include include include function CR_corner(size, spin=0, orient=UP, trans=[0,0,0]) = let ( // This patch might not yet correct for continuous rounding, // but it's a first approximation proof of concept. a = 0.68, b = 0.60, c = 0.24, patch = [ [[0,1,1], [0,a,1], [0,c,1], [c,0,1], [a,0,1], [1,0,1]], [[0,1,a], [0,b,b], [0,0,b], [b,0,b], [1,0,a]], [[0,1,c], [0,b,0], [b,0,0], [1,0,c]], [[c,1,0], [b,b,0], [1,c,0]], [[a,1,0], [1,a,0]], [[1,1,0]], ] ) [for (row=patch) translate_points(v=trans, rotate_points3d(a=spin, from=UP, to=orient, scale_points(v=size, row) ) ) ]; function CR_edge(size, spin=0, orient=UP, trans=[0,0,0]) = let ( // This patch might not yet correct for continuous rounding, // but it's a first approximation proof of concept. a = 0.68, c = 0.24, m = -1/2, n = -3/10, o = -1/10, p = 1/10, q = 3/10, r = 1/2, patch = [ [[1,0,m], [1,0,n], [1,0,o], [1,0,p], [1,0,q], [1,0,r]], [[a,0,m], [a,0,n], [a,0,o], [a,0,p], [a,0,q], [a,0,r]], [[c,0,m], [c,0,n], [c,0,o], [c,0,p], [c,0,q], [c,0,r]], [[0,c,m], [0,c,n], [0,c,o], [0,c,p], [0,c,q], [0,c,r]], [[0,a,m], [0,a,n], [0,a,o], [0,a,p], [0,a,q], [0,a,r]], [[0,1,m], [0,1,n], [0,1,o], [0,1,p], [0,1,q], [0,1,r]], ] ) [for (row=patch) translate_points(v=trans, rotate_points3d(a=spin, from=UP, to=orient, scale_points(v=size, row) ) ) ]; module CR_cube(size=[100,100,100], r=10, splinesteps=8, cheat=false, debug=false) { s = size-2*[r,r,r]; h = size/2; corners = [ CR_corner([r,r,r], spin=0, orient=UP, trans=[-size.x/2, -size.y/2, -size.z/2]), CR_corner([r,r,r], spin=90, orient=UP, trans=[ size.x/2, -size.y/2, -size.z/2]), CR_corner([r,r,r], spin=180, orient=UP, trans=[ size.x/2, size.y/2, -size.z/2]), CR_corner([r,r,r], spin=270, orient=UP, trans=[-size.x/2, size.y/2, -size.z/2]), CR_corner([r,r,r], spin=0, orient=DOWN, trans=[ size.x/2, -size.y/2, size.z/2]), CR_corner([r,r,r], spin=90, orient=DOWN, trans=[-size.x/2, -size.y/2, size.z/2]), CR_corner([r,r,r], spin=180, orient=DOWN, trans=[-size.x/2, size.y/2, size.z/2]), CR_corner([r,r,r], spin=270, orient=DOWN, trans=[ size.x/2, size.y/2, size.z/2]), ]; edges = [ CR_edge([r, r, s.x], spin=0, orient=RIGHT, trans=[ 0, -h.y, h.z]), CR_edge([r, r, s.x], spin=90, orient=RIGHT, trans=[ 0, -h.y, -h.z]), CR_edge([r, r, s.x], spin=180, orient=RIGHT, trans=[ 0, h.y, -h.z]), CR_edge([r, r, s.x], spin=270, orient=RIGHT, trans=[ 0, h.y, h.z]), CR_edge([r, r, s.y], spin=0, orient=BACK, trans=[-h.x, 0, h.z]), CR_edge([r, r, s.y], spin=90, orient=BACK, trans=[ h.x, 0, h.z]), CR_edge([r, r, s.y], spin=180, orient=BACK, trans=[ h.x, 0, -h.z]), CR_edge([r, r, s.y], spin=270, orient=BACK, trans=[-h.x, 0, -h.z]), CR_edge([r, r, s.z], spin=0, orient=UP, trans=[-h.x, -h.y, 0]), CR_edge([r, r, s.z], spin=90, orient=UP, trans=[ h.x, -h.y, 0]), CR_edge([r, r, s.z], spin=180, orient=UP, trans=[ h.x, h.y, 0]), CR_edge([r, r, s.z], spin=270, orient=UP, trans=[-h.x, h.y, 0]) ]; faces = [ // Yes, these are degree 1 bezier patches. That means just the four corner points. // Since these are flat, it doesn't matter what degree they are, and this will reduce calculation overhead. bezier_patch_flat([s.y, s.z], N=1, orient=RIGHT, trans=[ h.x, 0, 0]), bezier_patch_flat([s.y, s.z], N=1, orient=LEFT, trans=[-h.x, 0, 0]), bezier_patch_flat([s.x, s.z], N=1, orient=BACK, trans=[ 0, h.y, 0]), bezier_patch_flat([s.x, s.z], N=1, orient=FRONT, trans=[ 0, -h.y, 0]), bezier_patch_flat([s.x, s.y], N=1, orient=UP, trans=[ 0, 0, h.z]), bezier_patch_flat([s.x, s.y], N=1, orient=DOWN, trans=[ 0, 0, -h.z]) ]; if (cheat) { hull() bezier_polyhedron(patches=corners, splinesteps=splinesteps); } else { if (debug) { trace_bezier_patches(patches=concat(edges, faces), tris=corners, showcps=true, splinesteps=splinesteps); } else { bezier_polyhedron(patches=concat(edges, faces), tris=corners, splinesteps=splinesteps); } } } CR_cube(size=[100,100,100], r=20, splinesteps=16, cheat=false, debug=false); cube(1); // vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap