/////////////////////////////////////////// // LibFile: quaternions.scad // Support for Quaternions. // To use, add the following line to the beginning of your file: // ``` // include // ``` /////////////////////////////////////////// // Section: Quaternions // Quaternions are fast methods of storing and calculating arbitrary rotations. // Quaternions contain information on both axis of rotation, and rotation angle. // You can chain multiple rotation together by multiplying quaternions together. // They don't suffer from the gimbal-lock issues that `[X,Y,Z]` rotation angles do. // Quaternions are stored internally as a 4-value vector: // `[X,Y,Z,W]`, where the quaternion formula is `W+Xi+Yj+Zk` // Internal function _Quat(a,s,w) = [a[0]*s, a[1]*s, a[2]*s, w]; // Function: Quat() // Usage: // Quat(ax, ang); // Description: Create a new Quaternion from axis and angle of rotation. // Arguments: // ax = Vector of axis of rotation. // ang = Number of degrees to rotate around the axis counter-clockwise, when facing the origin. function Quat(ax=[0,0,1], ang=0) = _Quat(ax/norm(ax), sin(ang/2), cos(ang/2)); // Function: QuatX() // Usage: // QuatX(a); // Description: Create a new Quaternion for rotating around the X axis [1,0,0]. // Arguments: // a = Number of degrees to rotate around the axis counter-clockwise, when facing the origin. function QuatX(a=0) = Quat([1,0,0],a); // Function: QuatY() // Usage: // QuatY(a); // Description: Create a new Quaternion for rotating around the Y axis [0,1,0]. // Arguments: // a = Number of degrees to rotate around the axis counter-clockwise, when facing the origin. function QuatY(a=0) = Quat([0,1,0],a); // Function: QuatZ() // Usage: // QuatZ(a); // Description: Create a new Quaternion for rotating around the Z axis [0,0,1]. // Arguments: // a = Number of degrees to rotate around the axis counter-clockwise, when facing the origin. function QuatZ(a=0) = Quat([0,0,1],a); // Function: QuatXYZ() // Usage: // QuatXYZ([X,Y,Z]) // Description: // Creates a quaternion from standard [X,Y,Z] rotation angles in degrees. // Arguments: // a = The triplet of rotation angles, [X,Y,Z] function QuatXYZ(a=[0,0,0]) = let( qx = QuatX(a[0]), qy = QuatY(a[1]), qz = QuatZ(a[2]) ) Q_Mul(qz, Q_Mul(qy, qx)); // Function: Q_Ident() // Description: Returns the "Identity" zero-rotation Quaternion. function Q_Ident() = [0, 0, 0, 1]; // Function: Q_Add_S() // Usage: // Q_Add_S(q, s) // Description: Adds a scalar value `s` to the W part of a quaternion `q`. function Q_Add_S(q, s) = q+[0,0,0,s]; // Function: Q_Sub_S() // Usage: // Q_Sub_S(q, s) // Description: Subtracts a scalar value `s` from the W part of a quaternion `q`. function Q_Sub_S(q, s) = q-[0,0,0,s]; // Function: Q_Mul_S() // Usage: // Q_Mul_S(q, s) // Description: Multiplies each part of a quaternion `q` by a scalar value `s`. function Q_Mul_S(q, s) = q*s; // Function: Q_Div_S() // Usage: // Q_Div_S(q, s) // Description: Divides each part of a quaternion `q` by a scalar value `s`. function Q_Div_S(q, s) = q/s; // Function: Q_Add() // Usage: // Q_Add(a, b) // Description: Adds each part of two quaternions together. function Q_Add(a, b) = a+b; // Function: Q_Sub() // Usage: // Q_Sub(a, b) // Description: Subtracts each part of quaternion `b` from quaternion `a`. function Q_Sub(a, b) = a-b; // Function: Q_Mul() // Usage: // Q_Mul(a, b) // Description: Multiplies quaternion `a` by quaternion `b`. function Q_Mul(a, b) = [ a[3]*b.x + a.x*b[3] + a.y*b.z - a.z*b.y, a[3]*b.y - a.x*b.z + a.y*b[3] + a.z*b.x, a[3]*b.z + a.x*b.y - a.y*b.x + a.z*b[3], a[3]*b[3] - a.x*b.x - a.y*b.y - a.z*b.z, ]; // Function: Q_Cumulative() // Usage: // Q_Cumulative(v); // Description: // Given a list of Quaternions, cumulatively multiplies them, returning a list // of each cumulative Quaternion product. It starts with the first quaternion // given in the list, and applies successive quaternion rotations in list order. function Q_Cumulative(v, _i=0, _acc=[]) = _i==len(v) ? _acc : Q_Cumulative( v, _i+1, concat( _acc, [_i==0 ? v[_i] : Q_Mul(v[_i], select(_acc,-1))] ) ); // Function: Q_Dot() // Usage: // Q_Dot(a, b) // Description: Calculates the dot product between quaternions `a` and `b`. function Q_Dot(a, b) = a[0]*b[0] + a[1]*b[1] + a[2]*b[2] + a[3]*b[3]; // Function: Q_Neg() // Usage: // Q_Neg(q) // Description: Returns the negative of quaternion `q`. function Q_Neg(q) = -q; // Function: Q_Conj() // Usage: // Q_Conj(q) // Description: Returns the conjugate of quaternion `q`. function Q_Conj(q) = [-q.x, -q.y, -q.z, q[3]]; // Function: Q_Norm() // Usage: // Q_Norm(q) // Description: Returns the `norm()` "length" of quaternion `q`. function Q_Norm(q) = norm(q); // Function: Q_Normalize() // Usage: // Q_Normalize(q) // Description: Normalizes quaternion `q`, so that norm([W,X,Y,Z]) == 1. function Q_Normalize(q) = q/norm(q); // Function: Q_Dist() // Usage: // Q_Dist(q1, q2) // Description: Returns the "distance" between two quaternions. function Q_Dist(q1, q2) = norm(q2-q1); // Function: Q_Slerp() // Usage: // Q_Slerp(q1, q2, u); // Description: // Returns a quaternion that is a spherical interpolation between two quaternions. // Arguments: // q1 = The first quaternion. (u=0) // q2 = The second quaternion. (u=1) // u = The proportional value, from 0 to 1, of what part of the interpolation to return. // Example(3D): Giving `u` as a Scalar // a = QuatY(-135); // b = QuatXYZ([0,-30,30]); // for (u=[0:0.1:1]) // Qrot(Q_Slerp(a, b, u)) // right(80) cube([10,10,1]); // #sphere(r=80); // Example(3D): Giving `u` as a Range // a = QuatZ(-135); // b = QuatXYZ([90,0,-45]); // for (q = Q_Slerp(a, b, [0:0.1:1])) // Qrot(q) right(80) cube([10,10,1]); // #sphere(r=80); function Q_Slerp(q1, q2, u) = assert(is_num(u) || is_num(u[0])) !is_num(u)? [for (uu=u) Q_Slerp(q1,q2,uu)] : let( q1 = Q_Normalize(q1), q2 = Q_Normalize(q2), dot = Q_Dot(q1, q2) ) let( q2 = dot<0? Q_Neg(q2) : q2, dot = dot<0? -dot : dot ) (dot>0.9995)? Q_Normalize(q1 + (u * (q2-q1))) : let( dot = constrain(dot,-1,1), theta_0 = acos(dot), theta = theta_0 * u, q3 = Q_Normalize(q2 - q1*dot), out = q1*cos(theta) + q3*sin(theta) ) out; // Function: Q_Matrix3() // Usage: // Q_Matrix3(q); // Description: // Returns the 3x3 rotation matrix for the given normalized quaternion q. function Q_Matrix3(q) = [ [1-2*q[1]*q[1]-2*q[2]*q[2], 2*q[0]*q[1]-2*q[2]*q[3], 2*q[0]*q[2]+2*q[1]*q[3]], [ 2*q[0]*q[1]+2*q[2]*q[3], 1-2*q[0]*q[0]-2*q[2]*q[2], 2*q[1]*q[2]-2*q[0]*q[3]], [ 2*q[0]*q[2]-2*q[1]*q[3], 2*q[1]*q[2]+2*q[0]*q[3], 1-2*q[0]*q[0]-2*q[1]*q[1]] ]; // Function: Q_Matrix4() // Usage: // Q_Matrix4(q); // Description: // Returns the 4x4 rotation matrix for the given normalized quaternion q. function Q_Matrix4(q) = [ [1-2*q[1]*q[1]-2*q[2]*q[2], 2*q[0]*q[1]-2*q[2]*q[3], 2*q[0]*q[2]+2*q[1]*q[3], 0], [ 2*q[0]*q[1]+2*q[2]*q[3], 1-2*q[0]*q[0]-2*q[2]*q[2], 2*q[1]*q[2]-2*q[0]*q[3], 0], [ 2*q[0]*q[2]-2*q[1]*q[3], 2*q[1]*q[2]+2*q[0]*q[3], 1-2*q[0]*q[0]-2*q[1]*q[1], 0], [ 0, 0, 0, 1] ]; // Function: Q_Axis() // Usage: // Q_Axis(q) // Description: // Returns the axis of rotation of a normalized quaternion `q`. function Q_Axis(q) = let(d = sqrt(1-(q[3]*q[3]))) (d==0)? [0,0,1] : [q[0]/d, q[1]/d, q[2]/d]; // Function: Q_Angle() // Usage: // Q_Angle(q) // Description: // Returns the angle of rotation (in degrees) of a normalized quaternion `q`. function Q_Angle(q) = 2 * acos(q[3]); // Function&Module: Qrot() // Usage: As Module // Qrot(q) ... // Usage: As Function // pts = Qrot(q,p); // Description: // When called as a module, rotates all children by the rotation stored in quaternion `q`. // When called as a function with a `p` argument, rotates the point or list of points in `p` by the rotation stored in quaternion `q`. // When called as a function without a `p` argument, returns the affine3d rotation matrix for the rotation stored in quaternion `q`. // Example(FlatSpin): // module shape() translate([80,0,0]) cube([10,10,1]); // q = QuatXYZ([90,-15,-45]); // Qrot(q) shape(); // #shape(); // Example(NORENDER): // q = QuatXYZ([45,35,10]); // mat4x4 = Qrot(q); // Example(NORENDER): // q = QuatXYZ([45,35,10]); // pt = Qrot(q, p=[4,5,6]); // Example(NORENDER): // q = QuatXYZ([45,35,10]); // pts = Qrot(q, p=[[2,3,4], [4,5,6], [9,2,3]]); module Qrot(q) { multmatrix(Q_Matrix4(q)) { children(); } } function Qrot(q,p) = is_undef(p)? Q_Matrix4(q) : is_vector(p)? Qrot(q,[p])[0] : apply(Q_Matrix4(q), p); // Module: Qrot_copies() // Usage: // Qrot_copies(quats) ... // Description: // For each quaternion given in the list `quats`, rotates to that orientation and creates a copy // of all children. This is equivalent to `for (q=quats) Qrot(q) ...`. // Arguments: // quats = A list containing all quaternions to rotate to and create copies of all children for. // Example: // a = QuatZ(-135); // b = QuatXYZ([0,-30,30]); // Qrot_copies(Q_Slerp(a, b, [0:0.1:1])) // right(80) cube([10,10,1]); // #sphere(r=80); module Qrot_copies(quats) for (q=quats) Qrot(q) children(); // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap