////////////////////////////////////////////////////////////////////// // LibFile: drawing.scad // This file includes stroke(), which converts a path into a // geometric object, like drawing with a pen. It even works on // three-dimensional paths. You can make a dashed line or add arrow // heads. The turtle() function provides a turtle graphics style // approach for producing paths. The arc() function produces arc paths, // and helix() produces helix paths. // Includes: // include // FileGroup: Basic Modeling // FileSummary: Create and draw 2D and 3D paths: arc, helix, turtle graphics // FileFootnotes: STD=Included in std.scad ////////////////////////////////////////////////////////////////////// // Section: Line Drawing // Module: stroke() // Usage: // stroke(path, [width], [closed], [endcaps], [endcap_width], [endcap_length], [endcap_extent], [trim]); // stroke(path, [width], [closed], [endcap1], [endcap2], [endcap_width1], [endcap_width2], [endcap_length1], [endcap_length2], [endcap_extent1], [endcap_extent2], [trim1], [trim2]); // Topics: Paths (2D), Paths (3D), Drawing Tools // Description: // Draws a 2D or 3D path with a given line width. Joints and each endcap can be replaced with // various marker shapes, and can be assigned different colors. If passed a region instead of // a path, draws each path in the region as a closed polygon by default. If `closed=false` is // given with a region, each subpath is drawn as an un-closed line path. // Figure(Med,NoAxes,2D,VPR=[0,0,0],VPD=250): Endcap Types // cap_pairs = [ // ["butt", "chisel" ], // ["round", "square" ], // ["line", "cross" ], // ["x", "diamond"], // ["dot", "block" ], // ["tail", "arrow" ], // ["tail2", "arrow2" ] // ]; // for (i = idx(cap_pairs)) { // fwd((i-len(cap_pairs)/2+0.5)*13) { // stroke([[-20,0], [20,0]], width=3, endcap1=cap_pairs[i][0], endcap2=cap_pairs[i][1]); // color("black") { // stroke([[-20,0], [20,0]], width=0.25, endcaps=false); // left(28) text(text=cap_pairs[i][0], size=5, halign="right", valign="center"); // right(28) text(text=cap_pairs[i][1], size=5, halign="left", valign="center"); // } // } // } // Arguments: // path = The path to draw along. // width = The width of the line to draw. If given as a list of widths, (one for each path point), draws the line with varying thickness to each point. // closed = If true, draw an additional line from the end of the path to the start. // joints = Specifies the joint shape for each joint of the line. If a 2D polygon is given, use that to draw custom joints. // endcaps = Specifies the endcap type for both ends of the line. If a 2D polygon is given, use that to draw custom endcaps. // endcap1 = Specifies the endcap type for the start of the line. If a 2D polygon is given, use that to draw a custom endcap. // endcap2 = Specifies the endcap type for the end of the line. If a 2D polygon is given, use that to draw a custom endcap. // dots = Specifies both the endcap and joint types with one argument. If given `true`, sets both to "dot". If a 2D polygon is given, uses that to draw custom dots. // joint_width = Some joint shapes are wider than the line. This specifies the width of the shape, in multiples of the line width. // endcap_width = Some endcap types are wider than the line. This specifies the size of endcaps, in multiples of the line width. // endcap_width1 = This specifies the size of starting endcap, in multiples of the line width. // endcap_width2 = This specifies the size of ending endcap, in multiples of the line width. // dots_width = This specifies the size of the joints and endcaps, in multiples of the line width. // joint_length = Length of joint shape, in multiples of the line width. // endcap_length = Length of endcaps, in multiples of the line width. // endcap_length1 = Length of starting endcap, in multiples of the line width. // endcap_length2 = Length of ending endcap, in multiples of the line width. // dots_length = Length of both joints and endcaps, in multiples of the line width. // joint_extent = Extents length of joint shape, in multiples of the line width. // endcap_extent = Extents length of endcaps, in multiples of the line width. // endcap_extent1 = Extents length of starting endcap, in multiples of the line width. // endcap_extent2 = Extents length of ending endcap, in multiples of the line width. // dots_extent = Extents length of both joints and endcaps, in multiples of the line width. // joint_angle = Extra rotation given to joint shapes, in degrees. If not given, the shapes are fully spun (for 3D lines). // endcap_angle = Extra rotation given to endcaps, in degrees. If not given, the endcaps are fully spun (for 3D lines). // endcap_angle1 = Extra rotation given to a starting endcap, in degrees. If not given, the endcap is fully spun (for 3D lines). // endcap_angle2 = Extra rotation given to a ending endcap, in degrees. If not given, the endcap is fully spun (for 3D lines). // dots_angle = Extra rotation given to both joints and endcaps, in degrees. If not given, the endcap is fully spun (for 3D lines). // trim = Trim the the start and end line segments by this much, to keep them from interfering with custom endcaps. // trim1 = Trim the the starting line segment by this much, to keep it from interfering with a custom endcap. // trim2 = Trim the the ending line segment by this much, to keep it from interfering with a custom endcap. // color = If given, sets the color of the line segments, joints and endcap. // endcap_color = If given, sets the color of both endcaps. Overrides `color=` and `dots_color=`. // endcap_color1 = If give, sets the color of the starting endcap. Overrides `color=`, `dots_color=`, and `endcap_color=`. // endcap_color2 = If given, sets the color of the ending endcap. Overrides `color=`, `dots_color=`, and `endcap_color=`. // joint_color = If given, sets the color of the joints. Overrides `color=` and `dots_color=`. // dots_color = If given, sets the color of the endcaps and joints. Overrides `color=`. // convexity = Max number of times a line could intersect a wall of an endcap. // hull = If true, use `hull()` to make higher quality joints between segments, at the cost of being much slower. Default: true // Example(2D): Drawing a Path // path = [[0,100], [100,100], [200,0], [100,-100], [100,0]]; // stroke(path, width=20); // Example(2D): Closing a Path // path = [[0,100], [100,100], [200,0], [100,-100], [100,0]]; // stroke(path, width=20, endcaps=true, closed=true); // Example(2D): Fancy Arrow Endcaps // path = [[0,100], [100,100], [200,0], [100,-100], [100,0]]; // stroke(path, width=10, endcaps="arrow2"); // Example(2D): Modified Fancy Arrow Endcaps // path = [[0,100], [100,100], [200,0], [100,-100], [100,0]]; // stroke(path, width=10, endcaps="arrow2", endcap_width=6, endcap_length=3, endcap_extent=2); // Example(2D): Mixed Endcaps // path = [[0,100], [100,100], [200,0], [100,-100], [100,0]]; // stroke(path, width=10, endcap1="tail2", endcap2="arrow2"); // Example(2D): Plotting Points // path = [for (a=[0:30:360]) [a-180, 60*sin(a)]]; // stroke(path, width=3, joints="diamond", endcaps="arrow2", endcap_angle=0, endcap_width=5, joint_angle=0, joint_width=5); // Example(2D): Joints and Endcaps // path = [for (a=[0:30:360]) [a-180, 60*sin(a)]]; // stroke(path, width=8, joints="dot", endcaps="arrow2"); // Example(2D): Custom Endcap Shapes // path = [[0,100], [100,100], [200,0], [100,-100], [100,0]]; // arrow = [[0,0], [2,-3], [0.5,-2.3], [2,-4], [0.5,-3.5], [-0.5,-3.5], [-2,-4], [-0.5,-2.3], [-2,-3]]; // stroke(path, width=10, trim=3.5, endcaps=arrow); // Example(2D): Variable Line Width // path = circle(d=50,$fn=18); // widths = [for (i=idx(path)) 10*i/len(path)+2]; // stroke(path,width=widths,$fa=1,$fs=1); // Example: 3D Path with Endcaps // path = rot([15,30,0], p=path3d(pentagon(d=50))); // stroke(path, width=2, endcaps="arrow2", $fn=18); // Example: 3D Path with Flat Endcaps // path = rot([15,30,0], p=path3d(pentagon(d=50))); // stroke(path, width=2, endcaps="arrow2", endcap_angle=0, $fn=18); // Example: 3D Path with Mixed Endcaps // path = rot([15,30,0], p=path3d(pentagon(d=50))); // stroke(path, width=2, endcap1="arrow2", endcap2="tail", endcap_angle2=0, $fn=18); // Example: 3D Path with Joints and Endcaps // path = [for (i=[0:10:360]) [(i-180)/2,20*cos(3*i),20*sin(3*i)]]; // stroke(path, width=2, joints="dot", endcap1="round", endcap2="arrow2", joint_width=2.0, endcap_width2=3, $fn=18); // Example: Coloring Lines, Joints, and Endcaps // path = [for (i=[0:15:360]) [(i-180)/3,20*cos(2*i),20*sin(2*i)]]; // stroke( // path, width=2, joints="dot", endcap1="dot", endcap2="arrow2", // color="lightgreen", joint_color="red", endcap_color="blue", // joint_width=2.0, endcap_width2=3, $fn=18 // ); // Example(2D): Simplified Plotting // path = [for (i=[0:15:360]) [(i-180)/3,20*cos(2*i)]]; // stroke(path, width=2, dots=true, color="lightgreen", dots_color="red", $fn=18); // Example(2D): Drawing a Region // rgn = [square(100,center=true), circle(d=60,$fn=18)]; // stroke(rgn, width=2); // Example(2D): Drawing a List of Lines // paths = [ // for (y=[-60:60:60]) [ // for (a=[-180:15:180]) // [a, 2*y+60*sin(a+y)] // ] // ]; // stroke(paths, closed=false, width=5); function stroke( path, width=1, closed, endcaps, endcap1, endcap2, joints, dots, endcap_width, endcap_width1, endcap_width2, joint_width, dots_width, endcap_length, endcap_length1, endcap_length2, joint_length, dots_length, endcap_extent, endcap_extent1, endcap_extent2, joint_extent, dots_extent, endcap_angle, endcap_angle1, endcap_angle2, joint_angle, dots_angle, endcap_color, endcap_color1, endcap_color2, joint_color, dots_color, color, trim, trim1, trim2, convexity=10, hull=true ) = no_function("stroke"); module stroke( path, width=1, closed, endcaps, endcap1, endcap2, joints, dots, endcap_width, endcap_width1, endcap_width2, joint_width, dots_width, endcap_length, endcap_length1, endcap_length2, joint_length, dots_length, endcap_extent, endcap_extent1, endcap_extent2, joint_extent, dots_extent, endcap_angle, endcap_angle1, endcap_angle2, joint_angle, dots_angle, endcap_color, endcap_color1, endcap_color2, joint_color, dots_color, color, trim, trim1, trim2, convexity=10, hull=true ) { no_children($children); module setcolor(clr) { if (clr==undef) { children(); } else { color(clr) children(); } } function _shape_defaults(cap) = cap==undef? [1.00, 0.00, 0.00] : cap==false? [1.00, 0.00, 0.00] : cap==true? [1.00, 1.00, 0.00] : cap=="butt"? [1.00, 0.00, 0.00] : cap=="round"? [1.00, 1.00, 0.00] : cap=="chisel"? [1.00, 1.00, 0.00] : cap=="square"? [1.00, 1.00, 0.00] : cap=="block"? [2.00, 1.00, 0.00] : cap=="diamond"? [2.50, 1.00, 0.00] : cap=="dot"? [2.00, 1.00, 0.00] : cap=="x"? [2.50, 0.40, 0.00] : cap=="cross"? [3.00, 0.33, 0.00] : cap=="line"? [3.50, 0.22, 0.00] : cap=="arrow"? [3.50, 0.40, 0.50] : cap=="arrow2"? [3.50, 1.00, 0.14] : cap=="tail"? [3.50, 0.47, 0.50] : cap=="tail2"? [3.50, 0.28, 0.50] : is_path(cap)? [0.00, 0.00, 0.00] : assert(false, str("Invalid cap or joint: ",cap)); function _shape_path(cap,linewidth,w,l,l2) = ( (cap=="butt" || cap==false || cap==undef)? [] : (cap=="round" || cap==true)? scale([w,l], p=circle(d=1, $fn=max(8, segs(w/2)))) : cap=="chisel"? scale([w,l], p=circle(d=1,$fn=4)) : cap=="diamond"? circle(d=w,$fn=4) : cap=="square"? scale([w,l], p=square(1,center=true)) : cap=="block"? scale([w,l], p=square(1,center=true)) : cap=="dot"? circle(d=w, $fn=max(12, segs(w*3/2))) : cap=="x"? [for (a=[0:90:270]) each rot(a,p=[[w+l/2,w-l/2]/2, [w-l/2,w+l/2]/2, [0,l/2]]) ] : cap=="cross"? [for (a=[0:90:270]) each rot(a,p=[[l,w]/2, [-l,w]/2, [-l,l]/2]) ] : cap=="line"? scale([w,l], p=square(1,center=true)) : cap=="arrow"? [[0,0], [w/2,-l2], [w/2,-l2-l], [0,-l], [-w/2,-l2-l], [-w/2,-l2]] : cap=="arrow2"? [[0,0], [w/2,-l2-l], [0,-l], [-w/2,-l2-l]] : cap=="tail"? [[0,0], [w/2,l2], [w/2,l2-l], [0,-l], [-w/2,l2-l], [-w/2,l2]] : cap=="tail2"? [[w/2,0], [w/2,-l], [0,-l-l2], [-w/2,-l], [-w/2,0]] : is_path(cap)? cap : assert(false, str("Invalid endcap: ",cap)) ) * linewidth; closed = default(closed, is_region(path)); assert(is_bool(closed)); dots = dots==true? "dot" : dots; endcap1 = first_defined([endcap1, endcaps, dots, "round"]); endcap2 = first_defined([endcap2, endcaps, if (!closed) dots, "round"]); joints = first_defined([joints, dots, "round"]); assert(is_bool(endcap1) || is_string(endcap1) || is_path(endcap1)); assert(is_bool(endcap2) || is_string(endcap2) || is_path(endcap2)); assert(is_bool(joints) || is_string(joints) || is_path(joints)); endcap1_dflts = _shape_defaults(endcap1); endcap2_dflts = _shape_defaults(endcap2); joint_dflts = _shape_defaults(joints); endcap_width1 = first_defined([endcap_width1, endcap_width, dots_width, endcap1_dflts[0]]); endcap_width2 = first_defined([endcap_width2, endcap_width, dots_width, endcap2_dflts[0]]); joint_width = first_defined([joint_width, dots_width, joint_dflts[0]]); assert(is_num(endcap_width1)); assert(is_num(endcap_width2)); assert(is_num(joint_width)); endcap_length1 = first_defined([endcap_length1, endcap_length, dots_length, endcap1_dflts[1]*endcap_width1]); endcap_length2 = first_defined([endcap_length2, endcap_length, dots_length, endcap2_dflts[1]*endcap_width2]); joint_length = first_defined([joint_length, dots_length, joint_dflts[1]*joint_width]); assert(is_num(endcap_length1)); assert(is_num(endcap_length2)); assert(is_num(joint_length)); endcap_extent1 = first_defined([endcap_extent1, endcap_extent, dots_extent, endcap1_dflts[2]*endcap_width1]); endcap_extent2 = first_defined([endcap_extent2, endcap_extent, dots_extent, endcap2_dflts[2]*endcap_width2]); joint_extent = first_defined([joint_extent, dots_extent, joint_dflts[2]*joint_width]); assert(is_num(endcap_extent1)); assert(is_num(endcap_extent2)); assert(is_num(joint_extent)); endcap_angle1 = first_defined([endcap_angle1, endcap_angle, dots_angle]); endcap_angle2 = first_defined([endcap_angle2, endcap_angle, dots_angle]); joint_angle = first_defined([joint_angle, dots_angle]); assert(is_undef(endcap_angle1)||is_num(endcap_angle1)); assert(is_undef(endcap_angle2)||is_num(endcap_angle2)); assert(is_undef(joint_angle)||is_num(joint_angle)); endcap_color1 = first_defined([endcap_color1, endcap_color, dots_color, color]); endcap_color2 = first_defined([endcap_color2, endcap_color, dots_color, color]); joint_color = first_defined([joint_color, dots_color, color]); paths = force_region(path); assert(is_region(paths),"The path argument must be a list of 2D or 3D points, or a region."); for (path = paths) { assert(is_list(path)); if (len(path) > 1) { assert(is_path(path,[2,3]), "The path argument must be a list of 2D or 3D points, or a region."); } path = deduplicate( closed? close_path(path) : path ); assert(is_num(width) || (is_vector(width) && len(width)==len(path))); width = is_num(width)? [for (x=path) width] : width; assert(all([for (w=width) w>0])); endcap_shape1 = _shape_path(endcap1, width[0], endcap_width1, endcap_length1, endcap_extent1); endcap_shape2 = _shape_path(endcap2, last(width), endcap_width2, endcap_length2, endcap_extent2); trim1 = width[0] * first_defined([ trim1, trim, (endcap1=="arrow")? endcap_length1-0.01 : (endcap1=="arrow2")? endcap_length1*3/4 : 0 ]); assert(is_num(trim1)); trim2 = last(width) * first_defined([ trim2, trim, (endcap2=="arrow")? endcap_length2-0.01 : (endcap2=="arrow2")? endcap_length2*3/4 : 0 ]); assert(is_num(trim2)); if (len(path) == 1) { if (len(path[0]) == 2) { // Endcap1 setcolor(endcap_color1) { translate(path[0]) { mat = is_undef(endcap_angle1)? ident(3) : zrot(endcap_angle1); multmatrix(mat) polygon(endcap_shape1); } } } else { // Endcap1 setcolor(endcap_color1) { translate(path[0]) { $fn = segs(width[0]/2); if (is_undef(endcap_angle1)) { rotate_extrude(convexity=convexity) { right_half(planar=true) { polygon(endcap_shape1); } } } else { rotate([90,0,endcap_angle1]) { linear_extrude(height=max(widths[0],0.001), center=true, convexity=convexity) { polygon(endcap_shape1); } } } } } } } else { dummy=assert(trim10 && x=2), "Number of points must be an integer 2 or larger") // First try for 2D arc specified by width and thickness is_def(width) && is_def(thickness)? ( assert(!any_defined([r,cp,points]) && !any([cw,ccw,long]),"Conflicting or invalid parameters to arc") assert(width>0, "Width must be postive") assert(thickness>0, "Thickness must be positive") arc(n,points=[[width/2,0], [0,thickness], [-width/2,0]],wedge=wedge) ) : is_def(angle)? ( let( parmok = !any_defined([points,width,thickness]) && ((is_vector(angle,2) && is_undef(start)) || is_num(angle)) ) assert(parmok,"Invalid parameters in arc") let( cp = first_defined([cp,[0,0]]), start = is_def(start)? start : is_vector(angle) ? angle[0] : 0, angle = is_vector(angle)? angle[1]-angle[0] : angle, r = get_radius(r=r, d=d) ) assert(is_vector(cp,2),"Centerpoint must be a 2d vector") assert(angle!=0, "Arc has zero length") assert(is_def(r) && r>0, "Arc radius invalid") let( n = is_def(n) ? n : max(3, ceil(segs(r)*abs(angle)/360)), arcpoints = [for(i=[0:n-1]) let(theta = start + i*angle/(n-1)) r*[cos(theta),sin(theta)]+cp], extra = wedge? [cp] : [] ) concat(extra,arcpoints) ) : is_def(corner)? ( assert(is_path(corner,[2,3]),"Point list is invalid") // Arc is 3D, so transform corner to 2D and make a recursive call, then remap back to 3D len(corner[0]) == 3? ( assert(!(cw || ccw), "(Counter)clockwise isn't meaningful in 3d, so `cw` and `ccw` must be false") assert(is_undef(cp) || is_vector(cp,3),"corner are 3d so cp must be 3d") let( plane = [is_def(cp) ? cp : corner[2], corner[0], corner[1]], center2d = is_def(cp) ? project_plane(plane,cp) : undef, points2d = project_plane(plane, corner) ) lift_plane(plane,arc(n,cp=center2d,corner=points2d,wedge=wedge,long=long)) ) : assert(is_path(corner) && len(corner) == 3) let(col = is_collinear(corner[0],corner[1],corner[2])) assert(!col, "Collinear inputs do not define an arc") let( r = get_radius(r=r, d=d) ) assert(is_finite(r) && r>0, "Must specify r= or d= when corner= is given.") let( ci = circle_2tangents(r, corner[0], corner[1], corner[2], tangents=true), cp = ci[0], nrm = ci[1], tp1 = ci[2], tp2 = ci[3], dir = det2([corner[1]-corner[0],corner[2]-corner[1]]) > 0, corner = dir? [tp1,tp2] : [tp2,tp1], theta_start = atan2(corner[0].y-cp.y, corner[0].x-cp.x), theta_end = atan2(corner[1].y-cp.y, corner[1].x-cp.x), angle = posmod(theta_end-theta_start, 360), arcpts = arc(n,cp=cp,r=r,start=theta_start,angle=angle,wedge=wedge) ) dir ? arcpts : reverse(arcpts) ) : assert(is_path(points,[2,3]),"Point list is invalid") // Arc is 3D, so transform points to 2D and make a recursive call, then remap back to 3D len(points[0]) == 3? ( assert(!(cw || ccw), "(Counter)clockwise isn't meaningful in 3d, so `cw` and `ccw` must be false") assert(is_undef(cp) || is_vector(cp,3),"points are 3d so cp must be 3d") let( plane = [is_def(cp) ? cp : points[2], points[0], points[1]], center2d = is_def(cp) ? project_plane(plane,cp) : undef, points2d = project_plane(plane, points) ) lift_plane(plane,arc(n,cp=center2d,points=points2d,wedge=wedge,long=long)) ) : is_def(cp)? ( // Arc defined by center plus two points, will have radius defined by center and points[0] // and extent defined by direction of point[1] from the center assert(is_vector(cp,2), "Centerpoint must be a 2d vector") assert(len(points)==2, "When pointlist has length 3 centerpoint is not allowed") assert(points[0]!=points[1], "Arc endpoints are equal") assert(cp!=points[0]&&cp!=points[1], "Centerpoint equals an arc endpoint") assert(count_true([long,cw,ccw])<=1, str("Only one of `long`, `cw` and `ccw` can be true",cw,ccw,long)) let( angle = vector_angle(points[0], cp, points[1]), v1 = points[0]-cp, v2 = points[1]-cp, prelim_dir = sign(det2([v1,v2])), // z component of cross product dir = prelim_dir != 0 ? prelim_dir : assert(cw || ccw, "Collinear inputs don't define a unique arc") 1, r = norm(v1), final_angle = long || (ccw && dir<0) || (cw && dir>0) ? -dir*(360-angle) : dir*angle, sa = atan2(v1.y,v1.x) ) arc(n,cp=cp,r=r,start=sa,angle=final_angle,wedge=wedge) ) : ( // Final case is arc passing through three points, starting at point[0] and ending at point[3] let(col = is_collinear(points[0],points[1],points[2])) assert(!col, "Collinear inputs do not define an arc") let( cp = line_intersection(_normal_segment(points[0],points[1]),_normal_segment(points[1],points[2])), // select order to be counterclockwise dir = det2([points[1]-points[0],points[2]-points[1]]) > 0, points = dir? select(points,[0,2]) : select(points,[2,0]), r = norm(points[0]-cp), theta_start = atan2(points[0].y-cp.y, points[0].x-cp.x), theta_end = atan2(points[1].y-cp.y, points[1].x-cp.x), angle = posmod(theta_end-theta_start, 360), arcpts = arc(n,cp=cp,r=r,start=theta_start,angle=angle,wedge=wedge) ) dir ? arcpts : reverse(arcpts) ); module arc(n, r, angle, d, cp, points, corner, width, thickness, start, wedge=false, anchor=CENTER, spin=0) { path = arc(n=n, r=r, angle=angle, d=d, cp=cp, points=points, corner=corner, width=width, thickness=thickness, start=start, wedge=wedge); attachable(anchor,spin, two_d=true, path=path, extent=false) { polygon(path); children(); } } // Function: helix() // Usage: // path = helix(l|h, [turns=], [angle=], r=|r1=|r2=, d=|d1=|d2=); // Description: // Returns a 3D helical path on a cone, including the degerate case of flat spirals. // You can specify start and end radii. You can give the length, the helix angle, or the number of turns: two // of these three parameters define the helix. For a flat helix you must give length 0 and a turn count. // Helix will be right handed if turns is positive and left handed if it is negative. // The angle is calculateld based on the radius at the base of the helix. // Arguments: // h/l = Height/length of helix, zero for a flat spiral // --- // turns = Number of turns in helix, positive for right handed // angle = helix angle // r = Radius of helix // r1 = Radius of bottom of helix // r2 = Radius of top of helix // d = Diameter of helix // d1 = Diameter of bottom of helix // d2 = Diameter of top of helix // Example(3D): // stroke(helix(turns=2.5, h=100, r=50), dots=true, dots_color="blue"); // Example(3D): Helix that turns the other way // stroke(helix(turns=-2.5, h=100, r=50), dots=true, dots_color="blue"); // Example(3D): Flat helix (note points are still 3d) // stroke(helix(h=0,r1=50,r2=25,l=0, turns=4)); module helix(l,h,turns,angle, r, r1, r2, d, d1, d2) {no_module();} function helix(l,h,turns,angle, r, r1, r2, d, d1, d2)= let( r1=get_radius(r=r,r1=r1,d=d,d1=d1,dflt=1), r2=get_radius(r=r,r1=r2,d=d,d1=d2,dflt=1), length = first_defined([l,h]) ) assert(num_defined([length,turns,angle])==2,"Must define exactly two of l/h, turns, and angle") assert(is_undef(angle) || length!=0, "Cannot give length 0 with an angle") let( // length advances dz for each turn dz = is_def(angle) && length!=0 ? 2*PI*r1*tan(angle) : length/abs(turns), maxtheta = is_def(turns) ? 360*turns : 360*length/dz, N = segs(max(r1,r2)) ) [for(theta=lerpn(0,maxtheta, max(3,ceil(abs(maxtheta)*N/360)))) let(R=lerp(r1,r2,theta/maxtheta)) [R*cos(theta), R*sin(theta), abs(theta)/360 * dz]]; function _normal_segment(p1,p2) = let(center = (p1+p2)/2) [center, center + norm(p1-p2)/2 * line_normal(p1,p2)]; // Function: turtle() // Usage: // turtle(commands, [state], [full_state=], [repeat=]) // Topics: Shapes (2D), Path Generators (2D), Mini-Language // See Also: turtle3d() // Description: // Use a sequence of turtle graphics commands to generate a path. The parameter `commands` is a list of // turtle commands and optional parameters for each command. The turtle state has a position, movement direction, // movement distance, and default turn angle. If you do not give `state` as input then the turtle starts at the // origin, pointed along the positive x axis with a movement distance of 1. By default, `turtle` returns just // the computed turtle path. If you set `full_state` to true then it instead returns the full turtle state. // You can invoke `turtle` again with this full state to continue the turtle path where you left off. // . // The turtle state is a list with three entries: the path constructed so far, the current step as a 2-vector, the current default angle, // and the current arcsteps setting. // . // Commands | Arguments | What it does // ------------ | ------------------ | ------------------------------- // "move" | [dist] | Move turtle scale*dist units in the turtle direction. Default dist=1. // "xmove" | [dist] | Move turtle scale*dist units in the x direction. Default dist=1. Does not change turtle direction. // "ymove" | [dist] | Move turtle scale*dist units in the y direction. Default dist=1. Does not change turtle direction. // "xymove" | vector | Move turtle by the specified vector. Does not change turtle direction. // "untilx" | xtarget | Move turtle in turtle direction until x==xtarget. Produces an error if xtarget is not reachable. // "untily" | ytarget | Move turtle in turtle direction until y==ytarget. Produces an error if xtarget is not reachable. // "jump" | point | Move the turtle to the specified point // "xjump" | x | Move the turtle's x position to the specified value // "yjump | y | Move the turtle's y position to the specified value // "turn" | [angle] | Turn turtle direction by specified angle, or the turtle's default turn angle. The default angle starts at 90. // "left" | [angle] | Same as "turn" // "right" | [angle] | Same as "turn", -angle // "angle" | angle | Set the default turn angle. // "setdir" | dir | Set turtle direction. The parameter `dir` can be an angle or a vector. // "length" | length | Change the turtle move distance to `length` // "scale" | factor | Multiply turtle move distance by `factor` // "addlength" | length | Add `length` to the turtle move distance // "repeat" | count, commands | Repeats a list of commands `count` times. // "arcleft" | radius, [angle] | Draw an arc from the current position toward the left at the specified radius and angle. The turtle turns by `angle`. A negative angle draws the arc to the right instead of the left, and leaves the turtle facing right. A negative radius draws the arc to the right but leaves the turtle facing left. // "arcright" | radius, [angle] | Draw an arc from the current position toward the right at the specified radius and angle // "arcleftto" | radius, angle | Draw an arc at the given radius turning toward the left until reaching the specified absolute angle. // "arcrightto" | radius, angle | Draw an arc at the given radius turning toward the right until reaching the specified absolute angle. // "arcsteps" | count | Specifies the number of segments to use for drawing arcs. If you set it to zero then the standard `$fn`, `$fa` and `$fs` variables define the number of segments. // // Arguments: // commands = List of turtle commands // state = Starting turtle state (from previous call) or starting point. Default: start at the origin, pointing right. // --- // full_state = If true return the full turtle state for continuing the path in subsequent turtle calls. Default: false // repeat = Number of times to repeat the command list. Default: 1 // // Example(2D): Simple rectangle // path = turtle(["xmove",3, "ymove", "xmove",-3, "ymove",-1]); // stroke(path,width=.1); // Example(2D): Pentagon // path=turtle(["angle",360/5,"move","turn","move","turn","move","turn","move"]); // stroke(path,width=.1,closed=true); // Example(2D): Pentagon using the repeat argument // path=turtle(["move","turn",360/5],repeat=5); // stroke(path,width=.1,closed=true); // Example(2D): Pentagon using the repeat turtle command, setting the turn angle // path=turtle(["angle",360/5,"repeat",5,["move","turn"]]); // stroke(path,width=.1,closed=true); // Example(2D): Pentagram // path = turtle(["move","left",144], repeat=4); // stroke(path,width=.05,closed=true); // Example(2D): Sawtooth path // path = turtle([ // "turn", 55, // "untily", 2, // "turn", -55-90, // "untily", 0, // "turn", 55+90, // "untily", 2.5, // "turn", -55-90, // "untily", 0, // "turn", 55+90, // "untily", 3, // "turn", -55-90, // "untily", 0 // ]); // stroke(path, width=.1); // Example(2D): Simpler way to draw the sawtooth. The direction of the turtle is preserved when executing "yjump". // path = turtle([ // "turn", 55, // "untily", 2, // "yjump", 0, // "untily", 2.5, // "yjump", 0, // "untily", 3, // "yjump", 0, // ]); // stroke(path, width=.1); // Example(2DMed): square spiral // path = turtle(["move","left","addlength",1],repeat=50); // stroke(path,width=.2); // Example(2DMed): pentagonal spiral // path = turtle(["move","left",360/5,"addlength",1],repeat=50); // stroke(path,width=.7); // Example(2DMed): yet another spiral, without using `repeat` // path = turtle(concat(["angle",71],flatten(repeat(["move","left","addlength",1],50)))); // stroke(path,width=.7); // Example(2DMed): The previous spiral grows linearly and eventually intersects itself. This one grows geometrically and does not. // path = turtle(["move","left",71,"scale",1.05],repeat=50); // stroke(path,width=.15); // Example(2D): Koch Snowflake // function koch_unit(depth) = // depth==0 ? ["move"] : // concat( // koch_unit(depth-1), // ["right"], // koch_unit(depth-1), // ["left","left"], // koch_unit(depth-1), // ["right"], // koch_unit(depth-1) // ); // koch=concat(["angle",60,"repeat",3],[concat(koch_unit(3),["left","left"])]); // polygon(turtle(koch)); module turtle(commands, state=[[[0,0]],[1,0],90,0], full_state=false, repeat=1) {no_module();} function turtle(commands, state=[[[0,0]],[1,0],90,0], full_state=false, repeat=1) = let( state = is_vector(state) ? [[state],[1,0],90,0] : state ) repeat == 1? _turtle(commands,state,full_state) : _turtle_repeat(commands, state, full_state, repeat); function _turtle_repeat(commands, state, full_state, repeat) = repeat==1? _turtle(commands,state,full_state) : _turtle_repeat(commands, _turtle(commands, state, true), full_state, repeat-1); function _turtle_command_len(commands, index) = let( one_or_two_arg = ["arcleft","arcright", "arcleftto", "arcrightto"] ) commands[index] == "repeat"? 3 : // Repeat command requires 2 args // For these, the first arg is required, second arg is present if it is not a string in_list(commands[index], one_or_two_arg) && len(commands)>index+2 && !is_string(commands[index+2]) ? 3 : is_string(commands[index+1])? 1 : // If 2nd item is a string it's must be a new command 2; // Otherwise we have command and arg function _turtle(commands, state, full_state, index=0) = index < len(commands) ? _turtle(commands, _turtle_command(commands[index],commands[index+1],commands[index+2],state,index), full_state, index+_turtle_command_len(commands,index) ) : ( full_state ? state : state[0] ); // Turtle state: state = [path, step_vector, default angle, default arcsteps] function _turtle_command(command, parm, parm2, state, index) = command == "repeat"? assert(is_num(parm),str("\"repeat\" command requires a numeric repeat count at index ",index)) assert(is_list(parm2),str("\"repeat\" command requires a command list parameter at index ",index)) _turtle_repeat(parm2, state, true, parm) : let( path = 0, step=1, angle=2, arcsteps=3, parm = !is_string(parm) ? parm : undef, parm2 = !is_string(parm2) ? parm2 : undef, needvec = ["jump", "xymove"], neednum = ["untilx","untily","xjump","yjump","angle","length","scale","addlength"], needeither = ["setdir"], chvec = !in_list(command,needvec) || is_vector(parm,2), chnum = !in_list(command,neednum) || is_num(parm), vec_or_num = !in_list(command,needeither) || (is_num(parm) || is_vector(parm,2)), lastpt = last(state[path]) ) assert(chvec,str("\"",command,"\" requires a vector parameter at index ",index)) assert(chnum,str("\"",command,"\" requires a numeric parameter at index ",index)) assert(vec_or_num,str("\"",command,"\" requires a vector or numeric parameter at index ",index)) command=="move" ? list_set(state, path, concat(state[path],[default(parm,1)*state[step]+lastpt])) : command=="untilx" ? ( let( int = line_intersection([lastpt,lastpt+state[step]], [[parm,0],[parm,1]]), xgood = sign(state[step].x) == sign(int.x-lastpt.x) ) assert(xgood,str("\"untilx\" never reaches desired goal at index ",index)) list_set(state,path,concat(state[path],[int])) ) : command=="untily" ? ( let( int = line_intersection([lastpt,lastpt+state[step]], [[0,parm],[1,parm]]), ygood = is_def(int) && sign(state[step].y) == sign(int.y-lastpt.y) ) assert(ygood,str("\"untily\" never reaches desired goal at index ",index)) list_set(state,path,concat(state[path],[int])) ) : command=="xmove" ? list_set(state, path, concat(state[path],[default(parm,1)*norm(state[step])*[1,0]+lastpt])): command=="ymove" ? list_set(state, path, concat(state[path],[default(parm,1)*norm(state[step])*[0,1]+lastpt])): command=="xymove" ? list_set(state, path, concat(state[path], [lastpt+parm])): command=="jump" ? list_set(state, path, concat(state[path],[parm])): command=="xjump" ? list_set(state, path, concat(state[path],[[parm,lastpt.y]])): command=="yjump" ? list_set(state, path, concat(state[path],[[lastpt.x,parm]])): command=="turn" || command=="left" ? list_set(state, step, rot(default(parm,state[angle]),p=state[step])) : command=="right" ? list_set(state, step, rot(-default(parm,state[angle]),p=state[step])) : command=="angle" ? list_set(state, angle, parm) : command=="setdir" ? ( is_vector(parm) ? list_set(state, step, norm(state[step]) * unit(parm)) : list_set(state, step, norm(state[step]) * [cos(parm),sin(parm)]) ) : command=="length" ? list_set(state, step, parm*unit(state[step])) : command=="scale" ? list_set(state, step, parm*state[step]) : command=="addlength" ? list_set(state, step, state[step]+unit(state[step])*parm) : command=="arcsteps" ? list_set(state, arcsteps, parm) : command=="arcleft" || command=="arcright" ? assert(is_num(parm),str("\"",command,"\" command requires a numeric radius value at index ",index)) let( myangle = default(parm2,state[angle]), lrsign = command=="arcleft" ? 1 : -1, radius = parm*sign(myangle), center = lastpt + lrsign*radius*line_normal([0,0],state[step]), steps = state[arcsteps]==0 ? segs(abs(radius)) : state[arcsteps], arcpath = myangle == 0 || radius == 0 ? [] : arc( steps, points = [ lastpt, rot(cp=center, p=lastpt, a=sign(parm)*lrsign*myangle/2), rot(cp=center, p=lastpt, a=sign(parm)*lrsign*myangle) ] ) ) list_set( state, [path,step], [ concat(state[path], list_tail(arcpath)), rot(lrsign * myangle,p=state[step]) ] ) : command=="arcleftto" || command=="arcrightto" ? assert(is_num(parm),str("\"",command,"\" command requires a numeric radius value at index ",index)) assert(is_num(parm2),str("\"",command,"\" command requires a numeric angle value at index ",index)) let( radius = parm, lrsign = command=="arcleftto" ? 1 : -1, center = lastpt + lrsign*radius*line_normal([0,0],state[step]), steps = state[arcsteps]==0 ? segs(abs(radius)) : state[arcsteps], start_angle = posmod(atan2(state[step].y, state[step].x),360), end_angle = posmod(parm2,360), delta_angle = -start_angle + (lrsign * end_angle < lrsign*start_angle ? end_angle+lrsign*360 : end_angle), arcpath = delta_angle == 0 || radius==0 ? [] : arc( steps, points = [ lastpt, rot(cp=center, p=lastpt, a=sign(radius)*delta_angle/2), rot(cp=center, p=lastpt, a=sign(radius)*delta_angle) ] ) ) list_set( state, [path,step], [ concat(state[path], list_tail(arcpath)), rot(delta_angle,p=state[step]) ] ) : assert(false,str("Unknown turtle command \"",command,"\" at index",index)) []; // Section: Debugging polygons // Module: debug_polygon() // Usage: // debug_polygon(points, paths, [vertices=], [edges=], [convexity=], [size=]); // Description: // A drop-in replacement for `polygon()` that renders and labels the path points and // edges. The start of each path is marked with a blue circle and the end with a pink diamond. // You can suppress the display of vertex or edge labeling using the `vertices` and `edges` arguments. // Arguments: // points = The array of 2D polygon vertices. // paths = The path connections between the vertices. // --- // vertices = if true display vertex labels and start/end markers. Default: true // edges = if true display edge labels. Default: true // convexity = The max number of walls a ray can pass through the given polygon paths. // size = The base size of the line and labels. // Example(Big2D): // debug_polygon( // points=concat( // regular_ngon(or=10, n=8), // regular_ngon(or=8, n=8) // ), // paths=[ // [for (i=[0:7]) i], // [for (i=[15:-1:8]) i] // ] // ); module debug_polygon(points, paths, vertices=true, edges=true, convexity=2, size=1) { paths = is_undef(paths)? [count(points)] : is_num(paths[0])? [paths] : paths; echo(points=points); echo(paths=paths); linear_extrude(height=0.01, convexity=convexity, center=true) { polygon(points=points, paths=paths, convexity=convexity); } dups = vector_search(points, EPSILON, points); if (vertices) color("red") { for (ind=dups){ numstr = str_join([for(i=ind) str(i)],","); up(0.2) { translate(points[ind[0]]) { linear_extrude(height=0.1, convexity=10, center=true) { text(text=numstr, size=size, halign="center", valign="center"); } } } } } if (edges) for (j = [0:1:len(paths)-1]) { path = paths[j]; if (vertices){ translate(points[path[0]]) { color("cyan") up(0.1) cylinder(d=size*1.5, h=0.01, center=false, $fn=12); } translate(points[path[len(path)-1]]) { color("pink") up(0.11) cylinder(d=size*1.5, h=0.01, center=false, $fn=4); } } for (i = [0:1:len(path)-1]) { midpt = (points[path[i]] + points[path[(i+1)%len(path)]])/2; color("blue") { up(0.2) { translate(midpt) { linear_extrude(height=0.1, convexity=10, center=true) { text(text=str(chr(65+j),i), size=size/2, halign="center", valign="center"); } } } } } } } // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap