////////////////////////////////////////////////////////////////////// // LibFile: coords.scad // Coordinate transformations and coordinate system conversions. // To use, add the following lines to the beginning of your file: // ``` // use // ``` ////////////////////////////////////////////////////////////////////// // Section: Coordinate Manipulation // Function: point2d() // Description: // Returns a 2D vector/point from a 2D or 3D vector. // If given a 3D point, removes the Z coordinate. // Arguments: // p = The coordinates to force into a 2D vector/point. // fill = Value to fill missing values in vector with. function point2d(p, fill=0) = [for (i=[0:1]) (p[i]==undef)? fill : p[i]]; // Function: path2d() // Description: // Returns a list of 2D vectors/points from a list of 2D or 3D vectors/points. // If given a 3D point list, removes the Z coordinates from each point. // Arguments: // points = A list of 2D or 3D points/vectors. // fill = Value to fill missing values in vectors with. function path2d(points, fill=0) = [for (point = points) point2d(point, fill=fill)]; // Function: point3d() // Description: // Returns a 3D vector/point from a 2D or 3D vector. // Arguments: // p = The coordinates to force into a 3D vector/point. // fill = Value to fill missing values in vector with. function point3d(p, fill=0) = [for (i=[0:2]) (p[i]==undef)? fill : p[i]]; // Function: path3d() // Description: // Returns a list of 3D vectors/points from a list of 2D or 3D vectors/points. // Arguments: // points = A list of 2D or 3D points/vectors. // fill = Value to fill missing values in vectors with. function path3d(points, fill=0) = [for (point = points) point3d(point, fill=fill)]; // Function: point4d() // Description: // Returns a 4D vector/point from a 2D or 3D vector. // Arguments: // p = The coordinates to force into a 4D vector/point. // fill = Value to fill missing values in vector with. function point4d(p, fill=0) = [for (i=[0:3]) (p[i]==undef)? fill : p[i]]; // Function: path4d() // Description: // Returns a list of 4D vectors/points from a list of 2D or 3D vectors/points. // Arguments: // points = A list of 2D or 3D points/vectors. // fill = Value to fill missing values in vectors with. function path4d(points, fill=0) = [for (point = points) point4d(point, fill=fill)]; // Function: translate_points() // Usage: // translate_points(pts, v); // Description: // Moves each point in an array by a given amount. // Arguments: // pts = List of points to translate. // v = Amount to translate points by. function translate_points(pts, v=[0,0,0]) = pts==[]? [] : let( v=point3d(v) ) [for (pt = pts) pt+v]; // Function: scale_points() // Usage: // scale_points(pts, v, [cp]); // Description: // Scales each point in an array by a given amount, around a given centerpoint. // Arguments: // pts = List of points to scale. // v = A vector with a scaling factor for each axis. // cp = Centerpoint to scale around. function scale_points(pts, v=[1,1,1], cp=[0,0,0]) = pts==[]? [] : let( cp = point3d(cp), v = point3d(v,fill=1) ) [for (pt = pts) vmul(pt-cp,v)+cp]; // Function: rotate_points2d() // Usage: // rotate_points2d(pts, a, [cp]); // Description: // Rotates each 2D point in an array by a given amount, around an optional centerpoint. // Arguments: // pts = List of 3D points to rotate. // a = Angle to rotate by. // cp = 2D Centerpoint to rotate around. Default: `[0,0]` function rotate_points2d(pts, a, cp=[0,0]) = approx(a,0)? pts : let( cp = point2d(cp), pts = path2d(pts), m = affine2d_zrot(a) ) [for (pt = pts) point2d(m*concat(pt-cp, [1])+cp)]; // Function: rotate_points3d() // Usage: // rotate_points3d(pts, a, [cp], [reverse]); // rotate_points3d(pts, a, v, [cp], [reverse]); // rotate_points3d(pts, from, to, [a], [cp], [reverse]); // Description: // Rotates each 3D point in an array by a given amount, around a given centerpoint. // Arguments: // pts = List of points to rotate. // a = Rotation angle(s) in degrees. // v = If given, axis vector to rotate around. // cp = Centerpoint to rotate around. // from = If given, the vector to rotate something from. Used with `to`. // to = If given, the vector to rotate something to. Used with `from`. // reverse = If true, performs an exactly reversed rotation. function rotate_points3d(pts, a=0, v=undef, cp=[0,0,0], from=undef, to=undef, reverse=false) = assert(is_undef(from)==is_undef(to), "`from` and `to` must be given together.") (is_undef(from) && (a==0 || a==[0,0,0]))? pts : let ( from = is_undef(from)? undef : (from / norm(from)), to = is_undef(to)? undef : (to / norm(to)), cp = point3d(cp), pts2 = path3d(pts) ) (!is_undef(from) && approx(from,to) && (a==0 || a == [0,0,0]))? pts2 : let ( mrot = reverse? ( !is_undef(from)? ( assert(norm(from)>0, "The from argument cannot equal [0,0] or [0,0,0]") assert(norm(to)>0, "The to argument cannot equal [0,0] or [0,0,0]") let ( ang = vector_angle(from, to), v = vector_axis(from, to) ) affine3d_rot_by_axis(from, -a) * affine3d_rot_by_axis(v, -ang) ) : !is_undef(v)? ( affine3d_rot_by_axis(v, -a) ) : is_num(a)? ( affine3d_zrot(-a) ) : ( affine3d_xrot(-a.x) * affine3d_yrot(-a.y) * affine3d_zrot(-a.z) ) ) : ( !is_undef(from)? ( assert(norm(from)>0, "The from argument cannot equal [0,0] or [0,0,0]") assert(norm(to)>0, "The to argument cannot equal [0,0] or [0,0,0]") let ( from = from / norm(from), to = to / norm(from), ang = vector_angle(from, to), v = vector_axis(from, to) ) affine3d_rot_by_axis(v, ang) * affine3d_rot_by_axis(from, a) ) : !is_undef(v)? ( affine3d_rot_by_axis(v, a) ) : is_num(a)? ( affine3d_zrot(a) ) : ( affine3d_zrot(a.z) * affine3d_yrot(a.y) * affine3d_xrot(a.x) ) ), m = affine3d_translate(cp) * mrot * affine3d_translate(-cp) ) [for (pt = pts2) point3d(m*concat(pt, fill=1))]; // Section: Coordinate Systems // Function: polar_to_xy() // Usage: // polar_to_xy(r, theta); // polar_to_xy([r, theta]); // Description: // Convert polar coordinates to 2D cartesian coordinates. // Returns [X,Y] cartesian coordinates. // Arguments: // r = distance from the origin. // theta = angle in degrees, counter-clockwise of X+. // Examples: // xy = polar_to_xy(20,45); // Returns: ~[14.1421365, 14.1421365] // xy = polar_to_xy(40,30); // Returns: ~[34.6410162, 15] // xy = polar_to_xy([40,30]); // Returns: ~[34.6410162, 15] function polar_to_xy(r,theta=undef) = let( rad = theta==undef? r[0] : r, t = theta==undef? r[1] : theta ) rad*[cos(t), sin(t)]; // Function: xy_to_polar() // Usage: // xy_to_polar(x,y); // xy_to_polar([X,Y]); // Description: // Convert 2D cartesian coordinates to polar coordinates. // Returns [radius, theta] where theta is the angle counter-clockwise of X+. // Arguments: // x = X coordinate. // y = Y coordinate. // Examples: // plr = xy_to_polar(20,30); // plr = xy_to_polar([40,60]); function xy_to_polar(x,y=undef) = let( xx = y==undef? x[0] : x, yy = y==undef? x[1] : y ) [norm([xx,yy]), atan2(yy,xx)]; // Function: project_plane() // Usage: // xy = project_plane(point, a, b, c); // xy = project_plane(point, [A,B,C]]; // Description: // Given three points defining a plane, returns the projected planar [X,Y] coordinates of the // closest point to a 3D `point`. The origin of the planar coordinate system [0,0] will be at point // `a`, and the Y+ axis direction will be towards point `b`. This coordinate system can be useful // in taking a set of nearly coplanar points, and converting them to a pure XY set of coordinates // for manipulation, before convering them back to the original 3D plane. // Arguments: // point = The 3D point, or list of 3D points to project into the plane's 2D coordinate system. // a = A 3D point that the plane passes through. Used to define the plane. // b = A 3D point that the plane passes through. Used to define the plane. // c = A 3D point that the plane passes through. Used to define the plane. // Example: // pt = [5,-5,5]; // a=[0,0,0]; b=[10,-10,0]; c=[10,0,10]; // xy = project_plane(pt, a, b, c); // xy2 = project_plane(pt, [a,b,c]); function project_plane(point, a, b, c) = is_undef(b) && is_undef(c) && is_list(a)? let( indices = find_noncollinear_points(a) ) project_plane(point, a[indices[0]], a[indices[1]], a[indices[2]]) : assert(is_vector(a)) assert(is_vector(b)) assert(is_vector(c)) assert(is_vector(point)||is_path(point)) let( u = normalize(b-a), v = normalize(c-a), n = normalize(cross(u,v)), w = normalize(cross(n,u)), relpoint = is_vector(point)? (point-a) : translate_points(point,-a) ) relpoint * transpose([w,u]); // Function: lift_plane() // Usage: // xyz = lift_plane(point, a, b, c); // xyz = lift_plane(point, [A,B,C]); // Description: // Given three points defining a plane, converts a planar [X,Y] coordinate to the actual // corresponding 3D point on the plane. The origin of the planar coordinate system [0,0] // will be at point `a`, and the Y+ axis direction will be towards point `b`. // Arguments: // point = The 2D point, or list of 2D points in the plane's coordinate system to get the 3D position of. // a = A 3D point that the plane passes through. Used to define the plane. // b = A 3D point that the plane passes through. Used to define the plane. // c = A 3D point that the plane passes through. Used to define the plane. function lift_plane(point, a, b, c) = is_undef(b) && is_undef(c) && is_list(a)? let( indices = find_noncollinear_points(a) ) lift_plane(point, a[indices[0]], a[indices[1]], a[indices[2]]) : assert(is_vector(a)) assert(is_vector(b)) assert(is_vector(c)) assert(is_vector(point)||is_path(point)) let( u = normalize(b-a), v = normalize(c-a), n = normalize(cross(u,v)), w = normalize(cross(n,u)), remapped = point*[w,u] ) is_vector(remapped)? (a+remapped) : translate_points(remapped,a); // Function: cylindrical_to_xyz() // Usage: // cylindrical_to_xyz(r, theta, z) // cylindrical_to_xyz([r, theta, z]) // Description: // Convert cylindrical coordinates to 3D cartesian coordinates. Returns [X,Y,Z] cartesian coordinates. // Arguments: // r = distance from the Z axis. // theta = angle in degrees, counter-clockwise of X+ on the XY plane. // z = Height above XY plane. // Examples: // xyz = cylindrical_to_xyz(20,30,40); // xyz = cylindrical_to_xyz([40,60,50]); function cylindrical_to_xyz(r,theta=undef,z=undef) = let( rad = theta==undef? r[0] : r, t = theta==undef? r[1] : theta, zed = theta==undef? r[2] : z ) [rad*cos(t), rad*sin(t), zed]; // Function: xyz_to_cylindrical() // Usage: // xyz_to_cylindrical(x,y,z) // xyz_to_cylindrical([X,Y,Z]) // Description: // Convert 3D cartesian coordinates to cylindrical coordinates. // Returns [radius,theta,Z]. Theta is the angle counter-clockwise // of X+ on the XY plane. Z is height above the XY plane. // Arguments: // x = X coordinate. // y = Y coordinate. // z = Z coordinate. // Examples: // cyl = xyz_to_cylindrical(20,30,40); // cyl = xyz_to_cylindrical([40,50,70]); function xyz_to_cylindrical(x,y=undef,z=undef) = let( p = is_num(x)? [x, default(y,0), default(z,0)] : point3d(x) ) [norm([p.x,p.y]), atan2(p.y,p.x), p.z]; // Function: spherical_to_xyz() // Usage: // spherical_to_xyz(r, theta, phi); // spherical_to_xyz([r, theta, phi]); // Description: // Convert spherical coordinates to 3D cartesian coordinates. // Returns [X,Y,Z] cartesian coordinates. // Arguments: // r = distance from origin. // theta = angle in degrees, counter-clockwise of X+ on the XY plane. // phi = angle in degrees from the vertical Z+ axis. // Examples: // xyz = spherical_to_xyz(20,30,40); // xyz = spherical_to_xyz([40,60,50]); function spherical_to_xyz(r,theta=undef,phi=undef) = let( rad = theta==undef? r[0] : r, t = theta==undef? r[1] : theta, p = theta==undef? r[2] : phi ) rad*[sin(p)*cos(t), sin(p)*sin(t), cos(p)]; // Function: xyz_to_spherical() // Usage: // xyz_to_spherical(x,y,z) // xyz_to_spherical([X,Y,Z]) // Description: // Convert 3D cartesian coordinates to spherical coordinates. // Returns [r,theta,phi], where phi is the angle from the Z+ pole, // and theta is degrees counter-clockwise of X+ on the XY plane. // Arguments: // x = X coordinate. // y = Y coordinate. // z = Z coordinate. // Examples: // sph = xyz_to_spherical(20,30,40); // sph = xyz_to_spherical([40,50,70]); function xyz_to_spherical(x,y=undef,z=undef) = let( p = is_num(x)? [x, default(y,0), default(z,0)] : point3d(x) ) [norm(p), atan2(p.y,p.x), atan2(norm([p.x,p.y]),p.z)]; // Function: altaz_to_xyz() // Usage: // altaz_to_xyz(alt, az, r); // altaz_to_xyz([alt, az, r]); // Description: // Convert altitude/azimuth/range coordinates to 3D cartesian coordinates. // Returns [X,Y,Z] cartesian coordinates. // Arguments: // alt = altitude angle in degrees above the XY plane. // az = azimuth angle in degrees clockwise of Y+ on the XY plane. // r = distance from origin. // Examples: // xyz = altaz_to_xyz(20,30,40); // xyz = altaz_to_xyz([40,60,50]); function altaz_to_xyz(alt,az=undef,r=undef) = let( p = az==undef? alt[0] : alt, t = 90 - (az==undef? alt[1] : az), rad = az==undef? alt[2] : r ) rad*[cos(p)*cos(t), cos(p)*sin(t), sin(p)]; // Function: xyz_to_altaz() // Usage: // xyz_to_altaz(x,y,z); // xyz_to_altaz([X,Y,Z]); // Description: // Convert 3D cartesian coordinates to altitude/azimuth/range coordinates. // Returns [altitude,azimuth,range], where altitude is angle above the // XY plane, azimuth is degrees clockwise of Y+ on the XY plane, and // range is the distance from the origin. // Arguments: // x = X coordinate. // y = Y coordinate. // z = Z coordinate. // Examples: // aa = xyz_to_altaz(20,30,40); // aa = xyz_to_altaz([40,50,70]); function xyz_to_altaz(x,y=undef,z=undef) = let( p = is_num(x)? [x, default(y,0), default(z,0)] : point3d(x) ) [atan2(p.z,norm([p.x,p.y])), atan2(p.x,p.y), norm(p)]; // vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap