r2=r2, d=d, d1=d1, d2=d2, orient=UP, anchor=anchor) {
for (i=[0:1:$children-2]) children(i);
if ($children>0) children($children-1);
}
cyl(l=l, h=h, r=r, r1=r1, r2=r2, d=d, d1=d1, d2=d2, orient=UP, anchor=anchor) children();
}
@ -915,7 +906,7 @@ module torus(
anchor = get_anchor(anchor, center, BOT, CENTER);
attachable(anchor,spin,orient, r=(majrad+minrad), l=minrad*2) {
rotate_extrude(convexity=4) {
right(majrad) circle(minrad);
right(majrad) circle(r=minrad);
}
children();
}
@ -923,106 +914,173 @@ module torus(
// Section: Spheroids
// Section: Spheroid
// Module: spheroid()
// Function&Module: spheroid()
// Usage: As Module
// spheroid(r|d, [circum], [style])
// Usage: As Function
// vnf = spheroid(r|d, [circum], [style])
// Description:
// An version of `sphere()` with anchors points and orientation.
// Usage:
// spheroid(r|d, [circum])
// Creates a spheroid object, with support for anchoring and attachments.
// This is a drop-in replacement for the built-in `sphere()` module.
// When called as a function, returns a [VNF](vnf.scad) for a spheroid.
// Arguments:
// r = Radius of the sphere.
// d = Diameter of the sphere.
// circum = If true, circumscribes the perfect sphere of the given radius/diameter.
// r = Radius of the spheroid.
// d = Diameter of the spheroid.
// circum = If true, the spheroid is made large enough to circumscribe the sphere of the ideal side. Otherwise inscribes. Default: false (inscribes)
// style = The style of the spheroid's construction. One of "orig", "aligned", "stagger", or "icosa". Default: "aligned"
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Example: By Radius
// spheroid(r=50, circum=true);
// spheroid(r=50);
// Example: By Diameter
// spheroid(d=100, circum=true);
// spheroid(d=100);
// Example: style="orig"
// spheroid(d=100, style="orig", $fn=10);
// Example: style="aligned"
// spheroid(d=100, style="aligned", $fn=10);
// Example: style="stagger"
// spheroid(d=100, style="stagger", $fn=10);
// Example: style="icosa"
// spheroid(d=100, style="icosa", $fn=10);
// // In "icosa" style, $fn is quantized
// // to the nearest multiple of 5.
// Example: Anchoring
// spheroid(d=100, anchor=FRONT);
// Example: Spin
// spheroid(d=100, anchor=FRONT, spin=45);
// Example: Orientation
// spheroid(d=100, anchor=FRONT, spin=45, orient=FWD);
// Example: Standard Connectors
// spheroid(d=40, circum=true) show_anchors();
module spheroid(r=undef, d=undef, circum=false, anchor=CENTER, spin=0, orient=UP)
// spheroid(d=50) show_anchors();
// Example: Called as Function
// vnf = spheroid(d=100, style="icosa");
// vnf_polyhedron(vnf);
module spheroid(r, d, circum=false, style="aligned", anchor=CENTER, spin=0, orient=UP)
{
r = get_radius(r=r, d=d, dflt=1);
hsides = segs(r);
vsides = ceil(hsides/2);
rr = circum? (r / cos(90/vsides) / cos(180/hsides)) : r;
attachable(anchor,spin,orient, r=rr) {
sphere(r=rr);
children();
}
}
// Module: staggered_sphere()
//
// Description:
// An alternate construction to the standard `sphere()` built-in, with different triangulation.
//
// Usage:
// staggered_sphere(r|d, [circum])
//
// Arguments:
// r = Radius of the sphere.
// d = Diameter of the sphere.
// circum = If true, circumscribes the perfect sphere of the given size.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
//
// Example: By Radius
// staggered_sphere(r=50, circum=true);
// Example: By Diameter
// staggered_sphere(d=100, circum=true);
// Example: Standard Connectors
// staggered_sphere(d=40, circum=true) show_anchors();
module staggered_sphere(r=undef, d=undef, circum=false, anchor=CENTER, spin=0, orient=UP) {
r = get_radius(r=r, d=d, dflt=1);
sides = segs(r);
vsides = max(3, ceil(sides/2))+1;
step = 360/sides;
vstep = 180/(vsides-1);
rr = circum? (r / cos(180/sides) / cos(90/vsides)) : r;
pts = concat(
[[0,0,rr]],
[
for (p = [1:1:vsides-2], t = [0:1:sides-1]) let(
ta = (t+(p%2/2))*step,
pa = p*vstep
) spherical_to_xyz(rr, ta, pa)
],
[[0,0,-rr]]
);
pcnt = len(pts);
faces = concat(
[
for (i = [1:1:sides]) each [
[0, i%sides+1, i],
[pcnt-1, pcnt-1-(i%sides+1), pcnt-1-i]
]
],
[
for (p = [0:1:vsides-4], i = [0:1:sides-1]) let(
b1 = 1+p*sides,
b2 = 1+(p+1)*sides,
v1 = b1+i,
v2 = b1+(i+1)%sides,
v3 = b2+((i+((p%2)?(sides-1):0))%sides),
v4 = b2+((i+1+((p%2)?(sides-1):0))%sides)
) each [[v1,v4,v3], [v1,v2,v4]]
]
);
attachable(anchor,spin,orient, r=rr) {
zrot((floor(sides/4)%2==1)? 180/sides : 0) polyhedron(points=pts, faces=faces);
attachable(anchor,spin,orient, r=r) {
if (style=="orig") {
rotate_extrude(convexity=2,$fn=sides) {
difference() {
zrot(180/sides) oval(r=r, circum=circum, $fn=sides);
left(r) square(2*r,center=true);
}
}
} else if (style=="aligned") {
rotate_extrude(convexity=2,$fn=sides) {
difference() {
oval(r=r, circum=circum, $fn=sides);
left(r) square(2*r,center=true);
}
}
} else {
vnf = spheroid(r=r, circum=circum, style=style);
vnf_polyhedron(vnf, convexity=2);
}
children();
}
}
function spheroid(r, d, circum=false, style="aligned", anchor=CENTER, spin=0, orient=UP) =
let(
r = get_radius(r=r, d=d, dflt=1),
hsides = segs(r),
vsides = max(2,ceil(hsides/2)),
icosa_steps = round(max(5,hsides)/5),
rr = circum? (r / cos(90/vsides) / cos(180/hsides)) : r,
stagger = style=="stagger",
verts = style=="orig"? [
for (i=[0:1:vsides-1]) let(phi = (i+0.5)*180/(vsides))
for (j=[0:1:hsides-1]) let(theta = j*360/hsides)
spherical_to_xyz(rr, theta, phi),
] : style=="aligned" || style=="stagger"? [
spherical_to_xyz(rr, 0, 0),
for (i=[1:1:vsides-1]) let(phi = i*180/vsides)
for (j=[0:1:hsides-1]) let(theta = (j+((stagger && i%2!=0)?0.5:0))*360/hsides)
spherical_to_xyz(rr, theta, phi),
spherical_to_xyz(rr, 0, 180)
] : style=="icosa"? [
for (tb=[0,1], j=[0,2], i = [0:1:4]) let(
theta0 = i*360/5,
theta1 = (i-0.5)*360/5,
theta2 = (i+0.5)*360/5,
phi0 = 180/3 * j,
phi1 = 180/3,
v0 = spherical_to_xyz(1,theta0,phi0),
v1 = spherical_to_xyz(1,theta1,phi1),
v2 = spherical_to_xyz(1,theta2,phi1),
ax0 = vector_axis(v0, v1),
ang0 = vector_angle(v0, v1),
ax1 = vector_axis(v0, v2),
ang1 = vector_angle(v0, v2)
)
for (k = [0:1:icosa_steps]) let(
u = k/icosa_steps,
vv0 = rot(ang0*u, ax0, p=v0),
vv1 = rot(ang1*u, ax1, p=v0),
ax2 = vector_axis(vv0, vv1),
ang2 = vector_angle(vv0, vv1)
)
for (l = [0:1:k]) let(
v = k? l/k : 0,
pt = rot(ang2*v, v=ax2, p=vv0) * rr * (tb? -1 : 1)
) pt
] : assert(in_list(style,["orig","aligned","stagger","icosa"])),
lv = len(verts),
faces = style=="orig"? [
[for (i=[0:1:hsides-1]) hsides-i-1],
[for (i=[0:1:hsides-1]) lv-hsides+i],
for (i=[0:1:vsides-2], j=[0:1:hsides-1]) each [
[(i+1)*hsides+j, i*hsides+j, i*hsides+(j+1)%hsides],
[(i+1)*hsides+j, i*hsides+(j+1)%hsides, (i+1)*hsides+(j+1)%hsides],
]
] : style=="aligned" || style=="stagger"? [
for (i=[0:1:hsides-1]) let(
b2 = lv-2-hsides
) each [
[i+1, 0, ((i+1)%hsides)+1],
[lv-1, b2+i+1, b2+((i+1)%hsides)+1],
],
for (i=[0:1:vsides-3], j=[0:1:hsides-1]) let(
base = 1 + hsides*i
) each (
(stagger && i%2!=0)? [
[base+j, base+hsides+j%hsides, base+hsides+(j+hsides-1)%hsides],
[base+j, base+(j+1)%hsides, base+hsides+j],
] : [
[base+j, base+(j+1)%hsides, base+hsides+(j+1)%hsides],
[base+j, base+hsides+(j+1)%hsides, base+hsides+j],
]
)
] : style=="icosa"? let(
pyr = [for (x=[0:1:icosa_steps+1]) x],
tri = sum(pyr),
soff = cumsum(pyr)
) [
for (tb=[0,1], j=[0,1], i = [0:1:4]) let(
base = ((((tb*2) + j) * 5) + i) * tri
)
for (k = [0:1:icosa_steps-1])
for (l = [0:1:k]) let(
v1 = base + soff[k] + l,
v2 = base + soff[k+1] + l,
v3 = base + soff[k+1] + (l + 1),
faces = [
if(l>0) [v1-1,v1,v2],
[v1,v3,v2],
],
faces2 = (tb+j)%2? [for (f=faces) reverse(f)] : faces
) each faces2
] : []
) [reorient(anchor,spin,orient, r=r, p=verts), faces];
// Section: 3D Printing Shapes
@ -1176,7 +1234,7 @@ module pie_slice(
anchor = get_anchor(anchor, center, BOT, BOT);
attachable(anchor,spin,orient, r1=r1, r2=r2, l=l) {
difference() {
cylinder(r1=r1, r2=r2, h=l, center=true);
cyl(r1=r1, r2=r2, h=l);
if (ang<180) rotate(ang) back(maxd/2) cube([2*maxd, maxd, l+0.1], center=true);
difference() {
fwd(maxd/2) cube([2*maxd, maxd, l+0.2], center=true);
@ -1330,10 +1388,10 @@ module arced_slot(
zrot(sa) {
difference() {
pie_slice(ang=da, l=h, r1=r+sr1, r2=r+sr2, orient=UP, anchor=CENTER);
cylinder(h=h+0.1, r1=r-sr1, r2=r-sr2, center=true);
cyl(h=h+0.1, r1=r-sr1, r2=r-sr2);
}
right(r) cylinder(h=h, r1=sr1, r2=sr2, center=true, $fn=fn_minor);
zrot(da) right(r) cylinder(h=h, r1=sr1, r2=sr2, center=true, $fn=fn_minor);
right(r) cyl(h=h, r1=sr1, r2=sr2, $fn=fn_minor);
zrot(da) right(r) cyl(h=h, r1=sr1, r2=sr2, $fn=fn_minor);
}
}
children();

View file

@ -694,6 +694,148 @@ function _turtle_command(command, parm, parm2, state, index) =
// Section: 2D Primitives
// Function&Module: rect()
// Usage:
// rect(size, [center], [rounding], [chamfer], [anchor], [spin])
// Description:
// When called as a module, creates a 2D rectangle of the given size, with optional rounding or chamfering.
// When called as a function, returns a 2D path/list of points for a square/rectangle of the given size.
// Arguments:
// size = The size of the rectangle to create. If given as a scalar, both X and Y will be the same size.
// rounding = The rounding radius for the corners. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no rounding)
// chamfer = The chamfer size for the corners. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no chamfer)
// center = If given and true, overrides `anchor` to be `CENTER`. If given and false, overrides `anchor` to be `FRONT+LEFT`.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// Example(2D):
// rect(40);
// Example(2D): Centered
// rect([40,30], center=true);
// Example(2D): Anchored
// rect([40,30], anchor=FRONT);
// Example(2D): Spun
// rect([40,30], anchor=FRONT, spin=30);
// Example(2D): Chamferred Rect
// rect([40,30], chamfer=5, center=true);
// Example(2D): Rounded Rect
// rect([40,30], rounding=5, center=true);
// Example(2D): Mixed Chamferring and Rounding
// rect([40,30],center=true,rounding=[5,0,10,0],chamfer=[0,8,0,15],$fa=1,$fs=1);
// Example(2D): Called as Function
// path = rect([40,30], chamfer=5, anchor=FRONT, spin=30);
// stroke(path, closed=true);
// move_copies(path) color("blue") circle(d=2,$fn=8);
module rect(size=1, center, rounding=0, chamfer=0, anchor, spin=0) {
size = is_num(size)? [size,size] : point2d(size);
anchor = get_anchor(anchor, center, FRONT+LEFT, FRONT+LEFT);
attachable(anchor,spin, two_d=true, size=size) {
if (rounding==0 && chamfer==0) {
square(size, center=true);
} else {
pts = rect(size=size, rounding=rounding, chamfer=chamfer, center=true);
polygon(pts);
}
children();
}
}
function rect(size=1, center, rounding=0, chamfer=0, anchor, spin=0) =
assert(is_num(size) || is_vector(size))
assert(is_num(chamfer) || len(chamfer)==4)
assert(is_num(rounding) || len(rounding)==4)
let(
size = is_num(size)? [size,size] : point2d(size),
anchor = get_anchor(anchor, center, FRONT+LEFT, FRONT+LEFT),
complex = rounding!=0 || chamfer!=0
)
(rounding==0 && chamfer==0)? let(
path = [
[ size.x/2, -size.y/2],
[-size.x/2, -size.y/2],
[-size.x/2, size.y/2],
[ size.x/2, size.y/2]
]
) rot(spin, p=move(-vmul(anchor,size/2), p=path)) :
let(
chamfer = is_list(chamfer)? chamfer : [for (i=[0:3]) chamfer],
rounding = is_list(rounding)? rounding : [for (i=[0:3]) rounding],
quadorder = [3,2,1,0],
quadpos = [[1,1],[-1,1],[-1,-1],[1,-1]],
insets = [for (i=[0:3]) chamfer[i]>0? chamfer[i] : rounding[i]>0? rounding[i] : 0],
insets_x = max(insets[0]+insets[1],insets[2]+insets[3]),
insets_y = max(insets[0]+insets[3],insets[1]+insets[2])
)
assert(insets_x <= size.x, "Requested roundings and/or chamfers exceed the rect width.")
assert(insets_y <= size.y, "Requested roundings and/or chamfers exceed the rect height.")
let(
path = [
for(i = [0:3])
let(
quad = quadorder[i],
inset = insets[quad],
cverts = quant(segs(inset),4)/4,
cp = vmul(size/2-[inset,inset], quadpos[quad]),
step = 90/cverts,
angs =
chamfer[quad] > 0? [0,-90]-90*[i,i] :
rounding[quad] > 0? [for (j=[0:1:cverts]) 360-j*step-i*90] :
[0]
)
each [for (a = angs) cp + inset*[cos(a),sin(a)]]
]
) complex?
reorient(anchor,spin, two_d=true, path=path, p=path) :
reorient(anchor,spin, two_d=true, size=size, p=path);
// Function&Module: oval()
// Usage:
// oval(r|d, [realign], [circum])
// Description:
// When called as a module, creates a 2D polygon that approximates a circle of the given size.
// When called as a function, returns a 2D list of points (path) for a polygon that approximates a circle of the given size.
// Arguments:
// r = The radius of the circle to create.
// d = The diameter of the circle to create.
// realign = If true, rotates the polygon that approximates the circle by half of one size.
// circum = If true, the polygon that approximates the circle will be upsized slightly to circumscribe the theoretical circle. If false, it inscribes the theoretical circle. Default: false
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// Example(2D): By Radius
// oval(r=25);
// Example(2D): By Diameter
// oval(d=50);
// Example(2D): Anchoring
// oval(d=50, anchor=FRONT);
// Example(2D): Spin
// oval(d=50, anchor=FRONT, spin=45);
// Example(NORENDER): Called as Function
// path = oval(d=50, anchor=FRONT, spin=45);
module oval(r, d, realign=false, circum=false, anchor=CENTER, spin=0) {
r = get_radius(r=r, d=d, dflt=1);
sides = segs(r);
rr = circum? r/cos(180/sides) : r;
attachable(anchor,spin, two_d=true, r=rr) {
zrot(realign? 180/sides : 0) circle(r=r, $fn=sides);
children();
}
}
function oval(r, d, realign=false, circum=false, anchor=CENTER, spin=0) =
let(
r = get_radius(r=r, d=d, dflt=1),
sides = segs(r),
offset = realign? 180/sides : 0,
rr = r / (circum? cos(180/sides) : 1),
pts = [for (i=[0:1:sides-1]) let(a=360-offset-i*360/sides) rr*[cos(a),sin(a)]]
) reorient(anchor,spin, two_d=true, r=rr, p=pts);
// Section: 2D N-Gons
// Function&Module: regular_ngon()
@ -738,7 +880,7 @@ function regular_ngon(n=6, r, d, or, od, ir, id, side, rounding=0, realign=false
)
assert(!is_undef(r), "regular_ngon(): need to specify one of r, d, or, od, ir, id, side.")
let(
path = rounding==0? circle(r=r, realign=realign, $fn=n) : (
path = rounding==0? oval(r=r, realign=realign, $fn=n) : (
let(
steps = floor(segs(r)/n),
step = 360/n/steps,

View file

@ -844,7 +844,8 @@ module sweep(shape, transformations, closed=false, caps, convexity=10) {
// Function&Module: path_sweep()
// Usage: path_sweep(shape, path, [method], [normal], [closed], [twist], [twist_by_length], [symmetry], [last_normal], [tangent], [relaxed], [caps], [convexity], [transforms])
// Usage:
// path_sweep(shape, path, [method], [normal], [closed], [twist], [twist_by_length], [symmetry], [last_normal], [tangent], [relaxed], [caps], [convexity], [transforms])
// Description:
// Takes as input a 2d shape (specified as a point list) and a 2d or 3d path and constructs a polyhedron by sweeping the shape along the path.
// When run as a module returns the polyhedron geometry. When run as a function returns a VNF by default or if you set `transforms=true` then
@ -1027,7 +1028,7 @@ module sweep(shape, transformations, closed=false, caps, convexity=10) {
// ushape = [[-10, 0],[-10, 10],[ -7, 10],[ -7, 2],[ 7, 2],[ 7, 7],[ 10, 7],[ 10, 0]];
// path_sweep(ushape, helix, method="manual", normal=normals);
// Example: When using "manual" it is important to choose a normal that works for the whole path, producing a consistent result. Here we have specified an upward normal, and indeed the shape is pointed up everywhere, but two abrupt transitional twists render the model invalid.
// yzcircle = yrot(90,p=circle($fn=64, r=30));
// yzcircle = yrot(90,p=path3d(circle($fn=64, r=30)));
// ushape = [[-10, 0],[-10, 10],[ -7, 10],[ -7, 2],[ 7, 2],[ 7, 7],[ 10, 7],[ 10, 0]];
// path_sweep(ushape, yzcircle, method="manual", normal=UP, closed=true);
// Example: The "natural" method will introduce twists when the curvature changes direction. A warning is displayed.

View file

@ -8,7 +8,7 @@
//////////////////////////////////////////////////////////////////////
BOSL_VERSION = [2,0,279];
BOSL_VERSION = [2,0,280];
// Section: BOSL Library Version Functions