////////////////////////////////////////////////////////////////////// // LibFile: arrays.scad // List and Array manipulation functions. // To use, add the following lines to the beginning of your file: // ``` // use // ``` ////////////////////////////////////////////////////////////////////// // Section: Terminology // - **List**: An ordered collection of zero or more items. ie: `["a", "b", "c"]` // - **Vector**: A list of numbers. ie: `[4, 5, 6]` // - **Array**: A nested list of lists, or list of lists of lists, or deeper. ie: `[[2,3], [4,5], [6,7]]` // - **Dimension**: The depth of nesting of lists in an array. A List is 1D. A list of lists is 2D. etc. // - **Set**: A list of unique items. // Section: List Query Operations // Function: select() // Description: // Returns a portion of a list, wrapping around past the beginning, if ends) arr[i]]; // Function: in_list() // Description: Returns true if value `x` is in list `l`. // Arguments: // x = The value to search for. // l = The list to search. // idx = If given, searches the given subindexes for matches for `x`. // Example: // in_list("bar", ["foo", "bar", "baz"]); // Returns true. // in_list("bee", ["foo", "bar", "baz"]); // Returns false. // in_list("bar", [[2,"foo"], [4,"bar"], [3,"baz"]], idx=1); // Returns true. function in_list(x,l,idx=undef) = search([x], l, num_returns_per_match=1, index_col_num=idx) != [[]]; // Function: min_index() // Usage: // min_index(vals,[all]); // Description: // Returns the index of the first occurrence of the minimum value in the given list. // If `all` is true then returns a list of all indices where the minimum value occurs. // Arguments: // vals = vector of values // all = set to true to return indices of all occurences of the minimum. Default: false // Example: // min_index([5,3,9,6,2,7,8,2,1]); // Returns: 4 // min_index([5,3,9,6,2,7,8,2,1],all=true); // Returns: [4,7] function min_index(vals, all=false) = all ? search(min(vals),vals,0) : search(min(vals), vals)[0]; // Function: max_index() // Usage: // max_index(vals,[all]); // Description: // Returns the index of the first occurrence of the maximum value in the given list. // If `all` is true then returns a list of all indices where the maximum value occurs. // Arguments: // vals = vector of values // all = set to true to return indices of all occurences of the maximum. Default: false // Example: // max_index([5,3,9,6,2,7,8,9,1]); // Returns: 2 // max_index([5,3,9,6,2,7,8,9,1],all=true); // Returns: [2,7] function max_index(vals, all=false) = all ? search(max(vals),vals,0) : search(max(vals), vals)[0]; // Function: list_increasing() // Usage: // list_increasing(list) // Description: // Returns true if the list is (non-strictly) increasing // Example: // list_increasing([1,2,3,4]); // Returns: true // list_increasing([1,3,2,4]); // Returns: false // list_increasing([4,3,2,1]); // Returns: false function list_increasing(list) = assert(is_list(list)||is_string(list)) len([for (p=pair(list)) if(p.x>p.y) true])==0; // Function: list_decreasing() // Usage: // list_decreasing(list) // Description: // Returns true if the list is (non-strictly) decreasing // Example: // list_decreasing([1,2,3,4]); // Returns: false // list_decreasing([4,2,3,1]); // Returns: false // list_decreasing([4,3,2,1]); // Returns: true function list_decreasing(list) = assert(is_list(list)||is_string(list)) len([for (p=pair(list)) if(p.x=len(n))? val : [for (j=[1:1:n[i]]) repeat(val, n, i+1)]; // Function: list_range() // Usage: // list_range(n, [s], [e]) // list_range(n, [s], [step]) // list_range(e, [step]) // list_range(s, e, [step]) // Description: // Returns a list, counting up from starting value `s`, by `step` increments, // until either `n` values are in the list, or it reaches the end value `e`. // If both `n` and `e` are given, returns `n` values evenly spread fron `s` // to `e`, and `step` is ignored. // Arguments: // n = Desired number of values in returned list, if given. // s = Starting value. Default: 0 // e = Ending value to stop at, if given. // step = Amount to increment each value. Default: 1 // Example: // list_range(4); // Returns [0,1,2,3] // list_range(n=4, step=2); // Returns [0,2,4,6] // list_range(n=4, s=3, step=3); // Returns [3,6,9,12] // list_range(n=5, s=0, e=10); // Returns [0, 2.5, 5, 7.5, 10] // list_range(e=3); // Returns [0,1,2,3] // list_range(e=6, step=2); // Returns [0,2,4,6] // list_range(s=3, e=5); // Returns [3,4,5] // list_range(s=3, e=8, step=2); // Returns [3,5,7] // list_range(s=4, e=8, step=2); // Returns [4,6,8] // list_range(n=4, s=[3,4], step=[2,3]); // Returns [[3,4], [5,7], [7,10], [9,13]] function list_range(n=undef, s=0, e=undef, step=undef) = (n!=undef && e!=undef)? ( assert(is_undef(n) || is_undef(e) || is_undef(step), "At most 2 of n, e, and step can be given.") [for (i=[0:1:n-1]) s+(e-s)*i/(n-1)] ) : let(step = default(step,1)) (n!=undef)? [for (i=[0:1:n-1]) let(v=s+step*i) v] : (e!=undef)? [for (v=[s:step:e]) v] : assert(e!=undef||n!=undef, "Must supply one of `n` or `e`."); // Section: List Manipulation // Function: reverse() // Description: Reverses a list/array. // Arguments: // list = The list to reverse. // Example: // reverse([3,4,5,6]); // Returns [6,5,4,3] function reverse(list) = assert(is_list(list)||is_string(list)) [ for (i = [len(list)-1 : -1 : 0]) list[i] ]; // Function: list_rotate() // Usage: // rlist = list_rotate(list,n); // Description: // Rotates the contents of a list by `n` positions left. // If `n` is negative, then the rotation is `abs(n)` positions to the right. // Arguments: // list = The list to rotate. // n = The number of positions to rotate by. If negative, rotated to the right. Positive rotates to the left. Default: 1 // Example: // l1 = list_rotate([1,2,3,4,5],-2); // Returns: [4,5,1,2,3] // l2 = list_rotate([1,2,3,4,5],-1); // Returns: [5,1,2,3,4] // l3 = list_rotate([1,2,3,4,5],0); // Returns: [1,2,3,4,5] // l4 = list_rotate([1,2,3,4,5],1); // Returns: [2,3,4,5,1] // l5 = list_rotate([1,2,3,4,5],2); // Returns: [3,4,5,1,2] // l6 = list_rotate([1,2,3,4,5],3); // Returns: [4,5,1,2,3] // l7 = list_rotate([1,2,3,4,5],4); // Returns: [5,1,2,3,4] // l8 = list_rotate([1,2,3,4,5],5); // Returns: [1,2,3,4,5] // l9 = list_rotate([1,2,3,4,5],6); // Returns: [2,3,4,5,1] function list_rotate(list,n=1) = assert(is_list(list)||is_string(list)) assert(is_num(n)) select(list,n,n+len(list)-1); // Function: deduplicate() // Usage: // deduplicate(list); // Description: // Removes consecutive duplicate items in a list. // This is different from `unique()` in that the list is *not* sorted. // Arguments: // list = The list to deduplicate. // closed = If true, drops trailing items if they match the first list item. // eps = The maximum difference to allow between numbers or vectors. // Examples: // deduplicate([8,3,4,4,4,8,2,3,3,8,8]); // Returns: [8,3,4,8,2,3,8] // deduplicate(closed=true, [8,3,4,4,4,8,2,3,3,8,8]); // Returns: [8,3,4,8,2,3] // deduplicate("Hello"); // Returns: ["H","e","l","o"] // deduplicate([[3,4],[7,2],[7,1.99],[1,4]],eps=0.1); // Returns: [[3,4],[7,2],[1,4]] function deduplicate(list, closed=false, eps=EPSILON) = assert(is_list(list)||is_string(list)) let( l = len(list), end = l-(closed?0:1) ) (is_num(list[0]) || is_vector(list[0]))? [for (i=[0:1:l-1]) if (i==end || !approx(list[i], list[(i+1)%l], eps)) list[i]] : [for (i=[0:1:l-1]) if (i==end || list[i] != list[(i+1)%l]) list[i]]; // Function: deduplicate_indexed() // Usage: // new_idxs = deduplicate_indexed(list, indices, [closed], [eps]); // Description: // Given a list, and indices into it, removes consecutive indices that // index to the same values in the list. // Arguments: // list = The list that the indices index into. // indices = The list of indices to deduplicate. // closed = If true, drops trailing indices if what they index matches what the first index indexes. // eps = The maximum difference to allow between numbers or vectors. // Examples: // deduplicate_indexed([8,6,4,6,3], [1,4,3,1,2,2,0,1]); // Returns: [1,4,3,2,0,1] // deduplicate_indexed([8,6,4,6,3], [1,4,3,1,2,2,0,1], closed=true); // Returns: [1,4,3,2,0] function deduplicate_indexed(list, indices, closed=false, eps=EPSILON) = assert(is_list(list)||is_string(list)) assert(indices==[] || is_vector(indices)) indices==[]? [] : let( l = len(indices), end = l-(closed?0:1) ) [ for (i = [0:1:l-1]) let( a = list[indices[i]], b = list[indices[(i+1)%l]], eq = (a == b)? true : (a*0 != b*0)? false : is_num(a)? approx(a, b, eps=eps) : is_vector(a)? approx(a, b, eps=eps) : false ) if (i==end || !eq) indices[i] ]; // Function: repeat_entries() // Usage: // newlist = repeat_entries(list, N) // Description: // Takes a list as input and duplicates some of its entries to produce a list // with length `N`. If the requested `N` is not a multiple of the list length then // the entries will be duplicated as uniformly as possible. You can also set `N` to a vector, // in which case len(N) must equal len(list) and the output repeats the ith entry N[i] times. // In either case, the result will be a list of length `N`. The `exact` option requires // that the final length is exactly as requested. If you set it to `false` then the // algorithm will favor uniformity and the output list may have a different number of // entries due to rounding. // // When applied to a path the output path is the same geometrical shape but has some vertices // repeated. This can be useful when you need to align paths with a different number of points. // (See also subdivide_path for a different way to do that.) // Arguments: // list = list whose entries will be repeated // N = scalar total number of points desired or vector requesting N[i] copies of vertex i. // exact = if true return exactly the requested number of points, possibly sacrificing uniformity. If false, return uniform points that may not match the number of points requested. Default: True // Examples: // list = [0,1,2,3]; // echo(repeat_entries(list, 6)); // Ouputs [0,0,1,2,2,3] // echo(repeat_entries(list, 6, exact=false)); // Ouputs [0,0,1,1,2,2,3,3] // echo(repeat_entries(list, [1,1,2,1], exact=false)); // Ouputs [0,1,2,2,3] function repeat_entries(list, N, exact = true) = assert(is_list(list)) assert((is_num(N) && N>0) || is_vector(N),"Parameter N to repeat_entries must be postive number or vector") let( length = len(list), reps_guess = is_list(N)? assert(len(N)==len(list), "Vector parameter N to repeat_entries has the wrong length") N : repeat(N/length,length), reps = exact? _sum_preserving_round(reps_guess) : [for (val=reps_guess) round(val)] ) [for(i=[0:length-1]) each repeat(list[i],reps[i])]; // Function: list_set() // Usage: // list_set(list, indices, values, [dflt], [minlen]) // Description: // Takes the input list and returns a new list such that `list[indices[i]] = values[i]` for all of // the (index,value) pairs supplied. If you supply `indices` that are beyond the length of the list // then the list is extended and filled in with the `dflt` value. If you set `minlen` then the list is // lengthed, if necessary, by padding with `dflt` to that length. The `indices` list can be in any // order but run time will be (much) faster for long lists if it is already sorted. Reptitions are // not allowed. If `indices` is given as a non-list scalar, then that index of the given `list` will // be set to the value of `values`. // Arguments: // list = List to set items in. Default: [] // indices = List of indices into `list` to set. // values = List of values to set. // dflt = Default value to store in sparse skipped indices. // minlen = Minimum length to expand list to. // Examples: // list_set([2,3,4,5], 2, 21); // Returns: [2,3,21,5] // list_set([2,3,4,5], [1,3], [81,47]); // Returns: [2,81,4,47] function list_set(list=[],indices,values,dflt=0,minlen=0) = assert(is_list(list)||is_string(list)) !is_list(indices)? ( (is_num(indices) && indices=len(list) ? dflt : list[j]], [values[sortind[0]]], [for(i=[1:1:len(sortind)-1]) each assert(indices[sortind[i]]!=indices[sortind[i-1]],"Repeated index") concat( [for(j=[1+indices[sortind[i-1]]:1:indices[sortind[i]]-1]) j>=len(list) ? dflt : list[j]], [values[sortind[i]]] ) ], slice(list,1+lastind, len(list)), repeat(dflt, minlen-lastind-1) ); // Function: list_insert() // Usage: // list_insert(list, pos, elements); // Description: // Insert `elements` into `list` before position `pos`. // Example: // list_insert([3,6,9,12],1,5); // Returns [3,5,6,9,12] // list_insert([3,6,9,12],[1,3],[5,11]); // Returns [3,5,6,9,11,12] function list_insert(list, pos, elements, _i=0) = assert(is_list(list)||is_string(list)) is_list(pos)? ( assert(len(pos)==len(elements)) let( idxs = sortidx(pos), lastidx = pos[idxs[len(idxs)-1]] ) concat( [ for(i=idx(idxs)) each concat( assert(pos[idxs[i]]<=len(list), "Indices in pos must be <= len(list)") [for (j=[(i==0?0:pos[idxs[i-1]]):1:pos[idxs[i]]-1]) list[j]], [elements[idxs[i]]] ) ], [for (j=[lastidx:1:len(list)-1]) list[j]] ) ) : ( assert(pos<=len(list), "Indices in pos must be <= len(list)") concat( slice(list,0,pos), elements, (poslength)? list_trim(v,length) : list_pad(v,length,fill); // Section: List Shuffling and Sorting // Function: shuffle() // Description: // Shuffles the input list into random order. function shuffle(list) = assert(is_list(list)||is_string(list)) len(list)<=1 ? list : let ( rval = rands(0,1,len(list)), left = [for (i=[0:len(list)-1]) if (rval[i]< 0.5) list[i]], right = [for (i=[0:len(list)-1]) if (rval[i]>=0.5) list[i]] ) concat(shuffle(left), shuffle(right)); // Sort a vector of scalar values function _sort_scalars(arr) = len(arr)<=1 ? arr : let( pivot = arr[floor(len(arr)/2)], lesser = [ for (y = arr) if (y < pivot) y ], equal = [ for (y = arr) if (y == pivot) y ], greater = [ for (y = arr) if (y > pivot) y ] ) concat( _sort_scalars(lesser), equal, _sort_scalars(greater) ); // Sort a vector of vectors based on the first entry only of each vector function _sort_vectors1(arr) = len(arr)<=1 ? arr : !(len(arr)>0) ? [] : let( pivot = arr[floor(len(arr)/2)], lesser = [ for (y = arr) if (y[0] < pivot[0]) y ], equal = [ for (y = arr) if (y[0] == pivot[0]) y ], greater = [ for (y = arr) if (y[0] > pivot[0]) y ] ) concat( _sort_vectors1(lesser), equal, _sort_vectors1(greater) ); // Sort a vector of vectors based on the first two entries of each vector // Lexicographic order, remaining entries of vector ignored function _sort_vectors2(arr) = len(arr)<=1 ? arr : !(len(arr)>0) ? [] : let( pivot = arr[floor(len(arr)/2)], lesser = [ for (y = arr) if (y[0] < pivot[0] || (y[0]==pivot[0] && y[1] pivot[0] || (y[0]==pivot[0] && y[1]>pivot[1])) y ] ) concat( _sort_vectors2(lesser), equal, _sort_vectors2(greater) ); // Sort a vector of vectors based on the first three entries of each vector // Lexicographic order, remaining entries of vector ignored function _sort_vectors3(arr) = len(arr)<=1 ? arr : let( pivot = arr[floor(len(arr)/2)], lesser = [ for (y = arr) if ( y[0] < pivot[0] || ( y[0]==pivot[0] && ( y[1] pivot[0] || ( y[0]==pivot[0] && ( y[1]>pivot[1] || ( y[1]==pivot[1] && y[2]>pivot[2] ) ) ) ) y ] ) concat( _sort_vectors3(lesser), equal, _sort_vectors3(greater) ); // Sort a vector of vectors based on the first four entries of each vector // Lexicographic order, remaining entries of vector ignored function _sort_vectors4(arr) = len(arr)<=1 ? arr : let( pivot = arr[floor(len(arr)/2)], lesser = [ for (y = arr) if ( y[0] < pivot[0] || ( y[0]==pivot[0] && ( y[1] pivot[0] || ( y[0]==pivot[0] && ( y[1]>pivot[1] || ( y[1]==pivot[1] && ( y[2]>pivot[2] || ( y[2]==pivot[2] && y[3]>pivot[3] ) ) ) ) ) ) y ] ) concat( _sort_vectors4(lesser), equal, _sort_vectors4(greater) ); function _sort_general(arr, idx=undef) = (len(arr)<=1) ? arr : let( pivot = arr[floor(len(arr)/2)], pivotval = idx==undef? pivot : [for (i=idx) pivot[i]], compare = [ for (entry = arr) let( val = idx==undef? entry : [for (i=idx) entry[i]], cmp = compare_vals(val, pivotval) ) cmp ], lesser = [ for (i = [0:1:len(arr)-1]) if (compare[i] < 0) arr[i] ], equal = [ for (i = [0:1:len(arr)-1]) if (compare[i] ==0) arr[i] ], greater = [ for (i = [0:1:len(arr)-1]) if (compare[i] > 0) arr[i] ] ) concat(_sort_general(lesser,idx), equal, _sort_general(greater,idx)); // Function: sort() // Usage: // sort(list, [idx]) // Description: // Sorts the given list using `compare_vals()`, sorting in lexicographic order, with types ordered according to // `undef < boolean < number < string < list`. Comparison of lists is recursive. // If the list is a list of vectors whose length is from 1 to 4 and the `idx` parameter is not passed, then // `sort` uses a much more efficient method for comparisons and will run much faster. In this case, all entries // in the data are compared using the native comparison operator, so comparisons between types will fail. // Arguments: // list = The list to sort. // idx = If given, do the comparison based just on the specified index, range or list of indices. // Example: // l = [45,2,16,37,8,3,9,23,89,12,34]; // sorted = sort(l); // Returns [2,3,8,9,12,16,23,34,37,45,89] function sort(list, idx=undef) = !is_list(list) || len(list)<=1 ? list : is_def(idx) ? _sort_general(list,idx) : let(size = array_dim(list)) len(size)==1 ? _sort_scalars(list) : len(size)==2 && size[1] <=4 ? ( size[1]==0 ? list : size[1]==1 ? _sort_vectors1(list) : size[1]==2 ? _sort_vectors2(list) : size[1]==3 ? _sort_vectors3(list) : /*size[1]==4*/ _sort_vectors4(list) ) : _sort_general(list); // Function: sortidx() // Description: // Given a list, calculates the sort order of the list, and returns // a list of indexes into the original list in that sorted order. // If you iterate the returned list in order, and use the list items // to index into the original list, you will be iterating the original // values in sorted order. // Example: // lst = ["d","b","e","c"]; // idxs = sortidx(lst); // Returns: [1,3,0,2] // ordered = select(lst, idxs); // Returns: ["b", "c", "d", "e"] // Example: // lst = [ // ["foo", 88, [0,0,1], false], // ["bar", 90, [0,1,0], true], // ["baz", 89, [1,0,0], false], // ["qux", 23, [1,1,1], true] // ]; // idxs1 = sortidx(lst, idx=1); // Returns: [3,0,2,1] // idxs2 = sortidx(lst, idx=0); // Returns: [1,2,0,3] // idxs3 = sortidx(lst, idx=[1,3]); // Returns: [3,0,2,1] function sortidx(list, idx=undef) = list==[] ? [] : let( size = array_dim(list), aug = is_undef(idx) && (len(size) == 1 || (len(size) == 2 && size[1]<=4))? zip(list, list_range(len(list))) : enumerate(list,idx=idx) ) is_undef(idx) && len(size) == 1? subindex(_sort_vectors1(aug),1) : is_undef(idx) && len(size) == 2 && size[1] <=4? ( size[1]==0? list_range(len(arr)) : size[1]==1? subindex(_sort_vectors1(aug),1) : size[1]==2? subindex(_sort_vectors2(aug),2) : size[1]==3? subindex(_sort_vectors3(aug),3) : /*size[1]==4*/ subindex(_sort_vectors4(aug),4) ) : // general case subindex(_sort_general(aug, idx=list_range(s=1,n=len(aug)-1)), 0); // Function: unique() // Usage: // unique(arr); // Description: // Returns a sorted list with all repeated items removed. // Arguments: // arr = The list to uniquify. function unique(arr) = assert(is_list(arr)||is_string(arr)) len(arr)<=1? arr : let( sorted = sort(arr) ) [ for (i=[0:1:len(sorted)-1]) if (i==0 || (sorted[i] != sorted[i-1])) sorted[i] ]; // Function: unique_count() // Usage: // unique_count(arr); // Description: // Returns `[sorted,counts]` where `sorted` is a sorted list of the unique items in `arr` and `counts` is a list such // that `count[i]` gives the number of times that `sorted[i]` appears in `arr`. // Arguments: // arr = The list to analyze. function unique_count(arr) = assert(is_list(arr) || is_string(arr)) arr == [] ? [[],[]] : let( arr=sort(arr) ) let(ind = [0,for(i=[1:1:len(arr)-1]) if (arr[i]!=arr[i-1]) i]) [select(arr,ind), deltas(concat(ind,[len(arr)]))]; // Section: List Iteration Helpers // Function: idx() // Usage: // i = idx(list); // for(i=idx(list)) ... // Description: // Returns the range of indexes for the given list. // Arguments: // list = The list to returns the index range of. // step = The step size to stride through the list. Default: 1 // end = The delta from the end of the list. Default: -1 // start = The starting index. Default: 0 // Example(2D): // colors = ["red", "green", "blue"]; // for (i=idx(colors)) right(20*i) color(colors[i]) circle(d=10); function idx(list, step=1, end=-1,start=0) = assert(is_list(list)||is_string(list)) [start : step : len(list)+end]; // Function: enumerate() // Description: // Returns a list, with each item of the given list `l` numbered in a sublist. // Something like: `[[0,l[0]], [1,l[1]], [2,l[2]], ...]` // Arguments: // l = List to enumerate. // idx = If given, enumerates just the given subindex items of `l`. // Example: // enumerate(["a","b","c"]); // Returns: [[0,"a"], [1,"b"], [2,"c"]] // enumerate([[88,"a"],[76,"b"],[21,"c"]], idx=1); // Returns: [[0,"a"], [1,"b"], [2,"c"]] // enumerate([["cat","a",12],["dog","b",10],["log","c",14]], idx=[1:2]); // Returns: [[0,"a",12], [1,"b",10], [2,"c",14]] // Example(2D): // colors = ["red", "green", "blue"]; // for (p=enumerate(colors)) right(20*p[0]) color(p[1]) circle(d=10); function enumerate(l,idx=undef) = assert(is_list(l)||is_string(list)) (idx==undef)? [for (i=[0:1:len(l)-1]) [i,l[i]]] : [for (i=[0:1:len(l)-1]) concat([i], [for (j=idx) l[i][j]])]; // Function: force_list() // Usage: // list = force_list(value) // Description: // If value is a list returns value, otherwise returns [value]. Makes it easy to // treat a scalar input consistently as a singleton list along with list inputs. function force_list(value) = is_list(value) ? value : [value]; // Function: pair() // Usage: // pair(v) // Description: // Takes a list, and returns a list of adjacent pairs from it. // Example: // l = ["A","B","C",D"]; // echo([for (p=pair(l)) str(p.y,p.x)]); // Outputs: ["BA", "CB", "DC"] function pair(v) = assert(is_list(v)||is_string(v)) [for (i=[0:1:len(v)-2]) [v[i],v[i+1]]]; // Function: pair_wrap() // Usage: // pair_wrap(v) // Description: // Takes a list, and returns a list of adjacent pairss from it, wrapping around from the end to the start of the list. // Example: // l = ["A","B","C","D"]; // echo([for (p=pair_wrap(l)) str(p.y,p.x)]); // Outputs: ["BA", "CB", "DC", "AD"] function pair_wrap(v) = assert(is_list(v)||is_string(v)) [for (i=[0:1:len(v)-1]) [v[i],v[(i+1)%len(v)]]]; // Function: triplet() // Usage: // triplet(v) // Description: // Takes a list, and returns a list of adjacent triplets from it. // Example: // l = ["A","B","C","D","E"]; // echo([for (p=triplet(l)) str(p.z,p.y,p.x)]); // Outputs: ["CBA", "DCB", "EDC"] function triplet(v) = assert(is_list(v)||is_string(v)) [for (i=[0:1:len(v)-3]) [v[i],v[i+1],v[i+2]]]; // Function: triplet_wrap() // Usage: // triplet_wrap(v) // Description: // Takes a list, and returns a list of adjacent triplets from it, wrapping around from the end to the start of the list. // Example: // l = ["A","B","C","D"]; // echo([for (p=triplet_wrap(l)) str(p.z,p.y,p.x)]); // Outputs: ["CBA", "DCB", "ADC", "BAD"] function triplet_wrap(v) = assert(is_list(v)||is_string(v)) [for (i=[0:1:len(v)-1]) [v[i],v[(i+1)%len(v)],v[(i+2)%len(v)]]]; // Function: permute() // Usage: // list = permute(l, [n]); // Description: // Returns an ordered list of every unique permutation of `n` items out of the given list `l`. // For the list `[1,2,3,4]`, with `n=2`, this will return `[[1,2], [1,3], [1,4], [2,3], [2,4], [3,4]]`. // For the list `[1,2,3,4]`, with `n=3`, this will return `[[1,2,3], [1,2,4], [1,3,4], [2,3,4]]`. // Arguments: // l = The list to provide permutations for. // n = The number of items in each permutation. Default: 2 // Example: // pairs = permute([3,4,5,6]); // Returns: [[3,4],[3,5],[3,6],[4,5],[4,6],[5,6]] // triplets = permute([3,4,5,6],n=3); // Returns: [[3,4,5],[3,4,6],[3,5,6],[4,5,6]] // Example(2D): // for (p=permute(regular_ngon(n=7,d=100))) stroke(p); function permute(l,n=2,_s=0) = assert(is_list(l)) assert(len(l)-_s >= n) n==1? [for (i=[_s:1:len(l)-1]) [l[i]]] : [for (i=[_s:1:len(l)-n], p=permute(l,n=n-1,_s=i+1)) concat([l[i]], p)]; // Section: Set Manipulation // Function: set_union() // Usage: // s = set_union(a, b, [get_indices]); // Description: // Given two sets (lists with unique items), returns the set of unique items that are in either `a` or `b`. // If `get_indices` is true, a list of indices into the new union set are returned for each item in `b`, // in addition to returning the new union set. In this case, a 2-item list is returned, `[INDICES, NEWSET]`, // where INDICES is the list of indices for items in `b`, and NEWSET is the new union set. // Arguments: // a = One of the two sets to merge. // b = The other of the two sets to merge. // get_indices = If true, indices into the new union set are also returned for each item in `b`. Returns `[INDICES, NEWSET]`. Default: false // Example: // set_a = [2,3,5,7,11]; // set_b = [1,2,3,5,8]; // set_u = set_union(set_a, set_b); // // set_u now equals [2,3,5,7,11,1,8] // set_v = set_union(set_a, set_b, get_indices=true); // // set_v now equals [[5,0,1,2,6], [2,3,5,7,11,1,8]] function set_union(a, b, get_indices=false) = let( found = search(b, a, num_returns_per_match=1), nset = concat(a, [ for (i=idx(found)) if(found[i]==[]) b[i] ]) ) !get_indices? nset : let( nidx = cumsum([len(a), for (i=found) (i==[])? 1 : 0]), idxs = [for (i=idx(found)) (found[i]==[])? nidx[i] : found[i]] ) [idxs, nset]; // Function: set_difference() // Usage: // s = set_difference(a, b); // Description: // Given two sets (lists with unique items), returns the set of items that are in `a`, but not `b`. // Arguments: // a = The starting set. // b = The set of items to remove from set `a`. // Example: // set_a = [2,3,5,7,11]; // set_b = [1,2,3,5,8]; // set_d = set_difference(set_a, set_b); // // set_d now equals [7,11] function set_difference(a, b) = let( found = search(a, b, num_returns_per_match=1) ) [ for (i=idx(a)) if(found[i]==[]) a[i] ]; // Function: set_intersection() // Usage: // s = set_intersection(a, b); // Description: // Given two sets (lists with unique items), returns the set of items that are in both sets. // Arguments: // a = The starting set. // b = The set of items to intersect with set `a`. // Example: // set_a = [2,3,5,7,11]; // set_b = [1,2,3,5,8]; // set_i = set_intersection(set_a, set_b); // // set_i now equals [2,3,5] function set_intersection(a, b) = let( found = search(a, b, num_returns_per_match=1) ) [ for (i=idx(a)) if(found[i]!=[]) a[i] ]; // Section: Array Manipulation // Function: subindex() // Description: // For each array item, return the indexed subitem. // Returns a list of the values of each vector at the specfied // index list or range. If the index list or range has // only one entry the output list is flattened. // Arguments: // v = The given list of lists. // idx = The index, list of indices, or range of indices to fetch. // Example: // v = [[[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]; // subindex(v,2); // Returns [3, 7, 11, 15] // subindex(v,[2,1]); // Returns [[3, 2], [7, 6], [11, 10], [15, 14]] // subindex(v,[1:3]); // Returns [[2, 3, 4], [6, 7, 8], [10, 11, 12], [14, 15, 16]] function subindex(v, idx) = [ for(val=v) let(value=[for(i=idx) val[i]]) len(value)==1 ? value[0] : value ]; // Function: zip() // Usage: // zip(v1, v2, v3, [fit], [fill]); // zip(vecs, [fit], [fill]); // Description: // Zips together corresponding items from two or more lists. // Returns a list of lists, where each sublist contains corresponding // items from each of the input lists. `[[A1, B1, C1], [A2, B2, C2], ...]` // Arguments: // vecs = A list of two or more lists to zipper together. // fit = If `fit=="short"`, the zips together up to the length of the shortest list in vecs. If `fit=="long"`, then pads all lists to the length of the longest, using the value in `fill`. If `fit==false`, then requires all lists to be the same length. Default: false. // fill = The default value to fill in with if one or more lists if short. Default: undef // Example: // v1 = [1,2,3,4]; // v2 = [5,6,7]; // v3 = [8,9,10,11]; // zip(v1,v3); // returns [[1,8], [2,9], [3,10], [4,11]] // zip([v1,v3]); // returns [[1,8], [2,9], [3,10], [4,11]] // zip([v1,v2], fit="short"); // returns [[1,5], [2,6], [3,7]] // zip([v1,v2], fit="long"); // returns [[1,5], [2,6], [3,7], [4,undef]] // zip([v1,v2], fit="long, fill=0); // returns [[1,5], [2,6], [3,7], [4,0]] // zip([v1,v2,v3], fit="long"); // returns [[1,5,8], [2,6,9], [3,7,10], [4,undef,11]] // Example: // v1 = [[1,2,3], [4,5,6], [7,8,9]]; // v2 = [[20,19,18], [17,16,15], [14,13,12]]; // zip(v1,v2); // Returns [[1,2,3,20,19,18], [4,5,6,17,16,15], [7,8,9,14,13,12]] function zip(vecs, v2, v3, fit=false, fill=undef) = (v3!=undef)? zip([vecs,v2,v3], fit=fit, fill=fill) : (v2!=undef)? zip([vecs,v2], fit=fit, fill=fill) : assert(in_list(fit, [false, "short", "long"])) assert(all([for(v=vecs) is_list(v)]), "One of the inputs to zip is not a list") let( minlen = list_shortest(vecs), maxlen = list_longest(vecs), dummy = (fit==false)? assert(minlen==maxlen, "Input vectors to zip must have the same length") : 0 ) (fit == "long")? [for(i=[0:1:maxlen-1]) [for(v=vecs) for(x=(i len(dimlist))? 0 : dimlist[depth-1] ); // Function: transpose() // Description: Returns the transposition of the given array. // Example: // arr = [ // ["a", "b", "c"], // ["d", "e", "f"], // ["g", "h", "i"] // ]; // t = transpose(arr); // // Returns: // // [ // // ["a", "d", "g"], // // ["b", "e", "h"], // // ["c", "f", "i"], // // ] // Example: // arr = [ // ["a", "b", "c"], // ["d", "e", "f"] // ]; // t = transpose(arr); // // Returns: // // [ // // ["a", "d"], // // ["b", "e"], // // ["c", "f"], // // ] // Example: // transpose([3,4,5]); // Returns: [3,4,5] function transpose(arr) = is_list(arr[0])? [for (i=[0:1:len(arr[0])-1]) [for (j=[0:1:len(arr)-1]) arr[j][i]]] : arr; // vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap