Compare commits

...

2 commits

Author SHA1 Message Date
Alex Matulich
3ba64c6f8c
Merge c18c955376 into c442c5159a 2024-12-09 11:59:57 -08:00
Alex Matulich
c18c955376 Revised to manage attachments 2024-12-09 11:59:46 -08:00

View file

@ -1994,70 +1994,112 @@ function reuleaux_polygon(n=3, r, d, anchor=CENTER, spin=0) =
// Topics: Shapes (2D), Paths (2D), Path Generators, Attachable
// See Also: circle(), square(), supershape()
// Usage: As Module
// squircle(squareness, size) [ATTACHMENTS];
// squircle(squareness, size, [style]) [ATTACHMENTS];
// Usage: As Function
// path = squircle(squareness, size);
// path = squircle(squareness, size, [style]);
// Description:
// A squircle is a shape intermediate between a square/rectangle and a circle/ellipse. A squircle is a special case of supershape (shown in `supershape()` example 3), but this implementation uses a different method that requires just two parameters, and the vertex distribution is optimized for smoothness.
// Squircles are sometimes used to make dinner plates (more area for the same radius as a circle), keyboard buttons, and smartphone icons. Old CRT television screens also resembled squircles.
// When called as a module, creates a 2D squircle with the desired squareness. Uses "intersect" type anchoring.
// A [squircle](https://en.wikipedia.org/wiki/Squircle) is a shape intermediate between a square/rectangle and a circle/ellipse.Squircles are sometimes used to make dinner plates (more area for the same radius as a circle), keyboard buttons, and smartphone icons. Old CRT television screens also resembled elongated squircles.
// There are multiple approaches to constructing a squircle. One approach is a special case of superellipse (shown in {{supershape}} example 3), and uses exponents to adjust the shape. Another, called Fernández-Guasti squircle or FG squircle, arises from work in optics and uses a "squareness" parameter between 0 and 1 to adjust the shape.
// The FG style and superellipse style squircles are visually almost indistinguishable, with the superellipse having slightly rounder "corners" than FG for a given value of squareness. Either style requires just the two parameters `squareness` and `size`. The vertex distribution is adjusted to be more dense at the corners for smoothness at low values of `$fn`.
// When called as a module, creates a 2D squircle with the desired squareness.
// When called as a function, returns a 2D path for a squircle.
// Arguments:
// squareness = Value between 0 and 1. Controls the shape of the squircle. When `squareness=0` the shape is a circle, and when `squareness=1` the shape is a square. Default: 0.7
// size = Bounding box of the squircle, same as the `size` parameter in `square()`, can be a single number or an `[xsize,ysize]` vector. Default: [10,10]
// $fn = Number of points. Special variables `$fs` and `$fa` are ignored. If set, `$fn` must be 12 or greater, and is rounded to the nearest multiple of 4. Points are generated non-uniformly around the squircle so they are more dense sharper curves. Default if not set: 40
// squareness = Value between 0 and 1. Controls the shape of the squircle. When `squareness=0` the shape is a circle, and when `squareness=1` the shape is a square. Otherwise, this parameter sets the location of a squircle "corner" at the specified interpolated position between a circle and a square. For the "superellipse" style, the special case where the superellipse exponent is 4 (also known as *Lamé's quartic curve*) results in a squircle at the geometric mean between radial points on the circle and square, corresponding to squareness=0.456786. Default: 0.5
// size = Same as the `size` parameter in `square()`, can be a single number or an `[xsize,ysize]` vector. Default: [1,1]
// style = method for generating a squircle, "fg" for Fernández-Guasti and "superellipse" for superellipse. Default: "fg"
// atype = anchor type, "box" for bounding box corners and sides, "perim" for the squircle corners
// $fn = Number of points. The special variables `$fs` and `$fa` are ignored. If set, `$fn` must be 12 or greater, and is rounded to the nearest multiple of 4. Points are generated non-uniformly around the squircle so they are more dense at sharper curves. Default if not set: 40
// Examples(2D):
// squircle(squareness=0.4, size=50);
// squircle(0.8, [80,60], $fn=64);
// Examples(2D): Ten increments of squareness parameter
// Examples(2D): Ten increments of squareness parameter for a superellipse squircle
// for(sq=[0:0.1:1])
// stroke(squircle(sq, 100, $fn=128), closed=true, width=0.5);
// Examples(2D): Standard vector anchors are based on extents
// squircle(0.8, 50) show_anchors(custom=false);
// Examples(2D): Named anchors exist for the sides and corners
// squircle(0.8, 50) show_anchors(std=false);
module squircle(squareness=0.7, size=[10,10], anchor=CENTER, spin=0) {
// stroke(squircle(sq, 100, style="superellipse", $fn=128), closed=true, width=0.5);
// Examples(2D): Standard vector anchors are based on the bounding box
// squircle(0.6, 50) show_anchors();
// Examples(2D): Perimeter anchors, anchoring at bottom left and spinning 20°
// squircle(0.5, [60,40], anchor=(BOTTOM+LEFT), atype="perim", spin=20)
// show_anchors();
module squircle(squareness=0.5, size=[1,1], style="fg", atype="box", anchor=CENTER, spin=0) {
check = assert(squareness >= 0 && squareness <= 1);
bbox = is_num(size) ? [size,size] : point2d(size);
assert(all_positive(bbox), "All components of size must be positive.");
path = squircle(squareness, size);
anchors = let(sq = _linearize_squareness(squareness)) [
for (i = [0:1:3]) let(
ca = 360 - i*90,
cp = polar_to_xy(squircle_radius(sq, bbox[0]/2, ca), ca)
) named_anchor(str("side",i), cp, unit(cp,BACK), 0),
for (i = [0:1:3]) let(
ca = 360-45 - i*90,
cp = polar_to_xy(squircle_radius(sq, bbox[0]/2, ca), ca)
) named_anchor(str("corner",i), cp, unit(cp,BACK), 0)
];
attachable(anchor,spin, two_d=true, path=path, extent=false, anchors=anchors) {
anchorchk = assert(in_list(atype, ["box", "perim"]));
size = is_num(size) ? [size,size] : point2d(size);
assert(all_positive(size), "All components of size must be positive.");
if (atype == "box") {
path = squircle(squareness, size, style);
attachable(anchor, spin, two_d=true, size=size) {
polygon(path);
children();
}
} else { // atype=="perim"
override_path = squircle(squareness, size, style, atype, _return_override=true);
attachable(anchor, spin, two_d=true, size=size, extent=false, override=override_path[1]) {
polygon(override_path[0]);
children();
}
}
}
function squircle(squareness=0.7, size=[10,10]) =
assert(squareness >= 0 && squareness <= 1) [
function squircle(squareness=0.5, size=[1,1], style="fg", atype="box", anchor=CENTER, spin=0, _return_override=false) =
assert(squareness >= 0 && squareness <= 1)
assert(is_num(size) || is_vector(size,2))
assert(in_list(atype, ["box", "perim"]))
let(
path =
style == "fg" ? _squircle_fg(squareness, size)
: style == "superellipse" ? _squircle_se(squareness, size)
: assert(false, "Style must be \"fg\" or \"superellipse\""),
size = is_num(size) ? [size,size] : point2d(size),
a = 0.5 * size[0],
b = 0.5 * size[1],
override = atype == "box" ? undef
: let(
sn = style=="fg" ? _linearize_squareness(squareness)
: _squircle_se_exponent(squareness),
derivq1 = style=="fg" ? // 1+derivative of squircle in first quadrant
function (x) let(s2=sn*sn, a2=a*a, b2=b*b, x2=x*x, denom=a2-s2*x2) a2*b*(s2-1)*x/(denom*denom*sqrt((a2-x2)/denom)) + 1
: function (x) let(n=sn) 1 - (b/a)*((a/x)^n - 1)^(1/n-1),
xc = root_find(derivq1, 0.01, a-0.01), // find where slope=-1
yc = style=="fg" ?
let(s2=sn*sn, a2=a*a, b2=b*b, x2=xc*xc) sqrt(b2*(a2-x2)/(a2-s2*x2))
: b*(1-(xc/a)^sn)^(1/sn),
corners = [[xc,yc], [-xc,yc], [-xc,-yc], [xc,-yc]],
anchorpos = [[1,1],[-1,1],[-1,-1],[1,-1]]
) [ for(i=[0:3]) [anchorpos[i], [corners[i]]] ]
) _return_override
? [reorient(anchor, spin, two_d=true, size=size, p=path, extent=false, override=override), override]
: reorient(anchor, spin, two_d=true, size=size, p=path, extent=false, override=override);
function _squircle_anchor_radius(squareness, angle, style) =
style == "fg"
? let(sq = _linearize_squareness(squareness))
squircle_radius_fg(sq, 1, angle)
: let(n = _squircle_se_exponent(squareness))
squircle_radius_se(n, 1, angle);
//_superformula(theta=angle, m1=4,m2=4,n1=n,n2=n,n3=n,a=1,b=1);
/* FG squircle functions */
function _squircle_fg(squareness, size) = [
let(
sq = _linearize_squareness(squareness),
bbox = is_num(size) ? [size,size] : point2d(size),
aspect = bbox[1] / bbox[0],
r = 0.5 * bbox[0],
size = is_num(size) ? [size,size] : point2d(size),
aspect = size[1] / size[0],
r = 0.5 * size[0],
astep = $fn>=12 ? 90/round($fn/4) : 9
) for(a=[360:-astep:0.01]) let(
theta = a + sq * sin(4*a) * 30/PI, // tighter angle steps at corners
p = squircle_radius(sq, r, theta)
) [p*cos(theta), aspect*p*sin(theta)]
p = squircle_radius_fg(sq, r, theta)
) p*[cos(theta), aspect*sin(theta)]
];
function squircle_radius(squareness, r, angle) = let(
function squircle_radius_fg(squareness, r, angle) = let(
s2a = abs(squareness*sin(2*angle))
) s2a>0 ? r*sqrt(2)/s2a * sqrt(1 - sqrt(1 - s2a*s2a)) : r;
function _linearize_squareness(s) =
// from Chamberlain Fong (2016). "Squircular Calculations". arXiv.
// https://arxiv.org/pdf/1604.02174v5
@ -2065,6 +2107,38 @@ function _linearize_squareness(s) =
2 * sqrt((1+c)*s*s - c*s) / (d*d);
/* Superellipse squircle functions */
function _squircle_se(squareness, size) = [
let(
n = _squircle_se_exponent(squareness),
size = is_num(size) ? [size,size] : point2d(size),
ra = 0.5*size[0],
rb = 0.5*size[1],
astep = $fn>=12 ? 90/round($fn/4) : 9,
fgsq = _linearize_squareness(min(0.998,squareness)) // works well for distributing theta
) for(a=[360:-astep:0.01]) let(
theta = a + fgsq*sin(4*a)*30/PI, // tighter angle steps at corners
x = cos(theta),
y = sin(theta),
r = (abs(x)^n + abs(y)^n)^(1/n), // superellipse
//r = _superformula(theta=theta, m1=4,m2=4,n1=n,n2=n,n3=n,a=1,b=1)
) [ra*x, rb*y] / r
];
function squircle_radius_se(n, r, angle) = let(
x = cos(angle),
y = sin(angle)
) (abs(x)^n + abs(y)^n)^(1/n) / r;
function _squircle_se_exponent(squareness) = let(
// limit squareness; error if >0.99889, limit is smaller for r>1
s=min(0.998,squareness),
rho = 1 + s*(sqrt(2)-1),
x = rho / sqrt(2)
) log(0.5) / log(x);
// Section: Text