////////////////////////////////////////////////////////////////////// // LibFile: regions.scad // Regions and 2D boolean geometry // Includes: // include ////////////////////////////////////////////////////////////////////// // CommonCode: // include // Section: Regions // Function: is_region() // Usage: // is_region(x); // Description: // Returns true if the given item looks like a region. A region is defined as a list of zero or more paths. function is_region(x) = is_list(x) && is_path(x.x); // Function: close_region() // Usage: // close_region(region); // Description: // Closes all paths within a given region. function close_region(region, eps=EPSILON) = [for (path=region) close_path(path, eps=eps)]; // Module: region() // Usage: // region(r); // Description: // Creates 2D polygons for the given region. The region given is a list of closed 2D paths. // Each path will be effectively exclusive-ORed from all other paths in the region, so if a // path is inside another path, it will be effectively subtracted from it. // Example(2D): // region([circle(d=50), square(25,center=true)]); // Example(2D): // rgn = concat( // [for (d=[50:-10:10]) circle(d=d-5)], // [square([60,10], center=true)] // ); // region(rgn); module region(r) { points = flatten(r); paths = [ for (i=[0:1:len(r)-1]) let( start = default(sum([for (j=[0:1:i-1]) len(r[j])]),0) ) [for (k=[0:1:len(r[i])-1]) start+k] ]; polygon(points=points, paths=paths); } // Function: check_and_fix_path() // Usage: // check_and_fix_path(path, [valid_dim], [closed], [name]) // Description: // Checks that the input is a path. If it is a region with one component, converts it to a path. // Note that arbitrary paths must have at least two points, but closed paths need at least 3 points. // valid_dim specfies the allowed dimension of the points in the path. // If the path is closed, removes duplicate endpoint if present. // Arguments: // path = path to process // valid_dim = list of allowed dimensions for the points in the path, e.g. [2,3] to require 2 or 3 dimensional input. If left undefined do not perform this check. Default: undef // closed = set to true if the path is closed, which enables a check for endpoint duplication // name = parameter name to use for reporting errors. Default: "path" function check_and_fix_path(path, valid_dim=undef, closed=false, name="path") = let( path = is_region(path)? assert(len(path)==1,str("Region ",name," supplied as path does not have exactly one component")) path[0] : assert(is_path(path), str("Input ",name," is not a path")) path ) assert(len(path)>(closed?2:1),closed?str("Closed path ",name," must have at least 3 points") :str("Path ",name," must have at least 2 points")) let(valid=is_undef(valid_dim) || in_list(len(path[0]),force_list(valid_dim))) assert( valid, str( "Input ",name," must has dimension ", len(path[0])," but dimension must be ", is_list(valid_dim) ? str("one of ",valid_dim) : valid_dim ) ) closed && approx(path[0], last(path))? list_head(path) : path; // Function: cleanup_region() // Usage: // cleanup_region(region); // Description: // For all paths in the given region, if the last point coincides with the first point, removes the last point. // Arguments: // region = The region to clean up. Given as a list of polygon paths. // eps = Acceptable variance. Default: `EPSILON` (1e-9) function cleanup_region(region, eps=EPSILON) = [for (path=region) cleanup_path(path, eps=eps)]; // Function: point_in_region() // Usage: // point_in_region(point, region); // Description: // Tests if a point is inside, outside, or on the border of a region. // Returns -1 if the point is outside the region. // Returns 0 if the point is on the boundary. // Returns 1 if the point lies inside the region. // Arguments: // point = The point to test. // region = The region to test against. Given as a list of polygon paths. // eps = Acceptable variance. Default: `EPSILON` (1e-9) function point_in_region(point, region, eps=EPSILON, _i=0, _cnt=0) = (_i >= len(region))? ((_cnt%2==1)? 1 : -1) : let( pip = point_in_polygon(point, region[_i], eps=eps) ) pip==0? 0 : point_in_region(point, region, eps=eps, _i=_i+1, _cnt = _cnt + (pip>0? 1 : 0)); // Function: polygons_equal() // Usage: // b = polygons_equal(poly1, poly2, [eps]) // Description: // Returns true if the components of region1 and region2 are the same polygons // within given epsilon tolerance. // Arguments: // poly1 = first polygon // poly2 = second polygon // eps = tolerance for comparison // Example(NORENDER): // polygons_equal(pentagon(r=4), // rot(360/5, p=pentagon(r=4))); // returns true // polygons_equal(pentagon(r=4), // rot(90, p=pentagon(r=4))); // returns false function polygons_equal(poly1, poly2, eps=EPSILON) = let( poly1 = cleanup_path(poly1), poly2 = cleanup_path(poly2), l1 = len(poly1), l2 = len(poly2) ) l1 != l2 ? false : let( maybes = find_first_match(poly1[0], poly2, eps=eps, all=true) ) maybes == []? false : [for (i=maybes) if (__polygons_equal(poly1, poly2, eps, i)) 1] != []; function __polygons_equal(poly1, poly2, eps, st) = max([for(d=poly1-select(poly2,st,st-1)) d*d])= len(polys)? false : polygons_equal(poly, polys[i])? true : __poly_in_polygons(poly, polys, i+1); // Function: regions_equal() // Usage: // b = regions_equal(region1, region2, [eps]) // Description: // Returns true if the components of region1 and region2 are the same polygons // within given epsilon tolerance. // Arguments: // poly1 = first polygon // poly2 = second polygon // eps = tolerance for comparison function regions_equal(region1, region2) = assert(is_region(region1) && is_region(region2)) len(region1) != len(region2)? false : __regions_equal(region1, region2, 0); function __regions_equal(region1, region2, i) = i >= len(region1)? true : !poly_in_polygons(region1[i], region2)? false : __regions_equal(region1, region2, i+1); // Function: region_path_crossings() // Usage: // region_path_crossings(path, region); // Description: // Returns a sorted list of [SEGMENT, U] that describe where a given path is crossed by a second path. // Arguments: // path = The path to find crossings on. // region = Region to test for crossings of. // closed = If true, treat path as a closed polygon. Default: true // eps = Acceptable variance. Default: `EPSILON` (1e-9) function region_path_crossings(path, region, closed=true, eps=EPSILON) = sort([ let( segs = pair(closed? close_path(path) : cleanup_path(path)) ) for ( si = idx(segs), p = close_region(region), s2 = pair(p) ) let ( isect = _general_line_intersection(segs[si], s2, eps=eps) ) if ( !is_undef(isect[0]) && isect[1] >= 0-eps && isect[1] < 1+eps && isect[2] >= 0-eps && isect[2] < 1+eps ) [si, isect[1]] ]); // Function: split_path_at_region_crossings() // Usage: // paths = split_path_at_region_crossings(path, region, [eps]); // Description: // Splits a path into sub-paths wherever the path crosses the perimeter of a region. // Splits may occur mid-segment, so new vertices will be created at the intersection points. // Arguments: // path = The path to split up. // region = The region to check for perimeter crossings of. // closed = If true, treat path as a closed polygon. Default: true // eps = Acceptable variance. Default: `EPSILON` (1e-9) // Example(2D): // path = square(50,center=false); // region = [circle(d=80), circle(d=40)]; // paths = split_path_at_region_crossings(path, region); // color("#aaa") region(region); // rainbow(paths) stroke($item, closed=false, width=2); function split_path_at_region_crossings(path, region, closed=true, eps=EPSILON) = let( path = deduplicate(path, eps=eps), region = [for (path=region) deduplicate(path, eps=eps)], xings = region_path_crossings(path, region, closed=closed, eps=eps), crossings = deduplicate( concat([[0,0]], xings, [[len(path)-1,1]]), eps=eps ), subpaths = [ for (p = pair(crossings)) deduplicate( path_subselect(path, p[0][0], p[0][1], p[1][0], p[1][1], closed=closed), eps=eps ) ] ) subpaths; // Function: split_nested_region() // Usage: // rgns = split_nested_region(region); // Description: // Separates the distinct (possibly nested) positive subregions of a larger compound region. // Returns a list of regions, such that each returned region has exactly one positive outline // and zero or more void outlines. function split_nested_region(region) = let( paths = sort(idx=0, [ for(i = idx(region)) let( cnt = sum([ for (j = idx(region)) if (i!=j) let(pt = lerp(region[i][0],region[i][1],0.5)) point_in_polygon(pt, region[j]) >=0 ? 1 : 0 ]) ) [cnt, region[i]] ]), outs = [ for (candout = paths) let( lev = candout[0], parent = candout[1] ) if (lev % 2 == 0) [ clockwise_polygon(parent), for (path = paths) if ( path[0] == lev+1 && point_in_polygon( lerp(path[1][0], path[1][1], 0.5), parent ) >= 0 ) ccw_polygon(path[1]) ] ] ) outs; // Section: Region Extrusion and VNFs function _path_path_closest_vertices(path1,path2) = let( dists = [for (i=idx(path1)) let(j=closest_point(path1[i],path2)) [j,norm(path2[j]-path1[i])]], i1 = min_index(subindex(dists,1)), i2 = dists[i1][0] ) [dists[i1][1], i1, i2]; function _join_paths_at_vertices(path1,path2,seg1,seg2) = let( path1 = close_path(clockwise_polygon(polygon_shift(path1, seg1))), path2 = close_path(ccw_polygon(polygon_shift(path2, seg2))) ) cleanup_path(deduplicate([each path1, each path2])); function _cleave_simple_region(region) = len(region)==0? [] : len(region)<=1? clockwise_polygon(region[0]) : let( dists = [ for (i=[1:1:len(region)-1]) _path_path_closest_vertices(region[0],region[i]) ], idxi = min_index(subindex(dists,0)), newoline = _join_paths_at_vertices( region[0], region[idxi+1], dists[idxi][1], dists[idxi][2] ) ) len(region)==2? clockwise_polygon(newoline) : let( orgn = [ newoline, for (i=idx(region)) if (i>0 && i!=idxi+1) region[i] ] ) assert(len(orgn)maxind)? true : _segment_good(path,pathseg_unit,pathseg_len, d - 1e-7, shiftsegs[i], alpha) ]; // Determine if a segment is good (approximately) // Input is the path, the path segments normalized to unit length, the length of each path segment // the distance threshold, the segment to test, and the locations on the segment to test (normalized to [0,1]) // The last parameter, index, gives the current alpha index. // // A segment is good if any part of it is farther than distance d from the path. The test is expensive, so // we want to quit as soon as we find a point with distance > d, hence the recursive code structure. // // This test is approximate because it only samples the points listed in alpha. Listing more points // will make the test more accurate, but slower. function _segment_good(path,pathseg_unit,pathseg_len, d, seg,alpha ,index=0) = index == len(alpha) ? false : _point_dist(path,pathseg_unit,pathseg_len, alpha[index]*seg[0]+(1-alpha[index])*seg[1]) > d ? true : _segment_good(path,pathseg_unit,pathseg_len,d,seg,alpha,index+1); // Input is the path, the path segments normalized to unit length, the length of each path segment // and a test point. Computes the (minimum) distance from the path to the point, taking into // account that the minimal distance may be anywhere along a path segment, not just at the ends. function _point_dist(path,pathseg_unit,pathseg_len,pt) = min([ for(i=[0:len(pathseg_unit)-1]) let( v = pt-path[i], projection = v*pathseg_unit[i], segdist = projection < 0? norm(pt-path[i]) : projection > pathseg_len[i]? norm(pt-select(path,i+1)) : norm(v-projection*pathseg_unit[i]) ) segdist ]); function _offset_region( paths, r, delta, chamfer, closed, check_valid, quality, return_faces, firstface_index, flip_faces, _acc=[], _i=0 ) = _i>=len(paths)? _acc : _offset_region( paths, _i=_i+1, _acc = (paths[_i].x % 2 == 0)? ( union(_acc, [ offset( paths[_i].y, r=r, delta=delta, chamfer=chamfer, closed=closed, check_valid=check_valid, quality=quality, return_faces=return_faces, firstface_index=firstface_index, flip_faces=flip_faces ) ]) ) : ( difference(_acc, [ offset( paths[_i].y, r=u_mul(-1,r), delta=u_mul(-1,delta), chamfer=chamfer, closed=closed, check_valid=check_valid, quality=quality, return_faces=return_faces, firstface_index=firstface_index, flip_faces=flip_faces ) ]) ), r=r, delta=delta, chamfer=chamfer, closed=closed, check_valid=check_valid, quality=quality, return_faces=return_faces, firstface_index=firstface_index, flip_faces=flip_faces ); // Function: offset() // Usage: // offsetpath = offset(path, [r|delta], [chamfer], [closed], [check_valid], [quality]) // path_faces = offset(path, return_faces=true, [r|delta], [chamfer], [closed], [check_valid], [quality], [firstface_index], [flip_faces]) // Description: // Takes an input path and returns a path offset by the specified amount. As with the built-in // offset() module, you can use `r` to specify rounded offset and `delta` to specify offset with // corners. If you used `delta` you can set `chamfer` to true to get chamfers. // Positive offsets shift the path to the left (relative to the direction of the path). // . // When offsets shrink the path, segments cross and become invalid. By default `offset()` checks // for this situation. To test validity the code checks that segments have distance larger than (r // or delta) from the input path. This check takes O(N^2) time and may mistakenly eliminate // segments you wanted included in various situations, so you can disable it if you wish by setting // check_valid=false. Another situation is that the test is not sufficiently thorough and some // segments persist that should be eliminated. In this case, increase `quality` to 2 or 3. (This // increases the number of samples on the segment that are checked.) Run time will increase. In // some situations you may be able to decrease run time by setting quality to 0, which causes only // segment ends to be checked. // . // For construction of polyhedra `offset()` can also return face lists. These list faces between // the original path and the offset path where the vertices are ordered with the original path // first, starting at `firstface_index` and the offset path vertices appearing afterwords. The // direction of the faces can be flipped using `flip_faces`. When you request faces the return // value is a list: [offset_path, face_list]. // Arguments: // path = the path to process. A list of 2d points. // --- // r = offset radius. Distance to offset. Will round over corners. // delta = offset distance. Distance to offset with pointed corners. // chamfer = chamfer corners when you specify `delta`. Default: false // closed = path is a closed curve. Default: False. // check_valid = perform segment validity check. Default: True. // quality = validity check quality parameter, a small integer. Default: 1. // return_faces = return face list. Default: False. // firstface_index = starting index for face list. Default: 0. // flip_faces = flip face direction. Default: false // Example(2D): // star = star(5, r=100, ir=30); // #stroke(closed=true, star); // stroke(closed=true, offset(star, delta=10, closed=true)); // Example(2D): // star = star(5, r=100, ir=30); // #stroke(closed=true, star); // stroke(closed=true, offset(star, delta=10, chamfer=true, closed=true)); // Example(2D): // star = star(5, r=100, ir=30); // #stroke(closed=true, star); // stroke(closed=true, offset(star, r=10, closed=true)); // Example(2D): // star = star(5, r=100, ir=30); // #stroke(closed=true, star); // stroke(closed=true, offset(star, delta=-10, closed=true)); // Example(2D): // star = star(5, r=100, ir=30); // #stroke(closed=true, star); // stroke(closed=true, offset(star, delta=-10, chamfer=true, closed=true)); // Example(2D): // star = star(5, r=100, ir=30); // #stroke(closed=true, star); // stroke(closed=true, offset(star, r=-10, closed=true, $fn=20)); // Example(2D): This case needs `quality=2` for success // test = [[0,0],[10,0],[10,7],[0,7], [-1,-3]]; // polygon(offset(test,r=-1.9, closed=true, quality=2)); // //polygon(offset(test,r=-1.9, closed=true, quality=1)); // Fails with erroneous 180 deg path error // %down(.1)polygon(test); // Example(2D): This case fails if `check_valid=true` when delta is large enough because segments are too close to the opposite side of the curve. // star = star(5, r=22, ir=13); // stroke(star,width=.2,closed=true); // color("green") // stroke(offset(star, delta=-9, closed=true),width=.2,closed=true); // Works with check_valid=true (the default) // color("red") // stroke(offset(star, delta=-10, closed=true, check_valid=false), // Fails if check_valid=true // width=.2,closed=true); // Example(2D): But if you use rounding with offset then you need `check_valid=true` when `r` is big enough. It works without the validity check as long as the offset shape retains a some of the straight edges at the star tip, but once the shape shrinks smaller than that, it fails. There is no simple way to get a correct result for the case with `r=10`, because as in the previous example, it will fail if you turn on validity checks. // star = star(5, r=22, ir=13); // color("green") // stroke(offset(star, r=-8, closed=true,check_valid=false), width=.1, closed=true); // color("red") // stroke(offset(star, r=-10, closed=true,check_valid=false), width=.1, closed=true); // Example(2D): The extra triangles in this example show that the validity check cannot be skipped // ellipse = scale([20,4], p=circle(r=1,$fn=64)); // stroke(ellipse, closed=true, width=0.3); // stroke(offset(ellipse, r=-3, check_valid=false, closed=true), width=0.3, closed=true); // Example(2D): The triangles are removed by the validity check // ellipse = scale([20,4], p=circle(r=1,$fn=64)); // stroke(ellipse, closed=true, width=0.3); // stroke(offset(ellipse, r=-3, check_valid=true, closed=true), width=0.3, closed=true); // Example(2D): Open path. The path moves from left to right and the positive offset shifts to the left of the initial red path. // sinpath = 2*[for(theta=[-180:5:180]) [theta/4,45*sin(theta)]]; // #stroke(sinpath); // stroke(offset(sinpath, r=17.5)); // Example(2D): Region // rgn = difference(circle(d=100), union(square([20,40], center=true), square([40,20], center=true))); // #linear_extrude(height=1.1) for (p=rgn) stroke(closed=true, width=0.5, p); // region(offset(rgn, r=-5)); function offset( path, r=undef, delta=undef, chamfer=false, closed=false, check_valid=true, quality=1, return_faces=false, firstface_index=0, flip_faces=false ) = is_region(path)? ( assert(!return_faces, "return_faces not supported for regions.") let( path = [for (p=path) polygon_is_clockwise(p)? p : reverse(p)], rgn = exclusive_or([for (p = path) [p]]), pathlist = sort(idx=0,[ for (i=[0:1:len(rgn)-1]) [ sum(concat([0],[ for (j=[0:1:len(rgn)-1]) if (i!=j) point_in_polygon(rgn[i][0],rgn[j])>=0? 1 : 0 ])), rgn[i] ] ]) ) _offset_region( pathlist, r=r, delta=delta, chamfer=chamfer, closed=true, check_valid=check_valid, quality=quality, return_faces=return_faces, firstface_index=firstface_index, flip_faces=flip_faces ) ) : let(rcount = num_defined([r,delta])) assert(rcount==1,"Must define exactly one of 'delta' and 'r'") let( chamfer = is_def(r) ? false : chamfer, quality = max(0,round(quality)), flip_dir = closed && !polygon_is_clockwise(path)? -1 : 1, d = flip_dir * (is_def(r) ? r : delta), shiftsegs = [for(i=[0:len(path)-1]) _shift_segment(select(path,i,i+1), d)], // good segments are ones where no point on the segment is less than distance d from any point on the path good = check_valid ? _good_segments(path, abs(d), shiftsegs, closed, quality) : repeat(true,len(shiftsegs)), goodsegs = bselect(shiftsegs, good), goodpath = bselect(path,good) ) assert(len(goodsegs)>0,"Offset of path is degenerate") let( // Extend the shifted segments to their intersection points sharpcorners = [for(i=[0:len(goodsegs)-1]) _segment_extension(select(goodsegs,i-1), select(goodsegs,i))], // If some segments are parallel then the extended segments are undefined. This case is not handled // Note if !closed the last corner doesn't matter, so exclude it parallelcheck = (len(sharpcorners)==2 && !closed) || all_defined(closed? sharpcorners : list_tail(sharpcorners)) ) assert(parallelcheck, "Path contains sequential parallel segments (either 180 deg turn or 0 deg turn") let( // This is a boolean array that indicates whether a corner is an outside or inside corner // For outside corners, the newcorner is an extension (angle 0), for inside corners, it turns backward // If either side turns back it is an inside corner---must check both. // Outside corners can get rounded (if r is specified and there is space to round them) outsidecorner = len(sharpcorners)==2 ? [false,false] : [for(i=[0:len(goodsegs)-1]) let(prevseg=select(goodsegs,i-1)) i==0 && !closed ? false // In open case first entry is bogus : (goodsegs[i][1]-goodsegs[i][0]) * (goodsegs[i][0]-sharpcorners[i]) > 0 && (prevseg[1]-prevseg[0]) * (sharpcorners[i]-prevseg[1]) > 0 ], steps = is_def(delta) ? [] : [ for(i=[0:len(goodsegs)-1]) r==0 ? 0 // floor is important here to ensure we don't generate extra segments when nearly straight paths expand outward : 1+floor(segs(r)*vector_angle( select(goodsegs,i-1)[1]-goodpath[i], goodsegs[i][0]-goodpath[i]) /360) ], // If rounding is true then newcorners replaces sharpcorners with rounded arcs where needed // Otherwise it's the same as sharpcorners // If rounding is on then newcorners[i] will be the point list that replaces goodpath[i] and newcorners later // gets flattened. If rounding is off then we set it to [sharpcorners] so we can later flatten it and get // plain sharpcorners back. newcorners = is_def(delta) && !chamfer ? [sharpcorners] : [for(i=[0:len(goodsegs)-1]) (!chamfer && steps[i] <=1) // Don't round if steps is smaller than 2 || !outsidecorner[i] // Don't round inside corners || (!closed && (i==0 || i==len(goodsegs)-1)) // Don't round ends of an open path ? [sharpcorners[i]] : chamfer ? _offset_chamfer( goodpath[i], [ select(goodsegs,i-1)[1], sharpcorners[i], goodsegs[i][0] ], d ) : // rounded case arc(cp=goodpath[i], points=[ select(goodsegs,i-1)[1], goodsegs[i][0] ], N=steps[i]) ], pointcount = (is_def(delta) && !chamfer)? repeat(1,len(sharpcorners)) : [for(i=[0:len(goodsegs)-1]) len(newcorners[i])], start = [goodsegs[0][0]], end = [goodsegs[len(goodsegs)-2][1]], edges = closed? flatten(newcorners) : concat(start,slice(flatten(newcorners),1,-2),end), faces = !return_faces? [] : _makefaces( flip_faces, firstface_index, good, pointcount, closed ) ) return_faces? [edges,faces] : edges; function _tag_subpaths(path, region, eps=EPSILON) = let( subpaths = split_path_at_region_crossings(path, region, eps=eps), tagged = [ for (sub = subpaths) let( subpath = deduplicate(sub) ) if (len(sub)>1) let( midpt = lerp(subpath[0], subpath[1], 0.5), rel = point_in_region(midpt,region,eps=eps) ) rel<0? ["O", subpath] : rel>0? ["I", subpath] : let( vec = unit(subpath[1]-subpath[0]), perp = rot(90, planar=true, p=vec), sidept = midpt + perp*0.01, rel1 = point_in_polygon(sidept,path,eps=eps)>0, rel2 = point_in_region(sidept,region,eps=eps)>0 ) rel1==rel2? ["S", subpath] : ["U", subpath] ] ) tagged; function _tag_region_subpaths(region1, region2, eps=EPSILON) = [for (path=region1) each _tag_subpaths(path, region2, eps=eps)]; function _tagged_region(region1,region2,keep1,keep2,eps=EPSILON) = let( region1 = close_region(region1, eps=eps), region2 = close_region(region2, eps=eps), tagged1 = _tag_region_subpaths(region1, region2, eps=eps), tagged2 = _tag_region_subpaths(region2, region1, eps=eps), tagged = concat( [for (tagpath = tagged1) if (in_list(tagpath[0], keep1)) tagpath[1]], [for (tagpath = tagged2) if (in_list(tagpath[0], keep2)) tagpath[1]] ), outregion = assemble_path_fragments(tagged, eps=eps) ) outregion; // Function&Module: union() // Usage: // union() {...} // region = union(regions); // region = union(REGION1,REGION2); // region = union(REGION1,REGION2,REGION3); // Description: // When called as a function and given a list of regions, where each region is a list of closed // 2D paths, returns the boolean union of all given regions. Result is a single region. // When called as the built-in module, makes the boolean union of the given children. // Arguments: // regions = List of regions to union. Each region is a list of closed paths. // Example(2D): // shape1 = move([-8,-8,0], p=circle(d=50)); // shape2 = move([ 8, 8,0], p=circle(d=50)); // for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true); // color("green") region(union(shape1,shape2)); function union(regions=[],b=undef,c=undef,eps=EPSILON) = b!=undef? union(concat([regions],[b],c==undef?[]:[c]), eps=eps) : len(regions)<=1? regions[0] : union( let(regions=[for (r=regions) quant(is_path(r)? [r] : r, 1/65536)]) concat( [_tagged_region(regions[0],regions[1],["O","S"],["O"], eps=eps)], [for (i=[2:1:len(regions)-1]) regions[i]] ), eps=eps ); // Function&Module: difference() // Usage: // difference() {...} // region = difference(regions); // region = difference(REGION1,REGION2); // region = difference(REGION1,REGION2,REGION3); // Description: // When called as a function, and given a list of regions, where each region is a list of closed // 2D paths, takes the first region and differences away all other regions from it. The resulting // region is returned. // When called as the built-in module, makes the boolean difference of the given children. // Arguments: // regions = List of regions to difference. Each region is a list of closed paths. // Example(2D): // shape1 = move([-8,-8,0], p=circle(d=50)); // shape2 = move([ 8, 8,0], p=circle(d=50)); // for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true); // color("green") region(difference(shape1,shape2)); function difference(regions=[],b=undef,c=undef,eps=EPSILON) = b!=undef? difference(concat([regions],[b],c==undef?[]:[c]), eps=eps) : len(regions)<=1? regions[0] : difference( let(regions=[for (r=regions) quant(is_path(r)? [r] : r, 1/65536)]) concat( [_tagged_region(regions[0],regions[1],["O","U"],["I"], eps=eps)], [for (i=[2:1:len(regions)-1]) regions[i]] ), eps=eps ); // Function&Module: intersection() // Usage: // intersection() {...} // region = intersection(regions); // region = intersection(REGION1,REGION2); // region = intersection(REGION1,REGION2,REGION3); // Description: // When called as a function, and given a list of regions, where each region is a list of closed // 2D paths, returns the boolean intersection of all given regions. Result is a single region. // When called as the built-in module, makes the boolean intersection of all the given children. // Arguments: // regions = List of regions to intersection. Each region is a list of closed paths. // Example(2D): // shape1 = move([-8,-8,0], p=circle(d=50)); // shape2 = move([ 8, 8,0], p=circle(d=50)); // for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true); // color("green") region(intersection(shape1,shape2)); function intersection(regions=[],b=undef,c=undef,eps=EPSILON) = b!=undef? intersection(concat([regions],[b],c==undef?[]:[c]),eps=eps) : len(regions)<=1? regions[0] : intersection( let(regions=[for (r=regions) quant(is_path(r)? [r] : r, 1/65536)]) concat( [_tagged_region(regions[0],regions[1],["I","S"],["I"],eps=eps)], [for (i=[2:1:len(regions)-1]) regions[i]] ), eps=eps ); // Function&Module: exclusive_or() // Usage: // exclusive_or() {...} // region = exclusive_or(regions); // region = exclusive_or(REGION1,REGION2); // region = exclusive_or(REGION1,REGION2,REGION3); // Description: // When called as a function and given a list of regions, where each region is a list of closed // 2D paths, returns the boolean exclusive_or of all given regions. Result is a single region. // When called as a module, performs a boolean exclusive-or of up to 10 children. // Arguments: // regions = List of regions to exclusive_or. Each region is a list of closed paths. // Example(2D): As Function // shape1 = move([-8,-8,0], p=circle(d=50)); // shape2 = move([ 8, 8,0], p=circle(d=50)); // for (shape = [shape1,shape2]) // color("red") stroke(shape, width=0.5, closed=true); // color("green") region(exclusive_or(shape1,shape2)); // Example(2D): As Module // exclusive_or() { // square(40,center=false); // circle(d=40); // } function exclusive_or(regions=[],b=undef,c=undef,eps=EPSILON) = b!=undef? exclusive_or(concat([regions],[b],c==undef?[]:[c]),eps=eps) : len(regions)<=1? regions[0] : exclusive_or( let(regions=[for (r=regions) is_path(r)? [r] : r]) concat( [union([ difference([regions[0],regions[1]], eps=eps), difference([regions[1],regions[0]], eps=eps) ], eps=eps)], [for (i=[2:1:len(regions)-1]) regions[i]] ), eps=eps ); module exclusive_or() { if ($children==1) { children(); } else if ($children==2) { difference() { children(0); children(1); } difference() { children(1); children(0); } } else if ($children==3) { exclusive_or() { exclusive_or() { children(0); children(1); } children(2); } } else if ($children==4) { exclusive_or() { exclusive_or() { children(0); children(1); } exclusive_or() { children(2); children(3); } } } else if ($children==5) { exclusive_or() { exclusive_or() { children(0); children(1); children(2); children(3); } children(4); } } else if ($children==6) { exclusive_or() { exclusive_or() { children(0); children(1); children(2); children(3); } children(4); children(5); } } else if ($children==7) { exclusive_or() { exclusive_or() { children(0); children(1); children(2); children(3); } children(4); children(5); children(6); } } else if ($children==8) { exclusive_or() { exclusive_or() { children(0); children(1); children(2); children(3); } exclusive_or() { children(4); children(5); children(6); children(7); } } } else if ($children==9) { exclusive_or() { exclusive_or() { children(0); children(1); children(2); children(3); } exclusive_or() { children(4); children(5); children(6); children(7); } children(8); } } else if ($children==10) { exclusive_or() { exclusive_or() { children(0); children(1); children(2); children(3); } exclusive_or() { children(4); children(5); children(6); children(7); } children(8); children(9); } } else { assert($children<=10, "exclusive_or() can only handle up to 10 children."); } } // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap