////////////////////////////////////////////////////////////////////// // LibFile: regions.scad // This file provides 2D boolean geometry operations on paths, where you can // compute the intersection or union of the shape defined by point lists, producing // a new point list. Of course, boolean operations may produce shapes with multiple // components. To handle that, we use "regions" which are defined by sets of // multiple paths. // Includes: // include ////////////////////////////////////////////////////////////////////// // CommonCode: // include // Section: Regions // A region is a list of non-crossing simple polygons. Simple polygons are those without self intersections, // and the polygons of a region can touch at corners, but their segments should not // cross each other. The actual geometry of the region is defined by XORing together // all of the polygons on the list. This may sound obscure, but it simply means that nested // boundaries make rings in the obvious fashion, and non-nested shapes simply union together. // Checking that the polygons on a list are simple and non-crossing can be a time consuming test, // so it is not done automatically. It is your responsibility to ensure that your regions are // compliant. You can construct regions by making a list of polygons, or by using // boolean function operations such as union() or difference(). And if you must you // can clean up an ill-formed region using sanitize_region(). // Function: is_region() // Usage: // is_region(x); // Description: // Returns true if the given item looks like a region. A region is defined as a list of zero or more paths. function is_region(x) = is_list(x) && is_path(x.x); // Function: force_region() // Usage: // region = force_region(path) // Description: // If the input is a path then return it as a region. Otherwise return it unaltered. function force_region(path) = is_path(path) ? [path] : path; // Function: sanitize_region() // Usage: // r_fixed = sanitize_region(r, [nonzero], [eps]); // Description: // Takes a malformed input region that contains self-intersecting polygons or polygons // that cross each other and converts it into a properly defined region without // these defects. // Arguments: // r = region to sanitize // nonzero = set to true to use nonzero rule for polygon membership. Default: false // eps = Epsilon for geometric comparisons. Default: `EPSILON` (1e-9) // Examples: // function sanitize_region(r,nonzero=false,eps=EPSILON) = let(r=force_region(r)) assert(is_region(r), "Input is not a region") exclusive_or( [for(poly=r) each polygon_parts(poly,nonzero,eps)], eps=eps); // Module: region() // Usage: // region(r); // Description: // Creates 2D polygons for the given region. The region given is a list of closed 2D paths. // Each path will be effectively exclusive-ORed from all other paths in the region, so if a // path is inside another path, it will be effectively subtracted from it. // Example(2D): // region([circle(d=50), square(25,center=true)]); // Example(2D): // rgn = concat( // [for (d=[50:-10:10]) circle(d=d-5)], // [square([60,10], center=true)] // ); // region(rgn); module region(r) { no_children($children); r = force_region(r); dummy=assert(is_region(r), "Input is not a region"); points = flatten(r); lengths = [for(path=r) len(path)]; starts = [0,each cumsum(lengths)]; paths = [for(i=idx(r)) count(s=starts[i], n=lengths[i])]; polygon(points=points, paths=paths); } // Function: point_in_region() // Usage: // check = point_in_region(point, region, [eps]); // Description: // Tests if a point is inside, outside, or on the border of a region. // Returns -1 if the point is outside the region. // Returns 0 if the point is on the boundary. // Returns 1 if the point lies inside the region. // Arguments: // point = The point to test. // region = The region to test against. Given as a list of polygon paths. // eps = Acceptable variance. Default: `EPSILON` (1e-9) function point_in_region(point, region, eps=EPSILON, _i=0, _cnt=0) = _i >= len(region) ? ((_cnt%2==1)? 1 : -1) : let( pip = point_in_polygon(point, region[_i], eps=eps) ) pip==0? 0 : point_in_region(point, region, eps=eps, _i=_i+1, _cnt = _cnt + (pip>0? 1 : 0)); // Function: region_area() // Usage: // area=region_area(region); // Description: // Computes the area of the specified valid region. (If the region is invalid and has self intersections // the result is meaningless.) function region_area(region) = assert(is_region(region), "Input must be a region") let( parts = region_parts(region) ) -sum([for(R=parts, poly=R) polygon_area(poly,signed=true)]); // Function: is_region_simple() // Usage: // bool = is_region_simple(region, [eps]); // Description: // Returns true if the region is entirely non-self-intersecting, meaning that it is // formed from a list of simple polygons that do not intersect each other. // Arguments: // region = region to check // eps = tolerance for geometric comparisons. Default: `EPSILON` = 1e-9 function is_region_simple(region, eps=EPSILON) = let(region=force_region(region)) assert(is_region(region), "Input is not a region") [for(p=region) if (!is_path_simple(p,closed=true,eps)) 1] == [] && [for(i=[0:1:len(region)-2]) if (_region_region_intersections([region[i]], list_tail(region,i+1), eps=eps)[0][0] != []) 1 ] ==[]; function _clockwise_region(r) = [for(p=r) clockwise_polygon(p)]; // Function: are_regions_equal() // Usage: // b = are_regions_equal(region1, region2, [eps]) // Description: // Returns true if the components of region1 and region2 are the same polygons (in any order) // within given epsilon tolerance. // Arguments: // region1 = first region // region2 = second region // eps = tolerance for comparison function are_regions_equal(region1, region2, either_winding=false) = let( region1=force_region(region1), region2=force_region(region2) ) assert(is_region(region1) && is_region(region2), "One of the inputs is not a region") len(region1) != len(region2)? false : __are_regions_equal(either_winding?_clockwise_region(region1):region1, either_winding?_clockwise_region(region2):region2, 0); function __are_regions_equal(region1, region2, i) = i >= len(region1)? true : !is_polygon_in_list(region1[i], region2)? false : __are_regions_equal(region1, region2, i+1); /// Internal Function: _region_region_intersections() /// Usage: /// risect = _region_region_intersections(region1, region2, [closed1], [closed2], [eps] /// Description: /// Returns a pair of sorted lists such that risect[0] is a list of intersection /// points for every path in region1, and similarly risect[1] is a list of intersection /// points for the paths in region2. For each path the intersection list is /// a sorted list of the form [SEGMENT, U]. You can specify that the paths in either /// region be regarded as open paths if desired. Default is to treat them as /// regions and hence the paths as closed polygons. /// . /// Included as intersection points are points where region1 touches itself at a vertex or /// region2 touches itself at a vertex. (The paths are assumed to have no self crossings. /// Self crossings of the paths in the regions are not returned.) function _region_region_intersections(region1, region2, closed1=true,closed2=true, eps=EPSILON) = let( intersections = [ for(p1=idx(region1)) let( path = closed1?close_path(region1[p1]):region1[p1] ) for(i = [0:1:len(path)-2]) let( a1 = path[i], a2 = path[i+1], nrm = norm(a1-a2) ) if( nrm>eps ) // ignore zero-length path edges let( seg_normal = [-(a2-a1).y, (a2-a1).x]/nrm, ref = a1*seg_normal ) // `signs[j]` is the sign of the signed distance from // poly vertex j to the line [a1,a2] where near zero // distances are snapped to zero; poly edges // with equal signs at its vertices cannot intersect // the path edge [a1,a2] or they are collinear and // further tests can be discarded. for(p2=idx(region2)) let( poly = closed2?close_path(region2[p2]):region2[p2], signs = [for(v=poly*seg_normal) v-ref> eps ? 1 : v-ref<-eps ? -1 : 0] ) if(max(signs)>=0 && min(signs)<=0) // some edge edge intersects line [a1,a2] for(j=[0:1:len(poly)-2]) if(signs[j]!=signs[j+1]) let( // exclude non-crossing and collinear segments b1 = poly[j], b2 = poly[j+1], isect = _general_line_intersection([a1,a2],[b1,b2],eps=eps) ) if (isect && isect[1]>= -eps && isect[1]<= 1+eps && isect[2]>= -eps && isect[2]<= 1+eps) [[p1,i,isect[1]], [p2,j,isect[2]]] ], regions=[region1,region2], // Create a flattened index list corresponding to the points in region1 and region2 // that gives each point as an intersection point ptind = [for(i=[0:1]) [for(p=idx(regions[i])) for(j=idx(regions[i][p])) [p,j,0]]], points = [for(i=[0:1]) flatten(regions[i])], // Corner points are those points where the region touches itself, hence duplicate // points in the region's point set cornerpts = [for(i=[0:1]) [for(k=vector_search(points[i],eps,points[i])) each if (len(k)>1) select(ptind[i],k)]], risect = [for(i=[0:1]) concat(column(intersections,i), cornerpts[i])], counts = [count(len(region1)), count(len(region2))], pathind = [for(i=[0:1]) search(counts[i], risect[i], 0)] ) [for(i=[0:1]) [for(j=counts[i]) _sort_vectors(select(risect[i],pathind[i][j]))]]; // Function: split_region_at_region_crossings() // Usage: // split_region = split_region_at_region_crossings(region1, region2, [closed1], [closed2], [eps]) // Description: // Splits region1 at the places where polygons in region1 touches each other at corners and at locations // where region1 intersections region2. Split region2 similarly with respect to region1. // The return is a pair of results of the form [split1, split2] where split1=[frags1,frags2,...] // and frags1 is a list of path pieces (in order) from the first path of the region. // You can pass a single path in for either region, but the output will be a singleton list, as ify // you passed in a singleton region. // Arguments: // region1 = first region // region2 = second region // closed1 = if false then treat region1 as list of open paths. Default: true // closed2 = if false then treat region2 as list of open paths. Default: true // eps = Acceptable variance. Default: `EPSILON` (1e-9) // Example(2D): // path = square(50,center=false); // region = [circle(d=80), circle(d=40)]; // paths = split_region_at_region_crossings(path, region); // color("#aaa") region(region); // rainbow(paths[0][0]) stroke($item, width=2); // right(110){ // color("#aaa") region([path]); // rainbow(flatten(paths[1])) stroke($item, width=2); // } function split_region_at_region_crossings(region1, region2, closed1=true, closed2=true, eps=EPSILON) = let( region1=force_region(region1), region2=force_region(region2) ) assert(is_region(region1) && is_region(region2),"One of the inputs is not a region") let( xings = _region_region_intersections(region1, region2, closed1, closed2, eps), regions = [region1,region2], closed = [closed1,closed2] ) [for(i=[0:1]) [for(p=idx(xings[i])) let( crossings = deduplicate([ [p,0,0], each xings[i][p], [p,len(regions[i][p])-(closed[i]?1:2), 1], ],eps=eps), subpaths = [ for (frag = pair(crossings)) deduplicate( _path_select(regions[i][p], frag[0][1], frag[0][2], frag[1][1], frag[1][2], closed=closed[i]), eps=eps ) ] ) [for(s=subpaths) if (len(s)>1) s] ] ]; // Function: region_parts() // Usage: // rgns = region_parts(region); // Description: // Divides a region into a list of connected regions. Each connected region has exactly one clockwise outside boundary // and zero or more counter-clockwise outlines defining internal holes. Note that behavior is undefined on invalid regions whose // components cross each other. // Example(2D,NoAxes): // R = [for(i=[1:7]) square(i,center=true)]; // region_list = region_parts(R); // rainbow(region_list) region($item); // Example(2D,NoAxes): // R = [back(7,square(3,center=true)), // square([20,10],center=true), // left(5,square(8,center=true)), // for(i=[4:2:8]) // right(5,square(i,center=true))]; // region_list = region_parts(R); // rainbow(region_list) region($item); function region_parts(region) = let( region = force_region(region) ) assert(is_region(region), "Input is not a region") let( inside = [for(i=idx(region)) let(pt = mean([region[i][0], region[i][1]])) [for(j=idx(region)) i==j ? 0 : point_in_polygon(pt,region[j]) >=0 ? 1 : 0] ], level = inside*repeat(1,len(region)) ) [ for(i=idx(region)) if(level[i]%2==0) let( possible_children = search([level[i]+1],level,0)[0], keep=search([1], select(inside,possible_children), 0, i)[0] ) [ clockwise_polygon(region[i]), for(good=keep) ccw_polygon(region[possible_children[good]]) ] ]; // Section: Region Extrusion and VNFs // Function&Module: linear_sweep() // Usage: // linear_sweep(region, height, [center], [slices], [twist], [scale], [style], [convexity]); // Description: // If called as a module, creates a polyhedron that is the linear extrusion of the given 2D region or path. // If called as a function, returns a VNF that can be used to generate a polyhedron of the linear extrusion // of the given 2D region or path. The benefit of using this, over using `linear_extrude region(rgn)` is // that it supports `anchor`, `spin`, `orient` and attachments. You can also make more refined // twisted extrusions by using `maxseg` to subsample flat faces. // Note that the center option centers vertically using the named anchor "zcenter" whereas // `anchor=CENTER` centers the entire shape relative to // the shape's centroid, or other centerpoint you specify. The centerpoint can be "centroid", "mean", "box" or // a custom point location. // Arguments: // region = The 2D [Region](regions.scad) or path that is to be extruded. // height = The height to extrude the region. Default: 1 // center = If true, the created polyhedron will be vertically centered. If false, it will be extruded upwards from the XY plane. Default: `false` // slices = The number of slices to divide the shape into along the Z axis, to allow refinement of detail, especially when working with a twist. Default: `twist/5` // maxseg = If given, then any long segments of the region will be subdivided to be shorter than this length. This can refine twisting flat faces a lot. Default: `undef` (no subsampling) // twist = The number of degrees to rotate the shape clockwise around the Z axis, as it rises from bottom to top. Default: 0 // scale = The amount to scale the shape, from bottom to top. Default: 1 // style = The style to use when triangulating the surface of the object. Valid values are `"default"`, `"alt"`, or `"quincunx"`. // convexity = Max number of surfaces any single ray could pass through. Module use only. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `"origin"` // anchor_isect = If true, anchoring it performed by finding where the anchor vector intersects the swept shape. Default: false // cp = Centerpoint for determining intersection anchors or centering the shape. Determintes the base of the anchor vector. Can be "centroid", "mean", "box" or a 3D point. Default: "centroid" // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // Example: Extruding a Compound Region. // rgn1 = [for (d=[10:10:60]) circle(d=d,$fn=8)]; // rgn2 = [square(30,center=false)]; // rgn3 = [for (size=[10:10:20]) move([15,15],p=square(size=size, center=true))]; // mrgn = union(rgn1,rgn2); // orgn = difference(mrgn,rgn3); // linear_sweep(orgn,height=20,convexity=16); // Example: With Twist, Scale, Slices and Maxseg. // rgn1 = [for (d=[10:10:60]) circle(d=d,$fn=8)]; // rgn2 = [square(30,center=false)]; // rgn3 = [for (size=[10:10:20]) move([15,15],p=square(size=size, center=true))]; // mrgn = union(rgn1,rgn2); // orgn = difference(mrgn,rgn3); // linear_sweep(orgn,height=50,maxseg=2,slices=40,twist=180,scale=0.5,convexity=16); // Example: Anchors on an Extruded Region // rgn1 = [for (d=[10:10:60]) circle(d=d,$fn=8)]; // rgn2 = [square(30,center=false)]; // rgn3 = [for (size=[10:10:20]) move([15,15],p=square(size=size, center=true))]; // mrgn = union(rgn1,rgn2); // orgn = difference(mrgn,rgn3); // linear_sweep(orgn,height=20,convexity=16) show_anchors(); module linear_sweep(region, height=1, center, twist=0, scale=1, slices, maxseg, style="default", convexity, anchor_isect=false, anchor, spin=0, orient=UP, cp="centroid", anchor="origin") { region = force_region(region); dummy=assert(is_region(region),"Input is not a region"); anchor = center ? "zcenter" : anchor; anchors = [named_anchor("zcenter", [0,0,height/2], UP)]; vnf = linear_sweep( region, height=height, twist=twist, scale=scale, slices=slices, maxseg=maxseg, style=style ); attachable(anchor,spin,orient, cp=cp, vnf=vnf, extent=!anchor_isect, anchors=anchors) { vnf_polyhedron(vnf, convexity=convexity); children(); } } function linear_sweep(region, height=1, center, twist=0, scale=1, slices, maxseg, style="default", cp="centroid", anchor_isect=false, anchor, spin=0, orient=UP) = let( region = force_region(region) ) assert(is_region(region), "Input is not a region") let( anchor = center ? "zcenter" : anchor, anchors = [named_anchor("zcenter", [0,0,height/2], UP)], regions = region_parts(region), slices = default(slices, floor(twist/5+1)), step = twist/slices, hstep = height/slices, trgns = [ for (rgn=regions) [ for (path=rgn) let( p = cleanup_path(path), path = is_undef(maxseg)? p : [ for (seg=pair(p,true)) each let(steps=ceil(norm(seg.y-seg.x)/maxseg)) lerpn(seg.x, seg.y, steps, false) ] ) rot(twist, p=scale([scale,scale],p=path)) ] ], vnf = vnf_merge([ for (rgn = regions) for (pathnum = idx(rgn)) let( p = cleanup_path(rgn[pathnum]), path = is_undef(maxseg)? p : [ for (seg=pair(p,true)) each let(steps=ceil(norm(seg.y-seg.x)/maxseg)) lerpn(seg.x, seg.y, steps, false) ], verts = [ for (i=[0:1:slices]) let( sc = lerp(1, scale, i/slices), ang = i * step, h = i * hstep //- height/2 ) scale([sc,sc,1], p=rot(ang, p=path3d(path,h))) ] ) vnf_vertex_array(verts, caps=false, col_wrap=true, style=style), for (rgn = regions) vnf_from_region(rgn, ident(4), reverse=true), for (rgn = trgns) vnf_from_region(rgn, up(height), reverse=false) ]) ) reorient(anchor,spin,orient, cp=cp, vnf=vnf, extent=!anchor_isect, p=vnf, anchors=anchors); // Section: Offsets and Boolean 2D Geometry function _offset_chamfer(center, points, delta) = let( dist = sign(delta)*norm(center-line_intersection(select(points,[0,2]), [center, points[1]])), endline = _shift_segment(select(points,[0,2]), delta-dist) ) [ line_intersection(endline, select(points,[0,1])), line_intersection(endline, select(points,[1,2])) ]; function _shift_segment(segment, d) = assert(!approx(segment[0],segment[1]),"Path has repeated points") move(d*line_normal(segment),segment); // Extend to segments to their intersection point. First check if the segments already have a point in common, // which can happen if two colinear segments are input to the path variant of `offset()` function _segment_extension(s1,s2) = norm(s1[1]-s2[0])<1e-6 ? s1[1] : line_intersection(s1,s2,LINE,LINE); function _makefaces(direction, startind, good, pointcount, closed) = let( lenlist = list_bset(good, pointcount), numfirst = len(lenlist), numsecond = sum(lenlist), prelim_faces = _makefaces_recurse(startind, startind+len(lenlist), numfirst, numsecond, lenlist, closed) ) direction? [for(entry=prelim_faces) reverse(entry)] : prelim_faces; function _makefaces_recurse(startind1, startind2, numfirst, numsecond, lenlist, closed, firstind=0, secondind=0, faces=[]) = // We are done if *both* firstind and secondind reach their max value, which is the last point if !closed or one past // the last point if closed (wrapping around). If you don't check both you can leave a triangular gap in the output. ((firstind == numfirst - (closed?0:1)) && (secondind == numsecond - (closed?0:1)))? faces : _makefaces_recurse( startind1, startind2, numfirst, numsecond, lenlist, closed, firstind+1, secondind+lenlist[firstind], lenlist[firstind]==0? ( // point in original path has been deleted in offset path, so it has no match. We therefore // make a triangular face using the current point from the offset (second) path // (The current point in the second path can be equal to numsecond if firstind is the last point) concat(faces,[[secondind%numsecond+startind2, firstind+startind1, (firstind+1)%numfirst+startind1]]) // in this case a point or points exist in the offset path corresponding to the original path ) : ( concat(faces, // First generate triangular faces for all of the extra points (if there are any---loop may be empty) [for(i=[0:1:lenlist[firstind]-2]) [firstind+startind1, secondind+i+1+startind2, secondind+i+startind2]], // Finish (unconditionally) with a quadrilateral face [ [ firstind+startind1, (firstind+1)%numfirst+startind1, (secondind+lenlist[firstind])%numsecond+startind2, (secondind+lenlist[firstind]-1)%numsecond+startind2 ] ] ) ) ); // Determine which of the shifted segments are good function _good_segments(path, d, shiftsegs, closed, quality) = let( maxind = len(path)-(closed ? 1 : 2), pathseg = [for(i=[0:maxind]) select(path,i+1)-path[i]], pathseg_len = [for(seg=pathseg) norm(seg)], pathseg_unit = [for(i=[0:maxind]) pathseg[i]/pathseg_len[i]], // Order matters because as soon as a valid point is found, the test stops // This order works better for circular paths because they succeed in the center alpha = concat([for(i=[1:1:quality]) i/(quality+1)],[0,1]) ) [ for (i=[0:len(shiftsegs)-1]) (i>maxind)? true : _segment_good(path,pathseg_unit,pathseg_len, d - 1e-7, shiftsegs[i], alpha) ]; // Determine if a segment is good (approximately) // Input is the path, the path segments normalized to unit length, the length of each path segment // the distance threshold, the segment to test, and the locations on the segment to test (normalized to [0,1]) // The last parameter, index, gives the current alpha index. // // A segment is good if any part of it is farther than distance d from the path. The test is expensive, so // we want to quit as soon as we find a point with distance > d, hence the recursive code structure. // // This test is approximate because it only samples the points listed in alpha. Listing more points // will make the test more accurate, but slower. function _segment_good(path,pathseg_unit,pathseg_len, d, seg,alpha ,index=0) = index == len(alpha) ? false : _point_dist(path,pathseg_unit,pathseg_len, alpha[index]*seg[0]+(1-alpha[index])*seg[1]) > d ? true : _segment_good(path,pathseg_unit,pathseg_len,d,seg,alpha,index+1); // Input is the path, the path segments normalized to unit length, the length of each path segment // and a test point. Computes the (minimum) distance from the path to the point, taking into // account that the minimal distance may be anywhere along a path segment, not just at the ends. function _point_dist(path,pathseg_unit,pathseg_len,pt) = min([ for(i=[0:len(pathseg_unit)-1]) let( v = pt-path[i], projection = v*pathseg_unit[i], segdist = projection < 0? norm(pt-path[i]) : projection > pathseg_len[i]? norm(pt-select(path,i+1)) : norm(v-projection*pathseg_unit[i]) ) segdist ]); // Function: offset() // Usage: // offsetpath = offset(path, [r|delta], [chamfer], [closed], [check_valid], [quality]) // path_faces = offset(path, return_faces=true, [r|delta], [chamfer], [closed], [check_valid], [quality], [firstface_index], [flip_faces]) // Description: // Takes a 2D input path and returns a path offset by the specified amount. As with the built-in // offset() module, you can use `r` to specify rounded offset and `delta` to specify offset with // corners. If you used `delta` you can set `chamfer` to true to get chamfers. // Positive offsets shift the path to the left (relative to the direction of the path). Note // that the path must not include any 180 degree turns, where the path reverses direction. // . // When offsets shrink the path, segments cross and become invalid. By default `offset()` checks // for this situation. To test validity the code checks that segments have distance larger than (r // or delta) from the input path. This check takes O(N^2) time and may mistakenly eliminate // segments you wanted included in various situations, so you can disable it if you wish by setting // check_valid=false. Another situation is that the test is not sufficiently thorough and some // segments persist that should be eliminated. In this case, increase `quality` to 2 or 3. (This // increases the number of samples on the segment that are checked.) Run time will increase. In // some situations you may be able to decrease run time by setting quality to 0, which causes only // segment ends to be checked. // . // For construction of polyhedra `offset()` can also return face lists. These list faces between // the original path and the offset path where the vertices are ordered with the original path // first, starting at `firstface_index` and the offset path vertices appearing afterwords. The // direction of the faces can be flipped using `flip_faces`. When you request faces the return // value is a list: [offset_path, face_list]. // Arguments: // path = the path to process. A list of 2d points. // --- // r = offset radius. Distance to offset. Will round over corners. // delta = offset distance. Distance to offset with pointed corners. // chamfer = chamfer corners when you specify `delta`. Default: false // closed = path is a closed curve. Default: False. // check_valid = perform segment validity check. Default: True. // quality = validity check quality parameter, a small integer. Default: 1. // return_faces = return face list. Default: False. // firstface_index = starting index for face list. Default: 0. // flip_faces = flip face direction. Default: false // Example(2D,NoAxes): // star = star(5, r=100, ir=30); // #stroke(closed=true, star, width=3); // stroke(closed=true, width=3, offset(star, delta=10, closed=true)); // Example(2D,NoAxes): // star = star(5, r=100, ir=30); // #stroke(closed=true, star, width=3); // stroke(closed=true, width=3, // offset(star, delta=10, chamfer=true, closed=true)); // Example(2D,NoAxes): // star = star(5, r=100, ir=30); // #stroke(closed=true, star, width=3); // stroke(closed=true, width=3, // offset(star, r=10, closed=true)); // Example(2D,NoAxes): // star = star(7, r=120, ir=50); // #stroke(closed=true, width=3, star); // stroke(closed=true, width=3, // offset(star, delta=-15, closed=true)); // Example(2D,NoAxes): // star = star(7, r=120, ir=50); // #stroke(closed=true, width=3, star); // stroke(closed=true, width=3, // offset(star, delta=-15, chamfer=true, closed=true)); // Example(2D,NoAxes): // star = star(7, r=120, ir=50); // #stroke(closed=true, width=3, star); // stroke(closed=true, width=3, // offset(star, r=-15, closed=true, $fn=20)); // Example(2D,NoAxes): This case needs `quality=2` for success // test = [[0,0],[10,0],[10,7],[0,7], [-1,-3]]; // polygon(offset(test,r=-1.9, closed=true, quality=2)); // //polygon(offset(test,r=-1.9, closed=true, quality=1)); // Fails with erroneous 180 deg path error // %down(.1)polygon(test); // Example(2D,NoAxes): This case fails if `check_valid=true` when delta is large enough because segments are too close to the opposite side of the curve. // star = star(5, r=22, ir=13); // stroke(star,width=.3,closed=true); // color("green") // stroke(offset(star, delta=-9, closed=true),width=.3,closed=true); // Works with check_valid=true (the default) // color("red") // stroke(offset(star, delta=-10, closed=true, check_valid=false), // Fails if check_valid=true // width=.3,closed=true); // Example(2D): But if you use rounding with offset then you need `check_valid=true` when `r` is big enough. It works without the validity check as long as the offset shape retains a some of the straight edges at the star tip, but once the shape shrinks smaller than that, it fails. There is no simple way to get a correct result for the case with `r=10`, because as in the previous example, it will fail if you turn on validity checks. // star = star(5, r=22, ir=13); // color("green") // stroke(offset(star, r=-8, closed=true,check_valid=false), width=.1, closed=true); // color("red") // stroke(offset(star, r=-10, closed=true,check_valid=false), width=.1, closed=true); // Example(2D,NoAxes): The extra triangles in this example show that the validity check cannot be skipped // ellipse = scale([20,4], p=circle(r=1,$fn=64)); // stroke(ellipse, closed=true, width=0.3); // stroke(offset(ellipse, r=-3, check_valid=false, closed=true), // width=0.3, closed=true); // Example(2D,NoAxes): The triangles are removed by the validity check // ellipse = scale([20,4], p=circle(r=1,$fn=64)); // stroke(ellipse, closed=true, width=0.3); // stroke(offset(ellipse, r=-3, check_valid=true, closed=true), // width=0.3, closed=true); // Example(2D): Open path. The path moves from left to right and the positive offset shifts to the left of the initial red path. // sinpath = 2*[for(theta=[-180:5:180]) [theta/4,45*sin(theta)]]; // #stroke(sinpath, width=2); // stroke(offset(sinpath, r=17.5),width=2); // Example(2D,NoAxes): Region // rgn = difference(circle(d=100), // union(square([20,40], center=true), // square([40,20], center=true))); // #linear_extrude(height=1.1) stroke(rgn, width=1); // region(offset(rgn, r=-5)); function offset( path, r=undef, delta=undef, chamfer=false, closed=false, check_valid=true, quality=1, return_faces=false, firstface_index=0, flip_faces=false ) = is_region(path)? assert(!return_faces, "return_faces not supported for regions.") let( ofsregs = [for(R=region_parts(path)) difference([for(i=idx(R)) offset(R[i], r=u_mul(i>0?-1:1,r), delta=u_mul(i>0?-1:1,delta), chamfer=chamfer, check_valid=check_valid, quality=quality,closed=true)])] ) union(ofsregs) : let(rcount = num_defined([r,delta])) assert(rcount==1,"Must define exactly one of 'delta' and 'r'") assert(is_path(path), "Input must be a path or region") let( chamfer = is_def(r) ? false : chamfer, quality = max(0,round(quality)), flip_dir = closed && !is_polygon_clockwise(path)? -1 : 1, d = flip_dir * (is_def(r) ? r : delta), // shiftsegs = [for(i=[0:len(path)-1]) _shift_segment(select(path,i,i+1), d)], shiftsegs = [for(i=[0:len(path)-2]) _shift_segment([path[i],path[i+1]], d), if (closed) _shift_segment([last(path),path[0]],d) else [path[0],path[1]] // dummy segment, not used ], // good segments are ones where no point on the segment is less than distance d from any point on the path good = check_valid ? _good_segments(path, abs(d), shiftsegs, closed, quality) : repeat(true,len(shiftsegs)), goodsegs = bselect(shiftsegs, good), goodpath = bselect(path,good) ) assert(len(goodsegs)>0,"Offset of path is degenerate") let( // Extend the shifted segments to their intersection points sharpcorners = [for(i=[0:len(goodsegs)-1]) _segment_extension(select(goodsegs,i-1), select(goodsegs,i))], // If some segments are parallel then the extended segments are undefined. This case is not handled // Note if !closed the last corner doesn't matter, so exclude it parallelcheck = (len(sharpcorners)==2 && !closed) || all_defined(closed? sharpcorners : select(sharpcorners, 1,-2)) ) assert(parallelcheck, "Path contains a segment that reverses direction (180 deg turn)") let( // This is a boolean array that indicates whether a corner is an outside or inside corner // For outside corners, the newcorner is an extension (angle 0), for inside corners, it turns backward // If either side turns back it is an inside corner---must check both. // Outside corners can get rounded (if r is specified and there is space to round them) outsidecorner = len(sharpcorners)==2 ? [false,false] : [for(i=[0:len(goodsegs)-1]) let(prevseg=select(goodsegs,i-1)) (i==0 || i==len(goodsegs)-1) && !closed ? false // In open case first entry is bogus : (goodsegs[i][1]-goodsegs[i][0]) * (goodsegs[i][0]-sharpcorners[i]) > 0 && (prevseg[1]-prevseg[0]) * (sharpcorners[i]-prevseg[1]) > 0 ], steps = is_def(delta) ? [] : [ for(i=[0:len(goodsegs)-1]) r==0 ? 0 // floor is important here to ensure we don't generate extra segments when nearly straight paths expand outward : 1+floor(segs(r)*vector_angle( select(goodsegs,i-1)[1]-goodpath[i], goodsegs[i][0]-goodpath[i]) /360) ], // If rounding is true then newcorners replaces sharpcorners with rounded arcs where needed // Otherwise it's the same as sharpcorners // If rounding is on then newcorners[i] will be the point list that replaces goodpath[i] and newcorners later // gets flattened. If rounding is off then we set it to [sharpcorners] so we can later flatten it and get // plain sharpcorners back. newcorners = is_def(delta) && !chamfer ? [sharpcorners] : [for(i=[0:len(goodsegs)-1]) (!chamfer && steps[i] <=1) // Don't round if steps is smaller than 2 || !outsidecorner[i] // Don't round inside corners || (!closed && (i==0 || i==len(goodsegs)-1)) // Don't round ends of an open path ? [sharpcorners[i]] : chamfer ? _offset_chamfer( goodpath[i], [ select(goodsegs,i-1)[1], sharpcorners[i], goodsegs[i][0] ], d ) : // rounded case arc(cp=goodpath[i], points=[ select(goodsegs,i-1)[1], goodsegs[i][0] ], N=steps[i]) ], pointcount = (is_def(delta) && !chamfer)? repeat(1,len(sharpcorners)) : [for(i=[0:len(goodsegs)-1]) len(newcorners[i])], start = [goodsegs[0][0]], end = [goodsegs[len(goodsegs)-2][1]], edges = closed? flatten(newcorners) : concat(start,slice(flatten(newcorners),1,-2),end), faces = !return_faces? [] : _makefaces( flip_faces, firstface_index, good, pointcount, closed ) ) return_faces? [edges,faces] : edges; /// Internal Function: _filter_region_parts() /// /// splits region1 into subpaths where either it touches itself or crosses region2. Classifies all of the /// subpaths as described below and keeps the ones listed in keep1. A similar process is performed for region2. /// All of the kept subpaths are assembled into polygons and returned as a lst. /// . /// The four types of subpath from the region are defined relative to the second region: /// "O" - the subpath is outside the second region /// "I" - the subpath is in the second region's interior /// "S" - the subpath is on the 2nd region's border and the two regions interiors are on the same side of the subpath /// "U" - the subpath is on the 2nd region's border and the two regions meet at the subpath from opposite sides /// You specify which type of subpaths to keep with a string of the desired types such as "OS". function _filter_region_parts(region1, region2, keep, eps=EPSILON) = // We have to compute common vertices between paths in the region because // they can be places where the path must be cut, even though they aren't // found my the split_path function. let( subpaths = split_region_at_region_crossings(region1,region2,eps=eps), regions=[force_region(region1), force_region(region2)] ) _assemble_path_fragments( [for(i=[0:1]) let( keepS = search("S",keep[i])!=[], keepU = search("U",keep[i])!=[], keepoutside = search("O",keep[i]) !=[], keepinside = search("I",keep[i]) !=[], all_subpaths = flatten(subpaths[i]) ) for (subpath = all_subpaths) let( midpt = mean([subpath[0], subpath[1]]), rel = point_in_region(midpt,regions[1-i],eps=eps), keepthis = rel<0 ? keepoutside : rel>0 ? keepinside : !(keepS || keepU) ? false : let( sidept = midpt + 0.01*line_normal(subpath[0],subpath[1]), rel1 = point_in_region(sidept,regions[0],eps=eps)>0, rel2 = point_in_region(sidept,regions[1],eps=eps)>0 ) rel1==rel2 ? keepS : keepU ) if (keepthis) subpath ] ); function _list_three(a,b,c) = is_undef(b) ? a : [ a, if (is_def(b)) b, if (is_def(c)) c ]; // Function&Module: union() // Usage: // union() {...} // region = union(regions); // region = union(REGION1,REGION2); // region = union(REGION1,REGION2,REGION3); // Description: // When called as a function and given a list of regions, where each region is a list of closed // 2D paths, returns the boolean union of all given regions. Result is a single region. // When called as the built-in module, makes the boolean union of the given children. // Arguments: // regions = List of regions to union. Each region is a list of closed paths. // Example(2D): // shape1 = move([-8,-8,0], p=circle(d=50)); // shape2 = move([ 8, 8,0], p=circle(d=50)); // color("green") region(union(shape1,shape2)); // for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true); function union(regions=[],b=undef,c=undef,eps=EPSILON) = let(regions=_list_three(regions,b,c)) len(regions)==0? [] : len(regions)==1? regions[0] : let(regions=[for (r=regions) is_path(r)? [r] : r]) union([ _filter_region_parts(regions[0],regions[1],["OS", "O"], eps=eps), for (i=[2:1:len(regions)-1]) regions[i] ], eps=eps ); // Function&Module: difference() // Usage: // difference() {...} // region = difference(regions); // region = difference(REGION1,REGION2); // region = difference(REGION1,REGION2,REGION3); // Description: // When called as a function, and given a list of regions, where each region is a list of closed // 2D paths, takes the first region and differences away all other regions from it. The resulting // region is returned. // When called as the built-in module, makes the boolean difference of the given children. // Arguments: // regions = List of regions to difference. Each region is a list of closed paths. // Example(2D): // shape1 = move([-8,-8,0], p=circle(d=50)); // shape2 = move([ 8, 8,0], p=circle(d=50)); // for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true); // color("green") region(difference(shape1,shape2)); function difference(regions=[],b=undef,c=undef,eps=EPSILON) = let(regions = _list_three(regions,b,c)) len(regions)==0? [] : len(regions)==1? regions[0] : regions[0]==[] ? [] : let(regions=[for (r=regions) is_path(r)? [r] : r]) difference([ _filter_region_parts(regions[0],regions[1],["OU", "I"], eps=eps), for (i=[2:1:len(regions)-1]) regions[i] ], eps=eps ); // Function&Module: intersection() // Usage: // intersection() {...} // region = intersection(regions); // region = intersection(REGION1,REGION2); // region = intersection(REGION1,REGION2,REGION3); // Description: // When called as a function, and given a list of regions, where each region is a list of closed // 2D paths, returns the boolean intersection of all given regions. Result is a single region. // When called as the built-in module, makes the boolean intersection of all the given children. // Arguments: // regions = List of regions to intersection. Each region is a list of closed paths. // Example(2D): // shape1 = move([-8,-8,0], p=circle(d=50)); // shape2 = move([ 8, 8,0], p=circle(d=50)); // for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true); // color("green") region(intersection(shape1,shape2)); function intersection(regions=[],b=undef,c=undef,eps=EPSILON) = let(regions = _list_three(regions,b,c)) len(regions)==0 ? [] : len(regions)==1? regions[0] : regions[0]==[] || regions[1]==[] ? [] : intersection([ _filter_region_parts(regions[0],regions[1],["IS","I"],eps=eps), for (i=[2:1:len(regions)-1]) regions[i] ], eps=eps ); // Function&Module: exclusive_or() // Usage: // exclusive_or() {...} // region = exclusive_or(regions); // region = exclusive_or(REGION1,REGION2); // region = exclusive_or(REGION1,REGION2,REGION3); // Description: // When called as a function and given a list of regions, where each region is a list of closed // 2D paths, returns the boolean exclusive_or of all given regions. Result is a single region. // When called as a module, performs a boolean exclusive-or of up to 10 children. Note that the // xor operator tends to produce shapes that meet at corners, which do not render in CGAL. // Arguments: // regions = List of regions to exclusive_or. Each region is a list of closed paths. // Example(2D): As Function. A linear_sweep of this shape fails to render in CGAL. // shape1 = move([-8,-8,0], p=circle(d=50)); // shape2 = move([ 8, 8,0], p=circle(d=50)); // for (shape = [shape1,shape2]) // color("red") stroke(shape, width=0.5, closed=true); // color("green") region(exclusive_or(shape1,shape2)); // Example(2D): As Module. A linear_extrude() of the resulting geometry fails to render in CGAL. // exclusive_or() { // square(40,center=false); // circle(d=40); // } function exclusive_or(regions=[],b=undef,c=undef,eps=EPSILON) = let(regions = _list_three(regions,b,c)) len(regions)==0? [] : len(regions)==1? regions[0] : regions[0]==[] ? exclusive_or(list_tail(regions)) : regions[1]==[] ? exclusive_or(list_remove(regions,1)) : exclusive_or([ _filter_region_parts(regions[0],regions[1],["IO","IO"],eps=eps), for (i=[2:1:len(regions)-1]) regions[i] ], eps=eps ); module exclusive_or() { if ($children==1) { children(); } else if ($children==2) { difference() { children(0); children(1); } difference() { children(1); children(0); } } else if ($children==3) { exclusive_or() { exclusive_or() { children(0); children(1); } children(2); } } else if ($children==4) { exclusive_or() { exclusive_or() { children(0); children(1); } exclusive_or() { children(2); children(3); } } } else if ($children==5) { exclusive_or() { exclusive_or() { children(0); children(1); children(2); children(3); } children(4); } } else if ($children==6) { exclusive_or() { exclusive_or() { children(0); children(1); children(2); children(3); } children(4); children(5); } } else if ($children==7) { exclusive_or() { exclusive_or() { children(0); children(1); children(2); children(3); } children(4); children(5); children(6); } } else if ($children==8) { exclusive_or() { exclusive_or() { children(0); children(1); children(2); children(3); } exclusive_or() { children(4); children(5); children(6); children(7); } } } else if ($children==9) { exclusive_or() { exclusive_or() { children(0); children(1); children(2); children(3); } exclusive_or() { children(4); children(5); children(6); children(7); } children(8); } } else if ($children==10) { exclusive_or() { exclusive_or() { children(0); children(1); children(2); children(3); } exclusive_or() { children(4); children(5); children(6); children(7); } children(8); children(9); } } else { assert($children<=10, "exclusive_or() can only handle up to 10 children."); } } // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap