////////////////////////////////////////////////////////////////////// // LibFile: shapes2d.scad // Common useful 2D shapes. // To use, add the following lines to the beginning of your file: // ``` // include // ``` ////////////////////////////////////////////////////////////////////// // Section: 2D Drawing Helpers // Module: stroke() // Usage: // stroke(path, width, [endcap], [close]); // Description: // Draws a 2D line path with a given line thickness. // Arguments: // path = The 2D path to draw along. // width = The width of the line to draw. // endcaps = If true, draw round endcaps at the ends of the line. // close = If true, draw an additional line from the end of the path to the start. // Example(2D): // path = [[0,100], [100,100], [200,0], [100,-100], [100,0]]; // stroke(path, width=10, endcaps=false); // Example(2D): // path = [[0,100], [100,100], [200,0], [100,-100], [100,0]]; // stroke(path, width=20, endcaps=true); // Example(2D): // path = [[0,100], [100,100], [200,0], [100,-100], [100,0]]; // stroke(path, width=20, endcaps=true, close=true); module stroke(path, width=1, endcaps=true, close=false) { $fn = quantup(segs(width/2),4); path = close? concat(path,[path[0]]) : path; segments = pair(path); segpairs = pair(segments); // Line segments for (seg = segments) { delt = seg[1] - seg[0]; translate(seg[0]) rot(from=BACK,to=delt) left(width/2) square([width, norm(delt)], center=false); } // Joints for (segpair = segpairs) { seg1 = segpair[0]; seg2 = segpair[1]; delt1 = seg1[1] - seg1[0]; delt2 = seg2[1] - seg2[0]; hull() { translate(seg1[1]) rot(from=BACK,to=delt1) circle(d=width); translate(seg2[0]) rot(from=BACK,to=delt2) circle(d=width); } } // Endcaps if (endcaps) { seg1 = segments[0]; delt1 = seg1[1] - seg1[0]; translate(seg1[0]) rot(from=BACK, to=delt1) circle(d=width); seg2 = select(segments,-1); delt2 = seg2[1] - seg2[0]; translate(seg2[1]) rot(from=BACK, to=delt2) circle(d=width); } } // Section: 2D Shapes // Function&Module: pie_slice2d() // Usage: // pie_slice2d(r|d, ang); // Description: // When called as a function, returns the 2D path for a "pie" slice of a circle. // When called as a module, creates a 2D "pie" slice of a circle. // Arguments: // r = The radius of the circle to get a slice of. // d = The diameter of the circle to get a slice of. // ang = The angle of the arc of the pie slice. // Examples(2D): // pie_slice2d(r=50,ang=30); // pie_slice2d(d=100,ang=45); // pie_slice2d(d=40,ang=120); // pie_slice2d(d=40,ang=240); // Example(2D): Called as Function // stroke(close=true, pie_slice2d(r=50,ang=30)); function pie_slice2d(r=undef, d=undef, ang=30) = let( r = get_radius(r=r, d=d, dflt=10), sides = ceil(segs(r)*ang/360) ) concat( [[0,0]], [for (i=[0:sides]) let(a=i*ang/sides) r*[cos(a),sin(a)]] ); module pie_slice2d(r=undef, d=undef, ang=30) { pts = pie_slice2d(r=r, d=d, ang=ang); polygon(pts); } // Function&Module: trapezoid() // Usage: // trapezoid(h, w1, w2); // Description: // When called as a function, returns a 2D path for a trapezoid with parallel front and back sides. // When called as a module, creates a 2D trapezoid with parallel front and back sides. // Arguments: // h = The Y axis height of the trapezoid. // w1 = The X axis width of the front end of the trapezoid. // w2 = The X axis width of the back end of the trapezoid. // Examples(2D): // trapezoid(h=30, w1=40, w2=20); // trapezoid(h=25, w1=20, w2=35); // trapezoid(h=20, w1=40, w2=0); // Example(2D): Called as Function // stroke(close=true, trapezoid(h=30, w1=40, w2=20)); function trapezoid(h, w1, w2) = [[-w1/2,-h/2], [-w2/2,h/2], [w2/2,h/2], [w1/2,-h/2]]; module trapezoid(h, w1, w2) polygon(trapezoid(h=h, w1=w1, w2=w2)); // Function&Module: regular_ngon() // Usage: // regular_ngon(n, or|od, [realign]); // regular_ngon(n, ir|id, [realign]); // regular_ngon(n, side, [realign]); // Description: // When called as a function, returns a 2D path for a regular N-sided polygon. // When called as a module, creates a 2D regular N-sided polygon. // Arguments: // n = The number of sides. // or = Outside radius, at points. // od = Outside diameter, at points. // ir = Inside radius, at center of sides. // id = Inside diameter, at center of sides. // side = Length of each side. // realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false // Example(2D): by Outer Size // regular_ngon(n=5, or=30); // regular_ngon(n=5, od=60); // Example(2D): by Inner Size // regular_ngon(n=5, ir=30); // regular_ngon(n=5, id=60); // Example(2D): by Side Length // regular_ngon(n=8, side=20); // Example(2D): Realigned // regular_ngon(n=8, side=20, realign=true); // Example(2D): Called as Function // stroke(close=true, regular_ngon(n=6, or=30)); function regular_ngon(n=6, or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false) = let( sc = 1/cos(180/n), r = get_radius(r1=ir*sc, r=or, d1=id*sc, d=od, dflt=side/2/sin(180/n)), offset = 90 + (realign? (180/n) : 0) ) [for (a=[0:360/n:360-EPSILON]) r*[cos(a+offset),sin(a+offset)]]; module regular_ngon(n=6, or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false) polygon(regular_ngon(n=n,or=or,od=od,ir=ir,id=id,side=side,realign=realign)); // Function&Module: pentagon() // Usage: // pentagon(or|od, [realign]); // pentagon(ir|id, [realign]; // pentagon(side, [realign]; // Description: // When called as a function, returns a 2D path for a regular pentagon. // When called as a module, creates a 2D regular pentagon. // Arguments: // or = Outside radius, at points. // od = Outside diameter, at points. // ir = Inside radius, at center of sides. // id = Inside diameter, at center of sides. // side = Length of each side. // realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false // Example(2D): by Outer Size // pentagon(or=30); // pentagon(od=60); // Example(2D): by Inner Size // pentagon(ir=30); // pentagon(id=60); // Example(2D): by Side Length // pentagon(side=20); // Example(2D): Realigned // pentagon(side=20, realign=true); // Example(2D): Called as Function // stroke(close=true, pentagon(or=30)); function pentagon(or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false) = regular_ngon(n=5, or=or, od=od, ir=ir, id=id, side=side, realign=realign); module pentagon(or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false) polygon(pentagon(or=or, od=od, ir=ir, id=id, side=side, realign=realign)); // Function&Module: hexagon() // Usage: // hexagon(or, od, ir, id, side); // Description: // When called as a function, returns a 2D path for a regular hexagon. // When called as a module, creates a 2D regular hexagon. // Arguments: // or = Outside radius, at points. // od = Outside diameter, at points. // ir = Inside radius, at center of sides. // id = Inside diameter, at center of sides. // side = Length of each side. // realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false // Example(2D): by Outer Size // hexagon(or=30); // hexagon(od=60); // Example(2D): by Inner Size // hexagon(ir=30); // hexagon(id=60); // Example(2D): by Side Length // hexagon(side=20); // Example(2D): Realigned // hexagon(side=20, realign=true); // Example(2D): Called as Function // stroke(close=true, hexagon(or=30)); function hexagon(or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false) = regular_ngon(n=6, or=or, od=od, ir=ir, id=id, side=side, realign=realign); module hexagon(or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false) polygon(hexagon(or=or, od=od, ir=ir, id=id, side=side, realign=realign)); // Function&Module: octagon() // Usage: // octagon(or, od, ir, id, side); // Description: // When called as a function, returns a 2D path for a regular octagon. // When called as a module, creates a 2D regular octagon. // Arguments: // or = Outside radius, at points. // od = Outside diameter, at points. // ir = Inside radius, at center of sides. // id = Inside diameter, at center of sides. // side = Length of each side. // realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false // Example(2D): by Outer Size // octagon(or=30); // octagon(od=60); // Example(2D): by Inner Size // octagon(ir=30); // octagon(id=60); // Example(2D): by Side Length // octagon(side=20); // Example(2D): Realigned // octagon(side=20, realign=true); // Example(2D): Called as Function // stroke(close=true, octagon(or=30)); function octagon(or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false) = regular_ngon(n=8, or=or, od=od, ir=ir, id=id, side=side, realign=realign); module octagon(or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false) polygon(octagon(or=or, od=od, ir=ir, id=id, side=side, realign=realign)); // Function&Module: glued_circles() // Usage: // glued_circles(r|d, spread, tangent); // Description: // When called as a function, returns a 2D path forming a shape of two circles joined by curved waist. // When called as a module, creates a 2D shape of two circles joined by curved waist. // Arguments: // r = The radius of the end circles. // d = The diameter of the end circles. // spread = The distance between the centers of the end circles. // tangent = The angle in degrees of the tangent point for the joining arcs, measured away from the Y axis. // Examples(2D): // glued_circles(r=15, spread=40, tangent=45); // glued_circles(d=30, spread=30, tangent=30); // glued_circles(d=30, spread=30, tangent=15); // glued_circles(d=30, spread=30, tangent=-30); // Example(2D): Called as Function // stroke(close=true, glued_circles(r=15, spread=40, tangent=45)); function glued_circles(r=undef, d=undef, spread=10, tangent=30) = let( r = get_radius(r=r, d=d, dflt=10), r2 = (spread/2 / sin(tangent)) - r, cp1 = [spread/2, 0], cp2 = [0, (r+r2)*cos(tangent)], sa1 = 90-tangent, ea1 = 270+tangent, lobearc = ea1-sa1, lobesegs = floor(segs(r)*lobearc/360), lobestep = lobearc / lobesegs, sa2 = 270-tangent, ea2 = 270+tangent, subarc = ea2-sa2, arcsegs = ceil(segs(r2)*abs(subarc)/360), arcstep = subarc / arcsegs ) concat( [for (i=[0:lobesegs]) let(a=sa1+i*lobestep) r * [cos(a),sin(a)] - cp1], tangent==0? [] : [for (i=[0:arcsegs]) let(a=ea2-i*arcstep+180) r2 * [cos(a),sin(a)] - cp2], [for (i=[0:lobesegs]) let(a=sa1+i*lobestep+180) r * [cos(a),sin(a)] + cp1], tangent==0? [] : [for (i=[0:arcsegs]) let(a=ea2-i*arcstep) r2 * [cos(a),sin(a)] + cp2] ); module glued_circles(r=undef, d=undef, spread=10, tangent=30) polygon(glued_circles(r=r, d=d, spread=spread, tangent=tangent)); // Function&Module: star() // Usage: // star(n, r|d, ir|id|step, [realign]); // Description: // When called as a function, returns the path needed to create a star polygon with N points. // When called as a module, creates a star polygon with N points. // Arguments: // n = The number of stellate tips on the star. // r = The radius to the tips of the star. // d = The diameter to the tips of the star. // ir = The radius to the inner corners of the star. // id = The diameter to the inner corners of the star. // step = Calculates the radius of the inner star corners by virtually drawing a straight line `step` tips around the star. 2 <= step < n/2 // realign = If false, a tip is aligned with the Y+ axis. If true, an inner corner is aligned with the Y+ axis. Default: false // Examples(2D): // star(n=5, r=50, ir=25); // star(n=5, r=50, step=2); // star(n=7, r=50, step=2); // star(n=7, r=50, step=3); // Example(2D): Realigned // star(n=7, r=50, step=3, realign=true); // Example(2D): Called as Function // stroke(close=true, star(n=5, r=50, ir=25)); function star(n, r, d, ir, id, step, realign=false) = let( r = get_radius(r=r, d=d), count = num_defined([ir,id,step]), stepOK = is_undef(step) || (step>1 && step