////////////////////////////////////////////////////////////////////// // LibFile: primitives.scad // The basic built-in shapes, reworked to integrate better with // other BOSL2 library shapes and utilities. // To use, add the following lines to the beginning of your file: // ``` // include // ``` ////////////////////////////////////////////////////////////////////// // Section: 2D Primitives // Function&Module: square() // Usage: // square(size, [center], [anchor]) // Description: // When called as a module, creates a 2D square of the given size. // When called as a function, returns a 2D path/list of points for a square/rectangle of the given size. // Arguments: // size = The size of the square to create. If given as a scalar, both X and Y will be the same size. // rounding = The rounding radius for the corners. Default: 0 (no rounding) // chamfer = The chamfer size for the corners. Default: 0 (no chamfer) // center = If given and true, overrides `anchor` to be `CENTER`. If given and false, overrides `anchor` to be `FRONT+LEFT`. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // Example(2D): // square(40); // Example(2D): Centered // square([40,30], center=true); // Example(2D): Anchored // square([40,30], anchor=FRONT); // Example(2D): Spun // square([40,30], anchor=FRONT, spin=30); // Example(2D): Chamferred Rect // square([40,30], chamfer=5, center=true); // Example(2D): Rounded Rect // square([40,30], rounding=5, center=true); // Example(2D): Called as Function // path = square([40,30], chamfer=5, anchor=FRONT, spin=30); // stroke(path, closed=true); // place_copies(path) color("blue") circle(d=2,$fn=8); module square(size=1, rounding=0, chamfer=0, center, anchor=FRONT+LEFT, spin=0) { size = is_num(size)? [size,size] : point2d(size); pts = square(size=size, rounding=rounding, center=false, chamfer=chamfer); orient_and_anchor(point3d(size), UP, anchor, spin=spin, center=center, noncentered=FRONT+LEFT, two_d=true, chain=true) { translate(-size/2) polygon(pts); children(); } } function square(size=1, rounding=0, chamfer=0, center, anchor=FRONT+LEFT, spin=0) = let( anchor = center==true? CENTER : center==false? FRONT+LEFT : anchor, size = is_num(size)? [size,size] : point2d(size), s = size/2, cverts = max(0,floor((segs(rounding)-4)/4)), step = 90/(cverts+1), inset = chamfer>0? assert(size.x>=2*chamfer) assert(size.y>=2*chamfer) [2,2]*chamfer : rounding>0? assert(size.x>=2*rounding) assert(size.y>=2*rounding) [2,2]*rounding : [0,0], is = (size-inset)/2, path = chamfer>0? concat( [[ is.x,- s.y], [-is.x,- s.y]], [[- s.x,-is.y], [- s.x, is.y]], [[-is.x, s.y], [ is.x, s.y]], [[ s.x, is.y], [ s.x,-is.y]] ) : rounding>0? concat( [for (i=[0:1:cverts-1]) let(ang=360-step*(i+1)) [ is.x,-is.y] + polar_to_xy(rounding,ang)], [[ is.x,- s.y], [-is.x,- s.y]], [for (i=[0:1:cverts-1]) let(ang=270-step*(i+1)) [-is.x,-is.y] + polar_to_xy(rounding,ang)], [[- s.x,-is.y], [- s.x, is.y]], [for (i=[0:1:cverts-1]) let(ang=180-step*(i+1)) [-is.x, is.y] + polar_to_xy(rounding,ang)], [[-is.x, s.y], [ is.x, s.y]], [for (i=[0:1:cverts-1]) let(ang= 90-step*(i+1)) [ is.x, is.y] + polar_to_xy(rounding,ang)], [[ s.x, is.y], [ s.x,-is.y]] ) : [[s.x,-s.y], [-s.x,-s.y], [-s.x,s.y], [s.x,s.y]] ) rot(spin, p=move(-vmul(anchor,s), p=path)); // Function&Module: circle() // Usage: // circle(r|d, [anchor]) // Description: // When called as a module, creates a 2D polygon that approximates a circle of the given size. // When called as a function, returns a 2D list of points (path) for a polygon that approximates a circle of the given size. // Arguments: // r = The radius of the circle to create. // d = The diameter of the circle to create. // realign = If true, rotates the polygon that approximates the circle by half of one size. // circum = If true, the polygon that approximates the circle will be upsized slightly to circumscribe the theoretical circle. If false, it inscribes the theoretical circle. Default: false // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // Example(2D): By Radius // circle(r=25); // Example(2D): By Diameter // circle(d=50); // Example(2D): Anchoring // circle(d=50, anchor=FRONT); // Example(2D): Spin // circle(d=50, anchor=FRONT, spin=45); // Example(NORENDER): Called as Function // path = circle(d=50, anchor=FRONT, spin=45); module circle(r, d, realign=false, circum=false, anchor=CENTER, spin=0) { r = get_radius(r=r, d=d, dflt=1); sides = segs(r); rr = circum? r/cos(180/sides) : r; pts = circle(r=rr, realign=realign, $fn=sides); orient_and_anchor([2*rr,2*rr,0], UP, anchor, spin=spin, geometry="cylinder", two_d=true, chain=true) { polygon(pts); children(); } } function circle(r, d, realign=false, circum=false, anchor=CENTER, spin=0) = let( r = get_radius(r=r, d=d, dflt=1), sides = segs(r), offset = realign? 180/sides : 0, rr = r / (circum? cos(180/sides) : 1), pts = [for (i=[0:1:sides-1]) let(a=360-offset-i*360/sides) rr*[cos(a),sin(a)]] ) rot(spin, p=move(-normalize(anchor)*rr, p=pts)); // Section: Primitive Shapes // Module: cube() // // Description: // Creates a cube object, with support for anchoring and attachments. // This is a drop-in replacement for the built-in `cube()` module. // // Arguments: // size = The size of the cube. // center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=ALLNEG`. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // // Example: Simple cube. // cube(40); // Example: Rectangular cube. // cube([20,40,50]); // Example: Anchoring. // cube([20,40,50], anchor=BOTTOM+FRONT); // Example: Spin. // cube([20,40,50], anchor=BOTTOM+FRONT, spin=30); // Example: Orientation. // cube([20,40,50], anchor=BOTTOM+FRONT, spin=30, orient=FWD); // Example: Standard Connectors. // cube(40, center=true) show_anchors(); module cube(size=1, center, anchor=ALLNEG, spin=0, orient=UP) { size = scalar_vec3(size); orient_and_anchor(size, orient, anchor, center, spin=spin, noncentered=ALLNEG, chain=true) { linear_extrude(height=size.z, convexity=2, center=true) { square([size.x, size.y], center=true); } children(); } } // Module: cylinder() // Usage: // cylinder(h, r|d, [center]); // cylinder(h, r1/d1, r2/d2, [center]); // Description: // Creates a cylinder object, with support for anchoring and attachments. // This is a drop-in replacement for the built-in `cylinder()` module. // Arguments: // l / h = The height of the cylinder. // r1 = The bottom radius of the cylinder. (Before orientation.) // r2 = The top radius of the cylinder. (Before orientation.) // center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=BOTTOM`. // d1 = The bottom diameter of the cylinder. (Before orientation.) // d2 = The top diameter of the cylinder. (Before orientation.) // r = The radius of the cylinder. // d = The diameter of the cylinder. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // Example: By Radius // xdistribute(30) { // cylinder(h=40, r=10); // cylinder(h=40, r1=10, r2=5); // } // Example: By Diameter // xdistribute(30) { // cylinder(h=40, d=25); // cylinder(h=40, d1=25, d2=10); // } // Example(Med): Anchoring // cylinder(h=40, r1=10, r2=5, anchor=BOTTOM+FRONT); // Example(Med): Spin // cylinder(h=40, r1=10, r2=5, anchor=BOTTOM+FRONT, spin=45); // Example(Med): Orient // cylinder(h=40, r1=10, r2=5, anchor=BOTTOM+FRONT, spin=45, orient=FWD); // Example(Big): Standard Connectors // xdistribute(40) { // cylinder(h=30, d=25) show_anchors(); // cylinder(h=30, d1=25, d2=10) show_anchors(); // } module cylinder(h, r1, r2, center, l, r, d, d1, d2, anchor=BOTTOM, spin=0, orient=UP) { r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=1); r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=1); l = first_defined([h, l, 1]); hh = l/2; sides = segs(max(r1,r2)); size = [r1*2, r1*2, l]; path = [[0,hh],[r2,hh],[r1,-hh],[0,-hh]]; orient_and_anchor(size, orient, anchor, center, spin=spin, size2=[r2*2,r2*2], noncentered=BOTTOM, geometry="cylinder", chain=true) { rotate_extrude(convexity=2, $fn=sides) { polygon(path); } children(); } } // Module: sphere() // Usage: // sphere(r|d) // Description: // Creates a sphere object, with support for anchoring and attachments. // This is a drop-in replacement for the built-in `sphere()` module. // Arguments: // r = Radius of the sphere. // d = Diameter of the sphere. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // Example: By Radius // sphere(r=50); // Example: By Diameter // sphere(d=100); // Example: Anchoring // sphere(d=100, anchor=FRONT); // Example: Spin // sphere(d=100, anchor=FRONT, spin=45); // Example: Orientation // sphere(d=100, anchor=FRONT, spin=45, orient=FWD); // Example: Standard Connectors // sphere(d=50) show_anchors(); module sphere(r, d, anchor=CENTER, spin=0, orient=UP) { r = get_radius(r=r, d=d, dflt=1); sides = segs(r); size = [r*2, r*2, r*2]; orient_and_anchor(size, orient, anchor, spin=spin, geometry="sphere", chain=true) { rotate_extrude(convexity=2) { difference() { circle(r=r, $fn=sides); left(r+0.1) square(r*2+0.2, center=true); } } children(); } } // vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap