////////////////////////////////////////////////////////////////////// // LibFile: affine.scad // Matrix math and affine transformation matrices. // To use, add the following lines to the beginning of your file: // ``` // use // ``` ////////////////////////////////////////////////////////////////////// // Section: Matrix Manipulation // Function: ident() // Description: Create an `n` by `n` identity matrix. // Arguments: // n = The size of the identity matrix square, `n` by `n`. function ident(n) = [for (i = [0:1:n-1]) [for (j = [0:1:n-1]) (i==j)?1:0]]; // Function: affine2d_to_3d() // Description: Takes a 3x3 affine2d matrix and returns its 4x4 affine3d equivalent. function affine2d_to_3d(m) = concat( [for (r = [0:2]) concat( [for (c = [0:2]) m[r][c]], [0] ) ], [[0, 0, 0, 1]] ); // Section: Affine2d 3x3 Transformation Matrices // Function: affine2d_identity() // Description: Create a 3x3 affine2d identity matrix. function affine2d_identity() = ident(3); // Function: affine2d_translate() // Description: // Returns the 3x3 affine2d matrix to perform a 2D translation. // Arguments: // v = 2D Offset to translate by. [X,Y] function affine2d_translate(v) = [ [1, 0, v.x], [0, 1, v.y], [0 ,0, 1] ]; // Function: affine2d_scale() // Description: // Returns the 3x3 affine2d matrix to perform a 2D scaling transformation. // Arguments: // v = 2D vector of scaling factors. [X,Y] function affine2d_scale(v) = [ [v.x, 0, 0], [ 0, v.y, 0], [ 0, 0, 1] ]; // Function: affine2d_zrot() // Description: // Returns the 3x3 affine2d matrix to perform a rotation of a 2D vector around the Z axis. // Arguments: // ang = Number of degrees to rotate. function affine2d_zrot(ang) = [ [cos(ang), -sin(ang), 0], [sin(ang), cos(ang), 0], [ 0, 0, 1] ]; // Function: affine2d_mirror() // Usage: // mat = affine2d_mirror(v); // Description: // Returns the 3x3 affine2d matrix to perform a reflection of a 2D vector across the line given by its normal vector. // Arguments: // v = The normal vector of the line to reflect across. function affine2d_mirror(v) = let(v=unit(point2d(v)), a=v.x, b=v.y) [ [1-2*a*a, 0-2*a*b, 0], [0-2*a*b, 1-2*b*b, 0], [ 0, 0, 1] ]; // Function: affine2d_skew() // Usage: // affine2d_skew(xa, ya) // Description: // Returns the 3x3 affine2d matrix to skew a 2D vector along the XY plane. // Arguments: // xa = Skew angle, in degrees, in the direction of the X axis. // ya = Skew angle, in degrees, in the direction of the Y axis. function affine2d_skew(xa, ya) = [ [1, tan(xa), 0], [tan(ya), 1, 0], [0, 0, 1] ]; // Function: affine2d_chain() // Usage: // affine2d_chain(affines) // Description: // Returns a 3x3 affine2d transformation matrix which results from applying each matrix in `affines` in order. // Arguments: // affines = A list of 3x3 affine2d matrices. function affine2d_chain(affines, _m=undef, _i=0) = (_i>=len(affines))? (is_undef(_m)? ident(3) : _m) : affine2d_chain(affines, _m=(is_undef(_m)? affines[_i] : affines[_i] * _m), _i=_i+1); // Section: Affine3d 4x4 Transformation Matrices // Function: affine3d_identity() // Description: Create a 4x4 affine3d identity matrix. function affine3d_identity() = ident(4); // Function: affine3d_translate() // Description: // Returns the 4x4 affine3d matrix to perform a 3D translation. // Arguments: // v = 3D offset to translate by. [X,Y,Z] function affine3d_translate(v) = [ [1, 0, 0, v.x], [0, 1, 0, v.y], [0, 0, 1, v.z], [0 ,0, 0, 1] ]; // Function: affine3d_scale() // Description: // Returns the 4x4 affine3d matrix to perform a 3D scaling transformation. // Arguments: // v = 3D vector of scaling factors. [X,Y,Z] function affine3d_scale(v) = [ [v.x, 0, 0, 0], [ 0, v.y, 0, 0], [ 0, 0, v.z, 0], [ 0, 0, 0, 1] ]; // Function: affine3d_xrot() // Description: // Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector around the X axis. // Arguments: // ang = number of degrees to rotate. function affine3d_xrot(ang) = [ [1, 0, 0, 0], [0, cos(ang), -sin(ang), 0], [0, sin(ang), cos(ang), 0], [0, 0, 0, 1] ]; // Function: affine3d_yrot() // Description: // Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector around the Y axis. // Arguments: // ang = Number of degrees to rotate. function affine3d_yrot(ang) = [ [ cos(ang), 0, sin(ang), 0], [ 0, 1, 0, 0], [-sin(ang), 0, cos(ang), 0], [ 0, 0, 0, 1] ]; // Function: affine3d_zrot() // Usage: // affine3d_zrot(ang) // Description: // Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector around the Z axis. // Arguments: // ang = number of degrees to rotate. function affine3d_zrot(ang) = [ [cos(ang), -sin(ang), 0, 0], [sin(ang), cos(ang), 0, 0], [ 0, 0, 1, 0], [ 0, 0, 0, 1] ]; // Function: affine3d_rot_by_axis() // Usage: // affine3d_rot_by_axis(u, ang); // Description: // Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector around an axis. // Arguments: // u = 3D axis vector to rotate around. // ang = number of degrees to rotate. function affine3d_rot_by_axis(u, ang) = approx(ang,0)? affine3d_identity() : let( u = unit(u), c = cos(ang), c2 = 1-c, s = sin(ang) ) [ [u.x*u.x*c2+c , u.x*u.y*c2-u.z*s, u.x*u.z*c2+u.y*s, 0], [u.y*u.x*c2+u.z*s, u.y*u.y*c2+c , u.y*u.z*c2-u.x*s, 0], [u.z*u.x*c2-u.y*s, u.z*u.y*c2+u.x*s, u.z*u.z*c2+c , 0], [ 0, 0, 0, 1] ]; // Function: affine3d_rot_from_to() // Usage: // affine3d_rot_from_to(from, to); // Description: // Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector from one vector direction to another. // Arguments: // from = 3D axis vector to rotate from. // to = 3D axis vector to rotate to. function affine3d_rot_from_to(from, to) = let( from = unit(point3d(from)), to = unit(point3d(to)) ) approx(from,to)? affine3d_identity() : let( u = vector_axis(from,to), ang = vector_angle(from,to), c = cos(ang), c2 = 1-c, s = sin(ang) ) [ [u.x*u.x*c2+c , u.x*u.y*c2-u.z*s, u.x*u.z*c2+u.y*s, 0], [u.y*u.x*c2+u.z*s, u.y*u.y*c2+c , u.y*u.z*c2-u.x*s, 0], [u.z*u.x*c2-u.y*s, u.z*u.y*c2+u.x*s, u.z*u.z*c2+c , 0], [ 0, 0, 0, 1] ]; // Function: affine_frame_map() // Usage: // map = affine_frame_map(x=v1,y=v2); // map = affine_frame_map(x=v1,z=v2); // map = affine_frame_map(y=v1,y=v2); // map = affine_frame_map(v1,v2,v3); // Description: // Returns a transformation that maps one coordinate frame to another. You must specify two or three of `x`, `y`, and `z`. The specified // axes are mapped to the vectors you supplied. If you give two inputs, the third vector is mapped to the appropriate normal to maintain a right hand coordinate system. // If the vectors you give are orthogonal the result will be a rotation and the `reverse` parameter will supply the inverse map, which enables you // to map two arbitrary coordinate systems to each other by using the canonical coordinate system as an intermediary. You cannot use the `reverse` option // with non-orthogonal inputs. // Arguments: // x = Destination vector for x axis // y = Destination vector for y axis // z = Destination vector for z axis // reverse = reverse direction of the map for orthogonal inputs. Default: false // Examples: // T = affine_frame_map(x=[1,1,0], y=[-1,1,0]); // This map is just a rotation around the z axis // T = affine_frame_map(x=[1,0,0], y=[1,1,0]); // This map is not a rotation because x and y aren't orthogonal // // The next map sends [1,1,0] to [0,1,1] and [-1,1,0] to [0,-1,1] // T = affine_frame_map(x=[0,1,1], y=[0,-1,1]) * affine_frame_map(x=[1,1,0], y=[-1,1,0],reverse=true); function affine_frame_map(x,y,z, reverse=false) = assert(num_defined([x,y,z])>=2, "Must define at least two inputs") let( xvalid = is_undef(x) || (is_vector(x) && len(x)==3), yvalid = is_undef(y) || (is_vector(y) && len(y)==3), zvalid = is_undef(z) || (is_vector(z) && len(z)==3) ) assert(xvalid,"Input x must be a length 3 vector") assert(yvalid,"Input y must be a length 3 vector") assert(zvalid,"Input z must be a length 3 vector") let( x = is_undef(x)? undef : unit(x,RIGHT), y = is_undef(y)? undef : unit(y,BACK), z = is_undef(z)? undef : unit(z,UP), map = is_undef(x)? [cross(y,z), y, z] : is_undef(y)? [x, cross(z,x), z] : is_undef(z)? [x, y, cross(x,y)] : [x, y, z] ) reverse? ( let( ocheck = ( approx(map[0]*map[1],0) && approx(map[0]*map[2],0) && approx(map[1]*map[2],0) ) ) assert(ocheck, "Inputs must be orthogonal when reverse==true") affine2d_to_3d(map) ) : affine2d_to_3d(transpose(map)); // Function: affine3d_mirror() // Usage: // mat = affine3d_mirror(v); // Description: // Returns the 4x4 affine3d matrix to perform a reflection of a 3D vector across the plane given by its normal vector. // Arguments: // v = The normal vector of the plane to reflect across. function affine3d_mirror(v) = let( v=unit(point3d(v)), a=v.x, b=v.y, c=v.z ) [ [1-2*a*a, -2*a*b, -2*a*c, 0], [ -2*b*a, 1-2*b*b, -2*b*c, 0], [ -2*c*a, -2*c*b, 1-2*c*c, 0], [ 0, 0, 0, 1] ]; // Function: affine3d_skew() // Usage: // mat = affine3d_skew([sxy], [sxz], [syx], [syz], [szx], [szy]); // Description: // Returns the 4x4 affine3d matrix to perform a skew transformation. // Arguments: // sxy = Skew factor multiplier for skewing along the X axis as you get farther from the Y axis. Default: 0 // sxz = Skew factor multiplier for skewing along the X axis as you get farther from the Z axis. Default: 0 // syx = Skew factor multiplier for skewing along the Y axis as you get farther from the X axis. Default: 0 // syz = Skew factor multiplier for skewing along the Y axis as you get farther from the Z axis. Default: 0 // szx = Skew factor multiplier for skewing along the Z axis as you get farther from the X axis. Default: 0 // szy = Skew factor multiplier for skewing along the Z axis as you get farther from the Y axis. Default: 0 function affine3d_skew(sxy=0, sxz=0, syx=0, syz=0, szx=0, szy=0) = [ [ 1, sxy, sxz, 0], [syx, 1, syz, 0], [szx, szy, 1, 0], [ 0, 0, 0, 1] ]; // Function: affine3d_skew_xy() // Usage: // affine3d_skew_xy(xa, ya) // Description: // Returns the 4x4 affine3d matrix to perform a skew transformation along the XY plane. // Arguments: // xa = Skew angle, in degrees, in the direction of the X axis. // ya = Skew angle, in degrees, in the direction of the Y axis. function affine3d_skew_xy(xa, ya) = [ [1, 0, tan(xa), 0], [0, 1, tan(ya), 0], [0, 0, 1, 0], [0, 0, 0, 1] ]; // Function: affine3d_skew_xz() // Usage: // affine3d_skew_xz(xa, za) // Description: // Returns the 4x4 affine3d matrix to perform a skew transformation along the XZ plane. // Arguments: // xa = Skew angle, in degrees, in the direction of the X axis. // za = Skew angle, in degrees, in the direction of the Z axis. function affine3d_skew_xz(xa, za) = [ [1, tan(xa), 0, 0], [0, 1, 0, 0], [0, tan(za), 1, 0], [0, 0, 0, 1] ]; // Function: affine3d_skew_yz() // Usage: // affine3d_skew_yz(ya, za) // Description: // Returns the 4x4 affine3d matrix to perform a skew transformation along the YZ plane. // Arguments: // ya = Skew angle, in degrees, in the direction of the Y axis. // za = Skew angle, in degrees, in the direction of the Z axis. function affine3d_skew_yz(ya, za) = [ [ 1, 0, 0, 0], [tan(ya), 1, 0, 0], [tan(za), 0, 1, 0], [ 0, 0, 0, 1] ]; // Function: affine3d_chain() // Usage: // affine3d_chain(affines) // Description: // Returns a 4x4 affine3d transformation matrix which results from applying each matrix in `affines` in order. // Arguments: // affines = A list of 4x4 affine3d matrices. function affine3d_chain(affines, _m=undef, _i=0) = (_i>=len(affines))? (is_undef(_m)? ident(4) : _m) : affine3d_chain(affines, _m=(is_undef(_m)? affines[_i] : affines[_i] * _m), _i=_i+1); // Function: apply() // Usage: apply(transform, points) // Description: // Applies the specified transformation matrix to a point list (or single point). Both inputs can be 2d or 3d, and it is also allowed // to supply 3d transformations with 2d data as long as the the only action on the z coordinate is a simple scaling. // Examples: // transformed = apply(xrot(45), path3d(circle(r=3))); // Rotates 3d circle data around x axis // transformed = apply(rot(45), circle(r=3)); // Rotates 2d circle data by 45 deg // transformed = apply(rot(45)*right(4)*scale(3), circle(r=3)); // Scales, translates and rotates 2d circle data function apply(transform,points) = points==[] ? [] : is_vector(points) ? apply(transform, [points])[0] : let( tdim = len(transform[0])-1, datadim = len(points[0]) ) tdim == 3 && datadim == 3 ? [for(p=points) point3d(transform*concat(p,[1]))] : tdim == 2 && datadim == 2 ? [for(p=points) point2d(transform*concat(p,[1]))] : tdim == 3 && datadim == 2 ? assert(is_2d_transform(transform),str("Transforms is 3d but points are 2d")) [for(p=points) point2d(transform*concat(p,[0,1]))] : assert(false,str("Unsupported combination: transform with dimension ",tdim,", data of dimension ",datadim)); // Function: apply_list() // Usage: apply_list(points, transform_list) // Description: // Transforms the specified point list (or single point) using a list of transformation matrices. Transformations on // the list are applied in the order they appear in the list (as in right multiplication of matrices). Both inputs can be // 2d or 3d, and it is also allowed to supply 3d transformations with 2d data as long as the the only action on the z coordinate // is a simple scaling. All transformations on `transform_list` must have the same dimension: you cannot mix 2d and 3d transformations // even when acting on 2d data. // Examples: // transformed = apply_list(path3d(circle(r=3)),[xrot(45)]); // Rotates 3d circle data around x axis // transformed = apply_list(circle(r=3), [scale(3), right(4), rot(45)]); // Scales, then translates, and then rotates 2d circle data function apply_list(points,transform_list) = transform_list == []? points : is_vector(points) ? apply_list([points],transform_list)[0] : let( tdims = array_dim(transform_list), datadim = len(points[0]) ) assert(len(tdims)==3 || tdims[1]!=tdims[2], "Invalid transformation list") let( tdim = tdims[1]-1 ) tdim==2 && datadim == 2 ? apply(affine2d_chain(transform_list), points) : tdim==3 && datadim == 3 ? apply(affine3d_chain(transform_list), points) : tdim==3 && datadim == 2 ? let( badlist = [for(i=idx(transform_list)) if (!is_2d_transform(transform_list[i])) i] ) assert(badlist==[],str("Transforms with indices ",badlist," are 3d but points are 2d")) apply(affine3d_chain(transform_list), points) : assert(false,str("Unsupported combination: transform with dimension ",tdim,", data of dimension ",datadim)); // Function: is_2d_transform() // Usage: // is_2d_transform(t) // Description: // Checks if the input is a 3d transform that does not act on the z coordinate, except // possibly for a simple scaling of z. Note that an input which is only a zscale returns false. function is_2d_transform(t) = // z-parameters are zero, except we allow t[2][2]!=1 so scale() works t[2][0]==0 && t[2][1]==0 && t[2][3]==0 && t[0][2] == 0 && t[1][2]==0 && (t[2][2]==1 || !(t[0][0]==1 && t[0][1]==0 && t[1][0]==0 && t[1][1]==1)); // But rule out zscale() // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap