mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-15 17:09:40 +00:00
Compare commits
No commits in common. "50112abbe9239009d890d47a84e70f9cd13e312d" and "cba3391131358c114d80001fdf0bbeef96222298" have entirely different histories.
50112abbe9
...
cba3391131
1 changed files with 9 additions and 9 deletions
|
@ -1929,7 +1929,7 @@ function _superformula(theta,m1,m2,n1,n2=1,n3=1,a=1,b=1) =
|
||||||
// Usage: As Function
|
// Usage: As Function
|
||||||
// path = reuleaux_polygon(n, r|d=, ...);
|
// path = reuleaux_polygon(n, r|d=, ...);
|
||||||
// Description:
|
// Description:
|
||||||
// When called as a module, creates a 2D Reuleaux Polygon; a constant width shape that is not circular. Uses "intersect" type anchoring.
|
// When called as a module, reates a 2D Reuleaux Polygon; a constant width shape that is not circular. Uses "intersect" type anchoring.
|
||||||
// When called as a function, returns a 2D path for a Reulaux Polygon.
|
// When called as a function, returns a 2D path for a Reulaux Polygon.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// n = Number of "sides" to the Reuleaux Polygon. Must be an odd positive number. Default: 3
|
// n = Number of "sides" to the Reuleaux Polygon. Must be an odd positive number. Default: 3
|
||||||
|
@ -2015,12 +2015,12 @@ function reuleaux_polygon(n=3, r, d, anchor=CENTER, spin=0) =
|
||||||
// Examples(2D):
|
// Examples(2D):
|
||||||
// squircle(size=50, squareness=0.4);
|
// squircle(size=50, squareness=0.4);
|
||||||
// squircle([80,60], 0.7, $fn=64);
|
// squircle([80,60], 0.7, $fn=64);
|
||||||
// Example(2D): Ten increments of squareness parameter for a superellipse squircle
|
// Examples(2D): Ten increments of squareness parameter for a superellipse squircle
|
||||||
// for(sq=[0:0.1:1])
|
// for(sq=[0:0.1:1])
|
||||||
// stroke(squircle(100, sq, style="superellipse", $fn=128), closed=true, width=0.5);
|
// stroke(squircle(100, sq, style="superellipse", $fn=128), closed=true, width=0.5);
|
||||||
// Example(2D): Standard vector anchors are based on the bounding box
|
// Examples(2D): Standard vector anchors are based on the bounding box
|
||||||
// squircle(50, 0.6) show_anchors();
|
// squircle(50, 0.6) show_anchors();
|
||||||
// Example(2D): Perimeter anchors, anchoring at bottom left and spinning 20°
|
// Examples(2D): Perimeter anchors, anchoring at bottom left and spinning 20°
|
||||||
// squircle([60,40], 0.5, anchor=(BOTTOM+LEFT), atype="perim", spin=20)
|
// squircle([60,40], 0.5, anchor=(BOTTOM+LEFT), atype="perim", spin=20)
|
||||||
// show_anchors();
|
// show_anchors();
|
||||||
|
|
||||||
|
@ -2029,7 +2029,7 @@ module squircle(size, squareness=0.5, style="fg", atype="box", anchor=CENTER, sp
|
||||||
anchorchk = assert(in_list(atype, ["box", "perim"]));
|
anchorchk = assert(in_list(atype, ["box", "perim"]));
|
||||||
size = is_num(size) ? [size,size] : point2d(size);
|
size = is_num(size) ? [size,size] : point2d(size);
|
||||||
assert(all_positive(size), "All components of size must be positive.");
|
assert(all_positive(size), "All components of size must be positive.");
|
||||||
path = squircle(size, squareness, style, atype="box");
|
path = squircle(size, squareness, style, atype, _module_call=true);
|
||||||
if (atype == "box") {
|
if (atype == "box") {
|
||||||
attachable(anchor, spin, two_d=true, size=size, extent=false) {
|
attachable(anchor, spin, two_d=true, size=size, extent=false) {
|
||||||
polygon(path);
|
polygon(path);
|
||||||
|
@ -2044,7 +2044,7 @@ module squircle(size, squareness=0.5, style="fg", atype="box", anchor=CENTER, sp
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
function squircle(size, squareness=0.5, style="fg", atype="box", anchor=CENTER, spin=0) =
|
function squircle(size, squareness=0.5, style="fg", atype="box", anchor=CENTER, spin=0, _module_call=false) =
|
||||||
assert(squareness >= 0 && squareness <= 1)
|
assert(squareness >= 0 && squareness <= 1)
|
||||||
assert(is_num(size) || is_vector(size,2))
|
assert(is_num(size) || is_vector(size,2))
|
||||||
assert(in_list(atype, ["box", "perim"]))
|
assert(in_list(atype, ["box", "perim"]))
|
||||||
|
@ -2052,8 +2052,8 @@ function squircle(size, squareness=0.5, style="fg", atype="box", anchor=CENTER,
|
||||||
size = is_num(size) ? [size,size] : point2d(size),
|
size = is_num(size) ? [size,size] : point2d(size),
|
||||||
path = style == "fg" ? _squircle_fg(size, squareness)
|
path = style == "fg" ? _squircle_fg(size, squareness)
|
||||||
: style == "superellipse" ? _squircle_se(size, squareness)
|
: style == "superellipse" ? _squircle_se(size, squareness)
|
||||||
: assert(false, "Style must be \"fg\" or \"superellipse\"")
|
: assert(false, "Style must be \"fg\" or \"superellipse\""),
|
||||||
) reorient(anchor, spin, two_d=true, size=atype=="box"?size:undef, path=atype=="box"?undef:path, p=path, extent=true);
|
) reorient(anchor, spin, two_d=true, size=atype=="box"?size:undef, path=_module_call?undef:path, p=path, extent=true);
|
||||||
|
|
||||||
|
|
||||||
/* FG squircle functions */
|
/* FG squircle functions */
|
||||||
|
@ -2096,7 +2096,7 @@ function _squircle_se(size, squareness) = [
|
||||||
theta = a + fgsq*sin(4*a)*30/PI, // tighter angle steps at corners
|
theta = a + fgsq*sin(4*a)*30/PI, // tighter angle steps at corners
|
||||||
x = cos(theta),
|
x = cos(theta),
|
||||||
y = sin(theta),
|
y = sin(theta),
|
||||||
r = (abs(x)^n + abs(y)^n)^(1/n) // superellipse
|
r = (abs(x)^n + abs(y)^n)^(1/n), // superellipse
|
||||||
//r = _superformula(theta=theta, m1=4,m2=4,n1=n,n2=n,n3=n,a=1,b=1)
|
//r = _superformula(theta=theta, m1=4,m2=4,n1=n,n2=n,n3=n,a=1,b=1)
|
||||||
) [ra*x, rb*y] / r
|
) [ra*x, rb*y] / r
|
||||||
];
|
];
|
||||||
|
|
Loading…
Reference in a new issue