////////////////////////////////////////////////////////////////////// // LibFile: coords.scad // Coordinate transformations and coordinate system conversions. // Includes: // include // FileGroup: Math // FileSummary: Conversions between coordinate systems. // FileFootnotes: STD=Included in std.scad ////////////////////////////////////////////////////////////////////// // Section: Coordinate Manipulation // Function: point2d() // Synopsis: Convert a vector to 2D. // Topics: Coordinates, Points // See Also: path2d(), point3d(), path3d() // Usage: // pt = point2d(p, [fill]); // Description: // Returns a 2D vector/point from a 2D or 3D vector. If given a 3D point, removes the Z coordinate. // Arguments: // p = The coordinates to force into a 2D vector/point. // fill = Value to fill missing values in vector with. Default: 0 function point2d(p, fill=0) = assert(is_list(p)) [for (i=[0:1]) (p[i]==undef)? fill : p[i]]; // Function: path2d() // Synopsis: Convert a path to 2D. // SynTags: Path // Topics: Coordinates, Points, Paths // See Also: point2d(), point3d(), path3d() // Usage: // pts = path2d(points); // Description: // Returns a list of 2D vectors/points from a list of 2D, 3D or higher dimensional vectors/points. // Removes the extra coordinates from higher dimensional points. The input must be a path, where // every vector has the same length. // Arguments: // points = A list of 2D or 3D points/vectors. function path2d(points) = assert(is_path(points,dim=undef,fast=true),"Input to path2d is not a path") let (result = points * concat(ident(2), repeat([0,0], len(points[0])-2))) assert(is_def(result), "Invalid input to path2d") result; // Function: point3d() // Synopsis: Convert a vector to 3D. // Topics: Coordinates, Points // See Also: path2d(), point2d(), path3d() // Usage: // pt = point3d(p, [fill]); // Description: // Returns a 3D vector/point from a 2D or 3D vector. // Arguments: // p = The coordinates to force into a 3D vector/point. // fill = Value to fill missing values in vector with. Default: 0 function point3d(p, fill=0) = assert(is_list(p)) [for (i=[0:2]) (p[i]==undef)? fill : p[i]]; // Function: path3d() // Synopsis: Convert a path to 3D. // SynTags: Path // Topics: Coordinates, Points, Paths // See Also: point2d(), path2d(), point3d() // Usage: // pts = path3d(points, [fill]); // Description: // Returns a list of 3D vectors/points from a list of 2D or higher dimensional vectors/points // by removing extra coordinates or adding the z coordinate. // Arguments: // points = A list of 2D, 3D or higher dimensional points/vectors. // fill = Value to fill missing values in vectors with (in the 2D case). Default: 0 function path3d(points, fill=0) = assert(is_num(fill)) assert(is_path(points, dim=undef, fast=true), "Input to path3d is not a path") let ( change = len(points[0])-3, M = change < 0? [[1,0,0],[0,1,0]] : concat(ident(3), repeat([0,0,0],change)), result = points*M ) assert(is_def(result), "Input to path3d is invalid") fill == 0 || change>=0 ? result : result + repeat([0,0,fill], len(result)); // Function: point4d() // Synopsis: Convert a vector to 4d. // Topics: Coordinates, Points // See Also: point2d(), path2d(), point3d(), path3d(), path4d() // Usage: // pt = point4d(p, [fill]); // Description: // Returns a 4D vector/point from a 2D or 3D vector. // Arguments: // p = The coordinates to force into a 4D vector/point. // fill = Value to fill missing values in vector with. Default: 0 function point4d(p, fill=0) = assert(is_list(p)) [for (i=[0:3]) (p[i]==undef)? fill : p[i]]; // Function: path4d() // Synopsis: Convert a path to 4d. // SynTags: Path // Topics: Coordinates, Points, Paths // See Also: point2d(), path2d(), point3d(), path3d(), point4d() // Usage: // pt = path4d(points, [fill]); // Description: // Returns a list of 4D vectors/points from a list of 2D or 3D vectors/points. // Arguments: // points = A list of 2D or 3D points/vectors. // fill = Value to fill missing values in vectors with. Default: 0 function path4d(points, fill=0) = assert(is_num(fill) || is_vector(fill)) assert(is_path(points, dim=undef, fast=true), "Input to path4d is not a path") let ( change = len(points[0])-4, M = change < 0 ? select(ident(4), 0, len(points[0])-1) : concat(ident(4), repeat([0,0,0,0],change)), result = points*M ) assert(is_def(result), "Input to path4d is invalid") fill == 0 || change >= 0 ? result : let( addition = is_list(fill) ? concat(0*points[0],fill) : concat(0*points[0],repeat(fill,-change)) ) assert(len(addition) == 4, "Fill is the wrong length") result + repeat(addition, len(result)); // Section: Coordinate Systems // Function: polar_to_xy() // Synopsis: Convert 2D polar coordinates to cartesian coordinates. // SynTags: Path // Topics: Coordinates, Points, Paths // See Also: xy_to_polar(), xyz_to_cylindrical(), cylindrical_to_xyz(), xyz_to_spherical(), spherical_to_xyz() // Usage: // pt = polar_to_xy(r, theta); // pt = polar_to_xy([R, THETA]); // pts = polar_to_xy([[R,THETA], [R,THETA], ...]); // Description: // Called with two arguments, converts the `r` and `theta` 2D polar coordinate into an `[X,Y]` cartesian coordinate. // Called with one `[R,THETA]` vector argument, converts the 2D polar coordinate into an `[X,Y]` cartesian coordinate. // Called with a list of `[R,THETA]` vector arguments, converts each 2D polar coordinate into `[X,Y]` cartesian coordinates. // Theta is the angle counter-clockwise of X+ on the XY plane. // Arguments: // r = distance from the origin. // theta = angle in degrees, counter-clockwise of X+. // Example: // xy = polar_to_xy(20,45); // Returns: ~[14.1421365, 14.1421365] // xy = polar_to_xy(40,30); // Returns: ~[34.6410162, 15] // xy = polar_to_xy([40,30]); // Returns: ~[34.6410162, 15] // xy = polar_to_xy([[40,30],[20,120]]); // Returns: ~[[34.6410162, 15], [-10, 17.3205]] // Example(2D): // r=40; ang=30; $fn=36; // pt = polar_to_xy(r,ang); // stroke(circle(r=r), closed=true, width=0.5); // color("black") stroke([[r,0], [0,0], pt], width=0.5); // color("black") stroke(arc(r=15, angle=ang), width=0.5); // color("red") move(pt) circle(d=3); function polar_to_xy(r,theta) = theta != undef ? assert(is_num(r) && is_num(theta), "Bad Arguments.") [r*cos(theta), r*sin(theta)] : assert(is_list(r), "Bad Arguments") is_num(r.x) ? polar_to_xy(r.x, r.y) : [for(p = r) polar_to_xy(p.x, p.y)]; // Function: xy_to_polar() // Synopsis: Convert 2D cartesian coordinates to polar coordinates (radius and angle) // Topics: Coordinates, Points, Paths // See Also: polar_to_xy(), xyz_to_cylindrical(), cylindrical_to_xyz(), xyz_to_spherical(), spherical_to_xyz() // Usage: // r_theta = xy_to_polar(x,y); // r_theta = xy_to_polar([X,Y]); // r_thetas = xy_to_polar([[X,Y], [X,Y], ...]); // Description: // Called with two arguments, converts the `x` and `y` 2D cartesian coordinate into a `[RADIUS,THETA]` polar coordinate. // Called with one `[X,Y]` vector argument, converts the 2D cartesian coordinate into a `[RADIUS,THETA]` polar coordinate. // Called with a list of `[X,Y]` vector arguments, converts each 2D cartesian coordinate into `[RADIUS,THETA]` polar coordinates. // Theta is the angle counter-clockwise of X+ on the XY plane. // Arguments: // x = X coordinate. // y = Y coordinate. // Example: // plr = xy_to_polar(20,30); // plr = xy_to_polar([40,60]); // plrs = xy_to_polar([[40,60],[-10,20]]); // Example(2D): // pt = [-20,30]; $fn = 36; // rt = xy_to_polar(pt); // r = rt[0]; ang = rt[1]; // stroke(circle(r=r), closed=true, width=0.5); // zrot(ang) stroke([[0,0],[r,0]],width=0.5); // color("red") move(pt) circle(d=3); function xy_to_polar(x, y) = y != undef ? assert(is_num(x) && is_num(y), "Bad Arguments.") [norm([x, y]), atan2(y, x)] : assert(is_list(x), "Bad Arguments") is_num(x.x) ? xy_to_polar(x.x, x.y) : [for(p = x) xy_to_polar(p.x, p.y)]; // Function: project_plane() // Synopsis: Project a set of points onto a specified plane, returning 2D points. // SynTags: Path // Topics: Coordinates, Points, Paths // See Also: lift_plane() // Usage: // xy = project_plane(plane, p); // Usage: To get a transform matrix // M = project_plane(plane) // Description: // Maps the provided 3D point(s) from 3D coordinates to a 2D coordinate system defined by `plane`. Points that are not // on the specified plane will be projected orthogonally onto the plane. This coordinate system is useful if you need // to perform 2D operations on a coplanar set of data. After those operations are done you can return the data // to 3D with `lift_plane()`. You could also use this to force approximately coplanar data to be exactly coplanar. // The parameter p can be a point, path, region, bezier patch or VNF. // The plane can be specified as // - A list of three points. The planar coordinate system will have [0,0] at plane[0], and plane[1] will lie on the Y+ axis. // - A list of coplanar points that define a plane (not-collinear) // - A plane definition `[A,B,C,D]` where `Ax+By+CZ=D`. The closest point on that plane to the origin will map to the origin in the new coordinate system. // . // If you omit the point specification then `project_plane()` returns a rotation matrix that maps the specified plane to the XY plane. // Note that if you apply this transformation to data lying on the plane it will produce 3D points with the Z coordinate of zero. // Arguments: // plane = plane specification or point list defining the plane // p = 3D point, path, region, VNF or bezier patch to project // Example: // pt = [5,-5,5]; // a=[0,0,0]; b=[10,-10,0]; c=[10,0,10]; // xy = project_plane([a,b,c],pt); // Example(3D): The yellow points in 3D project onto the red points in 2D // M = [[-1, 2, -1, -2], [-1, -3, 2, -1], [2, 3, 4, 53], [0, 0, 0, 1]]; // data = apply(M,path3d(circle(r=10, $fn=20))); // move_copies(data) sphere(r=1); // color("red") move_copies(project_plane(data, data)) sphere(r=1); // Example: // xyzpath = move([10,20,30], p=yrot(25, p=path3d(circle(d=100)))); // mat = project_plane(xyzpath); // xypath = path2d(apply(mat, xyzpath)); // #stroke(xyzpath,closed=true); // stroke(xypath,closed=true); function project_plane(plane,p) = is_matrix(plane,3,3) && is_undef(p) ? // no data, 3 points given assert(!is_collinear(plane),"Points defining the plane must not be collinear") let( v = plane[2]-plane[0], y = unit(plane[1]-plane[0]), // y axis goes to point b x = unit(v-(v*y)*y) // x axis ) frame_map(x,y) * move(-plane[0]) : is_vector(plane,4) && is_undef(p) ? // no data, plane given in "plane" assert(_valid_plane(plane), "Plane is not valid") let( n = point3d(plane), cp = n * plane[3] / (n*n) ) rot(from=n, to=UP) * move(-cp) : is_path(plane,3) && is_undef(p) ? // no data, generic point list plane assert(len(plane)>=3, "Need three points to define a plane") let(plane = plane_from_points(plane)) assert(is_def(plane), "Point list is not coplanar") project_plane(plane) : assert(is_def(p), str("Invalid plane specification: ",plane)) is_vnf(p) ? [project_plane(plane,p[0]), p[1]] : is_list(p) && is_list(p[0]) && is_vector(p[0][0],3) ? // bezier patch or region [for(plist=p) project_plane(plane,plist)] : assert(is_vector(p,3) || is_path(p,3),str("Data must be a 3D point, path, region, vnf or bezier patch",p)) is_matrix(plane,3,3) ? assert(!is_collinear(plane),"Points defining the plane must not be collinear") let( v = plane[2]-plane[0], y = unit(plane[1]-plane[0]), // y axis goes to point b x = unit(v-(v*y)*y) // x axis ) move(-plane[0],p) * transpose([x,y]) : is_vector(p) ? point2d(apply(project_plane(plane),p)) : path2d(apply(project_plane(plane),p)); // Function: lift_plane() // Synopsis: Map a list of 2D points onto a plane in 3D. // SynTags: Path // Topics: Coordinates, Points, Paths // See Also: project_plane() // Usage: // xyz = lift_plane(plane, p); // Usage: to get transform matrix // M = lift_plane(plane); // Description: // Converts the given 2D point on the plane to 3D coordinates of the specified plane. // The parameter p can be a point, path, region, bezier patch or VNF. // The plane can be specified as // - A list of three points. The planar coordinate system will have [0,0] at plane[0], and plane[1] will lie on the Y+ axis. // - A list of coplanar points that define a plane (not-collinear) // - A plane definition `[A,B,C,D]` where `Ax+By+CZ=D`. The closest point on that plane to the origin will map to the origin in the new coordinate system. // . // If you do not supply `p` then you get a transformation matrix which operates in 3D, assuming that the Z coordinate of the points is zero. // This matrix is a rotation, the inverse of the one produced by project_plane. // Arguments: // plane = Plane specification or list of points to define a plane // p = points, path, region, VNF, or bezier patch to transform. function lift_plane(plane, p) = is_matrix(plane,3,3) && is_undef(p) ? // no data, 3 p given let( v = plane[2]-plane[0], y = unit(plane[1]-plane[0]), // y axis goes to point b x = unit(v-(v*y)*y) // x axis ) move(plane[0]) * frame_map(x,y,reverse=true) : is_vector(plane,4) && is_undef(p) ? // no data, plane given in "plane" assert(_valid_plane(plane), "Plane is not valid") let( n = point3d(plane), cp = n * plane[3] / (n*n) ) move(cp) * rot(from=UP, to=n) : is_path(plane,3) && is_undef(p) ? // no data, generic point list plane assert(len(plane)>=3, "Need three p to define a plane") let(plane = plane_from_points(plane)) assert(is_def(plane), "Point list is not coplanar") lift_plane(plane) : is_vnf(p) ? [lift_plane(plane,p[0]), p[1]] : is_list(p) && is_list(p[0]) && is_vector(p[0][0],3) ? // bezier patch or region [for(plist=p) lift_plane(plane,plist)] : assert(is_vector(p,2) || is_path(p,2),"Data must be a 2D point, path, region, vnf or bezier patch") is_matrix(plane,3,3) ? let( v = plane[2]-plane[0], y = unit(plane[1]-plane[0]), // y axis goes to point b x = unit(v-(v*y)*y) // x axis ) move(plane[0],p * [x,y]) : apply(lift_plane(plane),is_vector(p) ? point3d(p) : path3d(p)); // Function: cylindrical_to_xyz() // Synopsis: Convert cylindrical coordinates to cartesian coordinates. // SynTags: Path // Topics: Coordinates, Points, Paths // See Also: xyz_to_cylindrical(), xy_to_polar(), polar_to_xy(), xyz_to_spherical(), spherical_to_xyz() // Usage: // pt = cylindrical_to_xyz(r, theta, z); // pt = cylindrical_to_xyz([RADIUS,THETA,Z]); // pts = cylindrical_to_xyz([[RADIUS,THETA,Z], [RADIUS,THETA,Z], ...]); // Description: // Called with three arguments, converts the `r`, `theta`, and 'z' 3D cylindrical coordinate into an `[X,Y,Z]` cartesian coordinate. // Called with one `[RADIUS,THETA,Z]` vector argument, converts the 3D cylindrical coordinate into an `[X,Y,Z]` cartesian coordinate. // Called with a list of `[RADIUS,THETA,Z]` vector arguments, converts each 3D cylindrical coordinate into `[X,Y,Z]` cartesian coordinates. // Theta is the angle counter-clockwise of X+ on the XY plane. Z is height above the XY plane. // Arguments: // r = distance from the Z axis. // theta = angle in degrees, counter-clockwise of X+ on the XY plane. // z = Height above XY plane. // Example: // xyz = cylindrical_to_xyz(20,30,40); // xyz = cylindrical_to_xyz([40,60,50]); function cylindrical_to_xyz(r,theta,z) = theta != undef ? assert(is_num(r) && is_num(theta) && is_num(z), "Bad Arguments.") [r*cos(theta), r*sin(theta), z] : assert(is_list(r), "Bad Arguments") is_num(r.x) ? cylindrical_to_xyz(r.x, r.y, r.z) : [for(p = r) cylindrical_to_xyz(p.x, p.y, p.z)]; // Function: xyz_to_cylindrical() // Synopsis: Convert 3D cartesian coordinates to cylindrical coordinates. // Topics: Coordinates, Points, Paths // See Also: cylindrical_to_xyz(), xy_to_polar(), polar_to_xy(), xyz_to_spherical(), spherical_to_xyz() // Usage: // rtz = xyz_to_cylindrical(x,y,z); // rtz = xyz_to_cylindrical([X,Y,Z]); // rtzs = xyz_to_cylindrical([[X,Y,Z], [X,Y,Z], ...]); // Description: // Called with three arguments, converts the `x`, `y`, and `z` 3D cartesian coordinate into a `[RADIUS,THETA,Z]` cylindrical coordinate. // Called with one `[X,Y,Z]` vector argument, converts the 3D cartesian coordinate into a `[RADIUS,THETA,Z]` cylindrical coordinate. // Called with a list of `[X,Y,Z]` vector arguments, converts each 3D cartesian coordinate into `[RADIUS,THETA,Z]` cylindrical coordinates. // Theta is the angle counter-clockwise of X+ on the XY plane. Z is height above the XY plane. // Arguments: // x = X coordinate. // y = Y coordinate. // z = Z coordinate. // Example: // cyl = xyz_to_cylindrical(20,30,40); // cyl = xyz_to_cylindrical([40,50,70]); // cyls = xyz_to_cylindrical([[40,50,70], [-10,15,-30]]); function xyz_to_cylindrical(x,y,z) = y != undef ? assert(is_num(x) && is_num(y) && is_num(z), "Bad Arguments.") [norm([x,y]), atan2(y,x), z] : assert(is_list(x), "Bad Arguments") is_num(x.x) ? xyz_to_cylindrical(x.x, x.y, x.z) : [for(p = x) xyz_to_cylindrical(p.x, p.y, p.z)]; // Function: spherical_to_xyz() // Synopsis: Convert spherical coordinates to 3D cartesian coordinates. // SynTags: Path // Topics: Coordinates, Points, Paths // See Also: cylindrical_to_xyz(), xyz_to_spherical(), xyz_to_cylindrical(), altaz_to_xyz(), xyz_to_altaz() // Usage: // pt = spherical_to_xyz(r, theta, phi); // pt = spherical_to_xyz([RADIUS,THETA,PHI]); // pts = spherical_to_xyz([[RADIUS,THETA,PHI], [RADIUS,THETA,PHI], ...]); // Description: // Called with three arguments, converts the `r`, `theta`, and 'phi' 3D spherical coordinate into an `[X,Y,Z]` cartesian coordinate. // Called with one `[RADIUS,THETA,PHI]` vector argument, converts the 3D spherical coordinate into an `[X,Y,Z]` cartesian coordinate. // Called with a list of `[RADIUS,THETA,PHI]` vector arguments, converts each 3D spherical coordinate into `[X,Y,Z]` cartesian coordinates. // Theta is the angle counter-clockwise of X+ on the XY plane. Phi is the angle down from the Z+ pole. // Arguments: // r = distance from origin. // theta = angle in degrees, counter-clockwise of X+ on the XY plane. // phi = angle in degrees from the vertical Z+ axis. // Example: // xyz = spherical_to_xyz(20,30,40); // xyz = spherical_to_xyz([40,60,50]); // xyzs = spherical_to_xyz([[40,60,50], [50,120,100]]); function spherical_to_xyz(r,theta,phi) = theta != undef ? assert(is_num(r) && is_num(theta) && is_num(phi), "Bad Arguments.") r*[cos(theta)*sin(phi), sin(theta)*sin(phi), cos(phi)] : assert(is_list(r), "Bad Arguments") is_num(r.x) ? spherical_to_xyz(r.x, r.y, r.z) : [for(p = r) spherical_to_xyz(p.x, p.y, p.z)]; // Function: xyz_to_spherical() // Usage: // r_theta_phi = xyz_to_spherical(x,y,z) // r_theta_phi = xyz_to_spherical([X,Y,Z]) // r_theta_phis = xyz_to_spherical([[X,Y,Z], [X,Y,Z], ...]) // Topics: Coordinates, Points, Paths // Synopsis: Convert 3D cartesian coordinates to spherical coordinates. // See Also: cylindrical_to_xyz(), spherical_to_xyz(), xyz_to_cylindrical(), altaz_to_xyz(), xyz_to_altaz() // Description: // Called with three arguments, converts the `x`, `y`, and `z` 3D cartesian coordinate into a `[RADIUS,THETA,PHI]` spherical coordinate. // Called with one `[X,Y,Z]` vector argument, converts the 3D cartesian coordinate into a `[RADIUS,THETA,PHI]` spherical coordinate. // Called with a list of `[X,Y,Z]` vector arguments, converts each 3D cartesian coordinate into `[RADIUS,THETA,PHI]` spherical coordinates. // Theta is the angle counter-clockwise of X+ on the XY plane. Phi is the angle down from the Z+ pole. // Arguments: // x = X coordinate. // y = Y coordinate. // z = Z coordinate. // Example: // sph = xyz_to_spherical(20,30,40); // sph = xyz_to_spherical([40,50,70]); // sphs = xyz_to_spherical([[40,50,70], [25,-14,27]]); function xyz_to_spherical(x,y,z) = y != undef ? assert(is_num(x) && is_num(y) && is_num(z), "Bad Arguments.") [norm([x,y,z]), atan2(y,x), atan2(norm([x,y]),z)] : assert(is_list(x), "Bad Arguments") is_num(x.x) ? xyz_to_spherical(x.x, x.y, x.z) : [for(p = x) xyz_to_spherical(p.x, p.y, p.z)]; // Function: altaz_to_xyz() // Synopsis: Convert altitude/azimuth/range to 3D cartesian coordinates. // SynTags: Path // Topics: Coordinates, Points, Paths // See Also: cylindrical_to_xyz(), xyz_to_spherical(), spherical_to_xyz(), xyz_to_cylindrical(), xyz_to_altaz() // Usage: // pt = altaz_to_xyz(alt, az, r); // pt = altaz_to_xyz([ALT,AZ,R]); // pts = altaz_to_xyz([[ALT,AZ,R], [ALT,AZ,R], ...]); // Description: // Convert altitude/azimuth/range coordinates to 3D cartesian coordinates. // Called with three arguments, converts the `alt`, `az`, and 'r' 3D altitude-azimuth coordinate into an `[X,Y,Z]` cartesian coordinate. // Called with one `[ALTITUDE,AZIMUTH,RANGE]` vector argument, converts the 3D alt-az coordinate into an `[X,Y,Z]` cartesian coordinate. // Called with a list of `[ALTITUDE,AZIMUTH,RANGE]` vector arguments, converts each 3D alt-az coordinate into `[X,Y,Z]` cartesian coordinates. // Altitude is the angle above the XY plane, Azimuth is degrees clockwise of Y+ on the XY plane, and Range is the distance from the origin. // Arguments: // alt = altitude angle in degrees above the XY plane. // az = azimuth angle in degrees clockwise of Y+ on the XY plane. // r = distance from origin. // Example: // xyz = altaz_to_xyz(20,30,40); // xyz = altaz_to_xyz([40,60,50]); function altaz_to_xyz(alt,az,r) = az != undef ? assert(is_num(alt) && is_num(az) && is_num(r), "Bad Arguments.") r*[cos(90-az)*cos(alt), sin(90-az)*cos(alt), sin(alt)] : assert(is_list(alt), "Bad Arguments") is_num(alt.x) ? altaz_to_xyz(alt.x, alt.y, alt.z) : [for(p = alt) altaz_to_xyz(p.x, p.y, p.z)]; // Function: xyz_to_altaz() // Synopsis: Convert 3D cartesian coordinates to [altitude,azimuth,range]. // Topics: Coordinates, Points, Paths // See Also: cylindrical_to_xyz(), xyz_to_spherical(), spherical_to_xyz(), xyz_to_cylindrical(), altaz_to_xyz() // Usage: // alt_az_r = xyz_to_altaz(x,y,z); // alt_az_r = xyz_to_altaz([X,Y,Z]); // alt_az_rs = xyz_to_altaz([[X,Y,Z], [X,Y,Z], ...]); // Description: // Converts 3D cartesian coordinates to altitude/azimuth/range coordinates. // Called with three arguments, converts the `x`, `y`, and `z` 3D cartesian coordinate into an `[ALTITUDE,AZIMUTH,RANGE]` coordinate. // Called with one `[X,Y,Z]` vector argument, converts the 3D cartesian coordinate into a `[ALTITUDE,AZIMUTH,RANGE]` coordinate. // Called with a list of `[X,Y,Z]` vector arguments, converts each 3D cartesian coordinate into `[ALTITUDE,AZIMUTH,RANGE]` coordinates. // Altitude is the angle above the XY plane, Azimuth is degrees clockwise of Y+ on the XY plane, and Range is the distance from the origin. // Arguments: // x = X coordinate. // y = Y coordinate. // z = Z coordinate. // Example: // aa = xyz_to_altaz(20,30,40); // aa = xyz_to_altaz([40,50,70]); function xyz_to_altaz(x,y,z) = y != undef ? assert(is_num(x) && is_num(y) && is_num(z), "Bad Arguments.") [atan2(z,norm([x,y])), atan2(x,y), norm([x,y,z])] : assert(is_list(x), "Bad Arguments") is_num(x.x) ? xyz_to_altaz(x.x, x.y, x.z) : [for(p = x) xyz_to_altaz(p.x, p.y, p.z)]; // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap