////////////////////////////////////////////////////////////////////// // LibFile: vnf.scad // VNF structures, holding Vertices 'N' Faces for use with `polyhedron().` // Includes: // include ////////////////////////////////////////////////////////////////////// include // Section: Creating Polyhedrons with VNF Structures // VNF stands for "Vertices'N'Faces". VNF structures are 2-item lists, `[VERTICES,FACES]` where the // first item is a list of vertex points, and the second is a list of face indices into the vertex // list. Each VNF is self contained, with face indices referring only to its own vertex list. // You can construct a `polyhedron()` in parts by describing each part in a self-contained VNF, then // merge the various VNFs to get the completed polyhedron vertex list and faces. EMPTY_VNF = [[],[]]; // The standard empty VNF with no vertices or faces. // Function: is_vnf() // Usage: // bool = is_vnf(x); // Description: // Returns true if the given value looks like a VNF structure. function is_vnf(x) = is_list(x) && len(x)==2 && is_list(x[0]) && is_list(x[1]) && (x[0]==[] || (len(x[0])>=3 && is_vector(x[0][0]))) && (x[1]==[] || is_vector(x[1][0])); // Function: is_vnf_list() // Description: Returns true if the given value looks passingly like a list of VNF structures. function is_vnf_list(x) = is_list(x) && all([for (v=x) is_vnf(v)]); // Function: vnf_vertices() // Description: Given a VNF structure, returns the list of vertex points. function vnf_vertices(vnf) = vnf[0]; // Function: vnf_faces() // Description: Given a VNF structure, returns the list of faces, where each face is a list of indices into the VNF vertex list. function vnf_faces(vnf) = vnf[1]; // Function: vnf_quantize() // Usage: // vnf2 = vnf_quantize(vnf,); // Description: // Quantizes the vertex coordinates of the VNF to the given quanta `q`. // Arguments: // vnf = The VNF to quantize. // q = The quanta to quantize the VNF coordinates to. function vnf_quantize(vnf,q=pow(2,-12)) = [[for (pt = vnf[0]) quant(pt,q)], vnf[1]]; // Function: vnf_get_vertex() // Usage: // vvnf = vnf_get_vertex(vnf, p); // Description: // Finds the index number of the given vertex point `p` in the given VNF structure `vnf`. // If said point does not already exist in the VNF vertex list, it is added to the returned VNF. // Returns: `[INDEX, VNF]` where INDEX is the index of the point in the returned VNF's vertex list, // and VNF is the possibly modified new VNF structure. If `p` is given as a list of points, then // the returned INDEX will be a list of indices. // Arguments: // vnf = The VNF structue to get the point index from. // p = The point, or list of points to get the index of. // Example: // vnf1 = vnf_get_vertex(p=[3,5,8]); // Returns: [0, [[[3,5,8]],[]]] // vnf2 = vnf_get_vertex(vnf1, p=[3,2,1]); // Returns: [1, [[[3,5,8],[3,2,1]],[]]] // vnf3 = vnf_get_vertex(vnf2, p=[3,5,8]); // Returns: [0, [[[3,5,8],[3,2,1]],[]]] // vnf4 = vnf_get_vertex(vnf3, p=[[1,3,2],[3,2,1]]); // Returns: [[1,2], [[[3,5,8],[3,2,1],[1,3,2]],[]]] function vnf_get_vertex(vnf=EMPTY_VNF, p) = let( isvec = is_vector(p), pts = isvec? [p] : p, res = set_union(vnf[0], pts, get_indices=true) ) [ (isvec? res[0][0] : res[0]), [ res[1], vnf[1] ] ]; // Function: vnf_add_face() // Usage: // vnf_add_face(vnf, pts); // Description: // Given a VNF structure and a list of face vertex points, adds the face to the VNF structure. // Returns the modified VNF structure `[VERTICES, FACES]`. It is up to the caller to make // sure that the points are in the correct order to make the face normal point outwards. // Arguments: // vnf = The VNF structure to add a face to. // pts = The vertex points for the face. function vnf_add_face(vnf=EMPTY_VNF, pts) = assert(is_vnf(vnf)) assert(is_path(pts)) let( res = set_union(vnf[0], pts, get_indices=true), face = deduplicate(res[0], closed=true) ) [ res[1], concat(vnf[1], len(face)>2? [face] : []) ]; // Function: vnf_add_faces() // Usage: // vnf_add_faces(vnf, faces); // Description: // Given a VNF structure and a list of faces, where each face is given as a list of vertex points, // adds the faces to the VNF structure. Returns the modified VNF structure `[VERTICES, FACES]`. // It is up to the caller to make sure that the points are in the correct order to make the face // normals point outwards. // Arguments: // vnf = The VNF structure to add a face to. // faces = The list of faces, where each face is given as a list of vertex points. function vnf_add_faces(vnf=EMPTY_VNF, faces) = assert(is_vnf(vnf)) assert(is_list(faces)) let( res = set_union(vnf[0], flatten(faces), get_indices=true), idxs = res[0], nverts = res[1], offs = cumsum([0, for (face=faces) len(face)]), ifaces = [ for (i=idx(faces)) [ for (j=idx(faces[i])) idxs[offs[i]+j] ] ] ) [ nverts, concat(vnf[1],ifaces) ]; // Function: vnf_merge() // Usage: // vnf = vnf_merge([VNF, VNF, VNF, ...], ); // Description: // Given a list of VNF structures, merges them all into a single VNF structure. function vnf_merge(vnfs, cleanup=false) = let ( offs = cumsum([ 0, for (vnf = vnfs) len(vnf[0]) ]) ) [ [for (vnf=vnfs) each vnf[0]], [ for (i = idx(vnfs)) let( vnf = vnfs[i], verts = vnf[0], faces = vnf[1] ) for (face = faces) let( dface = !cleanup ? face : deduplicate_indexed(verts, face, closed=true) ) if (len(dface) >= 3) [ for (j = dface) offs[i] + j ] ] ]; // Function: vnf_compact() // Usage: // cvnf = vnf_compact(vnf); // Description: // Takes a VNF and consolidates all duplicate vertices, and drops unreferenced vertices. function vnf_compact(vnf) = let( vnf = is_vnf_list(vnf)? vnf_merge(vnf) : vnf, verts = vnf[0], faces = [ for (face=vnf[1]) [ for (i=face) verts[i] ] ] ) vnf_add_faces(faces=faces); // Function: vnf_reverse_faces() // Usage: // rvnf = vnf_reverse_faces(vnf); // Description: // Reverses the facing of all the faces in the given VNF. function vnf_reverse_faces(vnf) = [vnf[0], [for (face=vnf[1]) reverse(face)]]; // Function: vnf_triangulate() // Usage: // vnf2 = vnf_triangulate(vnf); // Description: // Forces triangulation of faces in the VNF that have more than 3 vertices. function vnf_triangulate(vnf) = let( vnf = is_vnf_list(vnf)? vnf_merge(vnf) : vnf, verts = vnf[0] ) [verts, triangulate_faces(verts, vnf[1])]; // Function: vnf_vertex_array() // Usage: // vnf = vnf_vertex_array(points, , , , , , , ); // Description: // Creates a VNF structure from a vertex list, by dividing the vertices into columns and rows, // adding faces to tile the surface. You can optionally have faces added to wrap the last column // back to the first column, or wrap the last row to the first. Endcaps can be added to either // the first and/or last rows. The style parameter determines how the quadrilaterals are divided into // triangles. The default style is an arbitrary, systematic subdivision in the same direction. The "alt" style // is the uniform subdivision in the other (alternate) direction. The "min_edge" style picks the shorter edge to // subdivide for each quadrilateral, so the division may not be uniform across the shape. The "quincunx" style // adds a vertex in the center of each quadrilateral and creates four triangles, and the "convex" style // chooses the locally convex subdivision. // Arguments: // points = A list of vertices to divide into columns and rows. // caps = If true, add endcap faces to the first AND last rows. // cap1 = If true, add an endcap face to the first row. // cap2 = If true, add an endcap face to the last row. // col_wrap = If true, add faces to connect the last column to the first. // row_wrap = If true, add faces to connect the last row to the first. // reverse = If true, reverse all face normals. // style = The style of subdividing the quads into faces. Valid options are "default", "alt", "min_edge", "quincunx", and "convex". // vnf = If given, add all the vertices and faces to this existing VNF structure. // Example(3D): // vnf = vnf_vertex_array( // points=[ // for (h = [0:5:180-EPSILON]) [ // for (t = [0:5:360-EPSILON]) // cylindrical_to_xyz(100 + 12 * cos((h/2 + t)*6), t, h) // ] // ], // col_wrap=true, caps=true, reverse=true, style="alt" // ); // vnf_polyhedron(vnf); // Example(3D): Both `col_wrap` and `row_wrap` are true to make a torus. // vnf = vnf_vertex_array( // points=[ // for (a=[0:5:360-EPSILON]) // apply( // zrot(a) * right(30) * xrot(90), // path3d(circle(d=20)) // ) // ], // col_wrap=true, row_wrap=true, reverse=true // ); // vnf_polyhedron(vnf); // Example(3D): Möbius Strip. Note that `row_wrap` is not used, and the first and last profile copies are the same. // vnf = vnf_vertex_array( // points=[ // for (a=[0:5:360]) apply( // zrot(a) * right(30) * xrot(90) * zrot(a/2+60), // path3d(square([1,10], center=true)) // ) // ], // col_wrap=true, reverse=true // ); // vnf_polyhedron(vnf); // Example(3D): Assembling a Polyhedron from Multiple Parts // wall_points = [ // for (a = [-90:2:90]) apply( // up(a) * scale([1-0.1*cos(a*6),1-0.1*cos((a+90)*6),1]), // path3d(circle(d=100)) // ) // ]; // cap = [ // for (a = [0:0.01:1+EPSILON]) apply( // up(90-5*sin(a*360*2)) * scale([a,a,1]), // wall_points[0] // ) // ]; // cap1 = [for (p=cap) down(90, p=zscale(-1, p=p))]; // cap2 = [for (p=cap) up(90, p=p)]; // vnf1 = vnf_vertex_array(points=wall_points, col_wrap=true); // vnf2 = vnf_vertex_array(points=cap1, col_wrap=true); // vnf3 = vnf_vertex_array(points=cap2, col_wrap=true, reverse=true); // vnf_polyhedron([vnf1, vnf2, vnf3]); function vnf_vertex_array( points, caps, cap1, cap2, col_wrap=false, row_wrap=false, reverse=false, style="default", vnf=EMPTY_VNF ) = assert(!(any([caps,cap1,cap2]) && !col_wrap), "col_wrap must be true if caps are requested") assert(!(any([caps,cap1,cap2]) && row_wrap), "Cannot combine caps with row_wrap") assert(in_list(style,["default","alt","quincunx", "convex","min_edge"])) assert(is_consistent(points), "Non-rectangular or invalid point array") let( pts = flatten(points), pcnt = len(pts), rows = len(points), cols = len(points[0]) ) rows<=1 || cols<=1 ? vnf : let( cap1 = first_defined([cap1,caps,false]), cap2 = first_defined([cap2,caps,false]), colcnt = cols - (col_wrap?0:1), rowcnt = rows - (row_wrap?0:1), verts = [ each pts, if (style=="quincunx") for (r = [0:1:rowcnt-1], c = [0:1:colcnt-1]) let( i1 = ((r+0)%rows)*cols + ((c+0)%cols), i2 = ((r+1)%rows)*cols + ((c+0)%cols), i3 = ((r+1)%rows)*cols + ((c+1)%cols), i4 = ((r+0)%rows)*cols + ((c+1)%cols) ) mean([pts[i1], pts[i2], pts[i3], pts[i4]]) ] ) vnf_merge(cleanup=false, [ vnf, [ verts, [ for (r = [0:1:rowcnt-1], c=[0:1:colcnt-1]) each let( i1 = ((r+0)%rows)*cols + ((c+0)%cols), i2 = ((r+1)%rows)*cols + ((c+0)%cols), i3 = ((r+1)%rows)*cols + ((c+1)%cols), i4 = ((r+0)%rows)*cols + ((c+1)%cols), faces = style=="quincunx"? let(i5 = pcnt + r*colcnt + c) [[i1,i5,i2],[i2,i5,i3],[i3,i5,i4],[i4,i5,i1]] : style=="alt"? [[i1,i4,i2],[i2,i4,i3]] : style=="min_edge"? let( d42=norm(pts[i4]-pts[i2]), d13=norm(pts[i1]-pts[i3]), shortface = d42<=d13 ? [[i1,i4,i2],[i2,i4,i3]] : [[i1,i3,i2],[i1,i4,i3]] ) shortface : style=="convex"? let( fsets = [ [[i1,i4,i2],[i2,i4,i3]], [[i1,i3,i2],[i1,i4,i3]] ], cps = [for (fset=fsets) [for (f=fset) mean(select(pts,f))]], ns = cps + [for (fset=fsets) [for (f=fset) polygon_normal(select(pts,f))]], dists = [for (i=idx(fsets)) norm(cps[i][1]-cps[i][0]) - norm(ns[i][1]-ns[i][0])], test = reverse? dists[0]>dists[1] : dists[0]EPSILON && norm(verts[face[1]]-verts[face[2]])>EPSILON && norm(verts[face[2]]-verts[face[0]])>EPSILON) face ], rfaces = reverse? [for (face=culled_faces) reverse(face)] : culled_faces ) rfaces, if (cap1) count(cols,reverse=!reverse), if (cap2) count(cols,(rows-1)*cols, reverse=reverse) ] ] ]); // Function: vnf_tri_array() // Usage: // vnf = vnf_tri_array(points, , ) // Description: // Produces a vnf from an array of points where each row length can differ from the adjacent rows by up to 2 in length. This enables // the construction of triangular VNF patches. The resulting VNF can be wrapped along the rows by setting `row_wrap` to true. // Arguments: // points = List of point lists for each row // row_wrap = If true then add faces connecting the first row and last row. These rows must differ by at most 2 in length. // reverse = Set this to reverse the direction of the faces // Examples: Each row has one more point than the preceeding one. // pts = [for(y=[1:1:10]) [for(x=[0:y-1]) [x,y,y]]]; // vnf = vnf_tri_array(pts); // vnf_wireframe(vnf,d=.1); // color("red")move_copies(flatten(pts)) sphere(r=.15,$fn=9); // Examples: Each row has one more point than the preceeding one. // pts = [for(y=[0:2:10]) [for(x=[-y/2:y/2]) [x,y,y]]]; // vnf = vnf_tri_array(pts); // vnf_wireframe(vnf,d=.1); // color("red")move_copies(flatten(pts)) sphere(r=.15,$fn=9); // Example: Chaining two VNFs to construct a cone with one point length change between rows. // pts1 = [for(z=[0:10]) path3d(arc(3+z,r=z/2+1, angle=[0,180]),10-z)]; // pts2 = [for(z=[0:10]) path3d(arc(3+z,r=z/2+1, angle=[180,360]),10-z)]; // vnf = vnf_tri_array(pts1, // vnf=vnf_tri_array(pts2)); // color("green")vnf_wireframe(vnf,d=.1); // vnf_polyhedron(vnf); // Example: Cone with length change two between rows // pts1 = [for(z=[0:1:10]) path3d(arc(3+2*z,r=z/2+1, angle=[0,180]),10-z)]; // pts2 = [for(z=[0:1:10]) path3d(arc(3+2*z,r=z/2+1, angle=[180,360]),10-z)]; // vnf = vnf_tri_array(pts1, // vnf=vnf_tri_array(pts2)); // color("green")vnf_wireframe(vnf,d=.1); // vnf_polyhedron(vnf); // Example: Point count can change irregularly // lens = [10,9,7,5,6,8,8,10]; // pts = [for(y=idx(lens)) lerpn([-lens[y],y,y],[lens[y],y,y],lens[y])]; // vnf = vnf_tri_array(pts); // vnf_wireframe(vnf,d=.1); // color("red")move_copies(flatten(pts)) sphere(r=.15,$fn=9); function vnf_tri_array(points, row_wrap=false, reverse=false, vnf=EMPTY_VNF) = let( lens = [for(row=points) len(row)], rowstarts = [0,each cumsum(lens)], faces = [for(i=[0:1:len(points) - 1 - (row_wrap ? 0 : 1)]) each let( rowstart = rowstarts[i], nextrow = select(rowstarts,i+1), delta = select(lens,i+1)-lens[i] ) delta == 0 ? [for(j=[0:1:lens[i]-2]) reverse ? [j+rowstart+1, j+rowstart, j+nextrow] : [j+rowstart, j+rowstart+1, j+nextrow], for(j=[0:1:lens[i]-2]) reverse ? [j+rowstart+1, j+nextrow, j+nextrow+1] : [j+rowstart+1, j+nextrow+1, j+nextrow]] : delta == 1 ? [for(j=[0:1:lens[i]-2]) reverse ? [j+rowstart+1, j+rowstart, j+nextrow+1] : [j+rowstart, j+rowstart+1, j+nextrow+1], for(j=[0:1:lens[i]-1]) reverse ? [j+rowstart, j+nextrow, j+nextrow+1] : [j+rowstart, j+nextrow+1, j+nextrow]] : delta == -1 ? [for(j=[0:1:lens[i]-3]) reverse ? [j+rowstart+1, j+nextrow, j+nextrow+1]: [j+rowstart+1, j+nextrow+1, j+nextrow], for(j=[0:1:lens[i]-2]) reverse ? [j+rowstart+1, j+rowstart, j+nextrow] : [j+rowstart, j+rowstart+1, j+nextrow]] : let(count = floor((lens[i]-1)/2)) delta == 2 ? [ for(j=[0:1:count-1]) reverse ? [j+rowstart+1, j+rowstart, j+nextrow+1] : [j+rowstart, j+rowstart+1, j+nextrow+1], // top triangles left for(j=[count:1:lens[i]-2]) reverse ? [j+rowstart+1, j+rowstart, j+nextrow+2] : [j+rowstart, j+rowstart+1, j+nextrow+2], // top triangles right for(j=[0:1:count]) reverse ? [j+rowstart, j+nextrow, j+nextrow+1] : [j+rowstart, j+nextrow+1, j+nextrow], // bot triangles left for(j=[count+1:1:select(lens,i+1)-2]) reverse ? [j+rowstart-1, j+nextrow, j+nextrow+1] : [j+rowstart-1, j+nextrow+1, j+nextrow], // bot triangles right ] : delta == -2 ? [ for(j=[0:1:count-2]) reverse ? [j+nextrow, j+nextrow+1, j+rowstart+1] : [j+nextrow, j+rowstart+1, j+nextrow+1], for(j=[count-1:1:lens[i]-4]) reverse ? [j+nextrow,j+nextrow+1,j+rowstart+2] : [j+nextrow,j+rowstart+2, j+nextrow+1], for(j=[0:1:count-1]) reverse ? [j+nextrow, j+rowstart+1, j+rowstart] : [j+nextrow, j+rowstart, j+rowstart+1], for(j=[count:1:select(lens,i+1)]) reverse ? [ j+nextrow-1, j+rowstart+1, j+rowstart]: [ j+nextrow-1, j+rowstart, j+rowstart+1], ] : assert(false,str("Unsupported row length difference of ",delta, " between row ",i," and ",(i+1)%len(points))) ]) vnf_merge(cleanup=true, [vnf, [flatten(points), faces]]); // Module: vnf_polyhedron() // Usage: // vnf_polyhedron(vnf); // vnf_polyhedron([VNF, VNF, VNF, ...]); // Description: // Given a VNF structure, or a list of VNF structures, creates a polyhedron from them. // Arguments: // vnf = A VNF structure, or list of VNF structures. // convexity = Max number of times a line could intersect a wall of the shape. // extent = If true, calculate anchors by extents, rather than intersection. Default: true. // cp = Centerpoint of VNF to use for anchoring when `extent` is false. Default: `[0, 0, 0]` // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `"origin"` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` module vnf_polyhedron(vnf, convexity=2, extent=true, cp=[0,0,0], anchor="origin", spin=0, orient=UP) { vnf = is_vnf_list(vnf)? vnf_merge(vnf) : vnf; cp = is_def(cp) ? cp : vnf_centroid(vnf); attachable(anchor,spin,orient, vnf=vnf, extent=extent, cp=cp) { polyhedron(vnf[0], vnf[1], convexity=convexity); children(); } } // Module: vnf_wireframe() // Usage: // vnf_wireframe(vnf, ); // Description: // Given a VNF, creates a wire frame ball-and-stick model of the polyhedron with a cylinder for each edge and a sphere at each vertex. // Arguments: // vnf = A vnf structure // r|d = radius or diameter of the cylinders forming the wire frame. Default: r=1 // Example: // $fn=32; // ball = sphere(r=20, $fn=6); // vnf_wireframe(ball,d=1); // Example: // include // $fn=32; // cube_oct = regular_polyhedron_info("vnf", name="cuboctahedron", or=20); // vnf_wireframe(cube_oct); // Example: The spheres at the vertex are imperfect at aligning with the cylinders, so especially at low $fn things look prety ugly. This is normal. // include // $fn=8; // octahedron = regular_polyhedron_info("vnf", name="octahedron", or=20); // vnf_wireframe(octahedron,r=5); module vnf_wireframe(vnf, r, d) { r = get_radius(r=r,d=d,dflt=1); vertex = vnf[0]; edges = unique([for (face=vnf[1], i=idx(face)) sort([face[i], select(face,i+1)]) ]); for (e=edges) extrude_from_to(vertex[e[0]],vertex[e[1]]) circle(r=r); move_copies(vertex) sphere(r=r); } // Function: vnf_volume() // Usage: // vol = vnf_volume(vnf); // Description: // Returns the volume enclosed by the given manifold VNF. The VNF must describe a valid polyhedron with consistent face direction and // no holes; otherwise the results are undefined. Returns a positive volume if face direction is clockwise and a negative volume // if face direction is counter-clockwise. // Divide the polyhedron into tetrahedra with the origin as one vertex and sum up the signed volume. function vnf_volume(vnf) = let(verts = vnf[0]) sum([ for(face=vnf[1], j=[1:1:len(face)-2]) cross(verts[face[j+1]], verts[face[j]]) * verts[face[0]] ])/6; // Function: vnf_centroid() // Usage: // vol = vnf_centroid(vnf); // Description: // Returns the centroid of the given manifold VNF. The VNF must describe a valid polyhedron with consistent face direction and // no holes; otherwise the results are undefined. // Divide the solid up into tetrahedra with the origin as one vertex. The centroid of a tetrahedron is the average of its vertices. // The centroid of the total is the volume weighted average. function vnf_centroid(vnf) = let( verts = vnf[0], vol = sum([ for(face=vnf[1], j=[1:1:len(face)-2]) let( v0 = verts[face[0]], v1 = verts[face[j]], v2 = verts[face[j+1]] ) cross(v2,v1)*v0 ]), pos = sum([ for(face=vnf[1], j=[1:1:len(face)-2]) let( v0 = verts[face[0]], v1 = verts[face[j]], v2 = verts[face[j+1]], vol = cross(v2,v1)*v0 ) (v0+v1+v2)*vol ]) ) pos/vol/4; function _triangulate_planar_convex_polygons(polys) = polys==[]? [] : let( tris = [for (poly=polys) if (len(poly)==3) poly], bigs = [for (poly=polys) if (len(poly)>3) poly], newtris = [for (poly=bigs) select(poly,-2,0)], newbigs = [for (poly=bigs) select(poly,0,-2)], newtris2 = _triangulate_planar_convex_polygons(newbigs), outtris = concat(tris, newtris, newtris2) ) outtris; //** // this function may produce degenerate triangles: // _triangulate_planar_convex_polygons([ [for(i=[0:1]) [i,i], // [1,-1], [-1,-1], // for(i=[-1:0]) [i,i] ] ] ) // == [[[-1, -1], [ 0, 0], [0, 0]] // [[-1, -1], [-1, -1], [0, 0]] // [[ 1, -1], [-1, -1], [0, 0]] // [[ 0, 0], [ 1, 1], [1, -1]] ] // // Function: vnf_bend() // Usage: // bentvnf = vnf_bend(vnf); // Description: // Given a VNF that is entirely above, or entirely below the Z=0 plane, bends the VNF around the // Y axis, splitting up faces as necessary. Returns the bent VNF. Will error out if the VNF // straddles the Z=0 plane, or if the bent VNF would wrap more than completely around. The 1:1 // radius is where the curved length of the bent VNF matches the length of the original VNF. If the // `r` or `d` arguments are given, then they will specify the 1:1 radius or diameter. If they are // not given, then the 1:1 radius will be defined by the distance of the furthest vertex in the // original VNF from the Z=0 plane. You can adjust the granularity of the bend using the standard // `$fa`, `$fs`, and `$fn` variables. // Arguments: // vnf = The original VNF to bend. // r = If given, the radius where the size of the original shape is the same as in the original. // d = If given, the diameter where the size of the original shape is the same as in the original. // axis = The axis to wrap around. "X", "Y", or "Z". Default: "Z" // Example(3D): // vnf0 = cube([100,40,10], center=true); // vnf1 = up(50, p=vnf0); // vnf2 = down(50, p=vnf0); // bent1 = vnf_bend(vnf1, axis="Y"); // bent2 = vnf_bend(vnf2, axis="Y"); // vnf_polyhedron([bent1,bent2]); // Example(3D): // vnf0 = linear_sweep(star(n=5,step=2,d=100), height=10); // vnf1 = up(50, p=vnf0); // vnf2 = down(50, p=vnf0); // bent1 = vnf_bend(vnf1, axis="Y"); // bent2 = vnf_bend(vnf2, axis="Y"); // vnf_polyhedron([bent1,bent2]); // Example(3D): // rgn = union(rect([100,20],center=true), rect([20,100],center=true)); // vnf0 = linear_sweep(zrot(45,p=rgn), height=10); // vnf1 = up(50, p=vnf0); // vnf2 = down(50, p=vnf0); // bent1 = vnf_bend(vnf1, axis="Y"); // bent2 = vnf_bend(vnf2, axis="Y"); // vnf_polyhedron([bent1,bent2]); // Example(3D): Bending Around X Axis. // rgnr = union( // rect([20,100],center=true), // back(50, p=trapezoid(w1=40, w2=0, h=20, anchor=FRONT)) // ); // vnf0 = xrot(00,p=linear_sweep(rgnr, height=10)); // vnf1 = up(50, p=vnf0); // #vnf_polyhedron(vnf1); // bent1 = vnf_bend(vnf1, axis="X"); // vnf_polyhedron([bent1]); // Example(3D): Bending Around Y Axis. // rgn = union( // rect([20,100],center=true), // back(50, p=trapezoid(w1=40, w2=0, h=20, anchor=FRONT)) // ); // rgnr = zrot(-90, p=rgn); // vnf0 = xrot(00,p=linear_sweep(rgnr, height=10)); // vnf1 = up(50, p=vnf0); // #vnf_polyhedron(vnf1); // bent1 = vnf_bend(vnf1, axis="Y"); // vnf_polyhedron([bent1]); // Example(3D): Bending Around Z Axis. // rgn = union( // rect([20,100],center=true), // back(50, p=trapezoid(w1=40, w2=0, h=20, anchor=FRONT)) // ); // rgnr = zrot(90, p=rgn); // vnf0 = xrot(90,p=linear_sweep(rgnr, height=10)); // vnf1 = fwd(50, p=vnf0); // #vnf_polyhedron(vnf1); // bent1 = vnf_bend(vnf1, axis="Z"); // vnf_polyhedron([bent1]); function vnf_bend(vnf,r,d,axis="Z") = let( chk_axis = assert(in_list(axis,["X","Y","Z"])), vnf = vnf_triangulate(vnf), verts = vnf[0], bounds = pointlist_bounds(verts), bmin = bounds[0], bmax = bounds[1], dflt = axis=="Z"? max(abs(bmax.y), abs(bmin.y)) : max(abs(bmax.z), abs(bmin.z)), r = get_radius(r=r,d=d,dflt=dflt), width = axis=="X"? (bmax.y-bmin.y) : (bmax.x - bmin.x) ) assert(width <= 2*PI*r, "Shape would wrap more than completely around the cylinder.") let( span_chk = axis=="Z"? assert(bmin.y > 0 || bmax.y < 0, "Entire shape MUST be completely in front of or behind y=0.") : assert(bmin.z > 0 || bmax.z < 0, "Entire shape MUST be completely above or below z=0."), min_ang = 180 * bmin.x / (PI * r), max_ang = 180 * bmax.x / (PI * r), ang_span = max_ang-min_ang, steps = ceil(segs(r) * ang_span/360), step = width / steps, bend_at = axis=="X"? [for(i = [1:1:steps-1]) i*step+bmin.y] : [for(i = [1:1:steps-1]) i*step+bmin.x], facepolys = [for (face=vnf[1]) select(verts,face)], splits = axis=="X"? split_polygons_at_each_y(facepolys, bend_at) : split_polygons_at_each_x(facepolys, bend_at), newtris = _triangulate_planar_convex_polygons(splits), bent_faces = [ for (tri = newtris) [ for (p = tri) let( a = axis=="X"? 180*p.y/(r*PI) * sign(bmax.z) : axis=="Y"? 180*p.x/(r*PI) * sign(bmax.z) : 180*p.x/(r*PI) * sign(bmax.y) ) axis=="X"? [p.x, p.z*sin(a), p.z*cos(a)] : axis=="Y"? [p.z*sin(a), p.y, p.z*cos(a)] : [p.y*sin(a), p.y*cos(a), p.z] ] ] ) vnf_add_faces(faces=bent_faces); // Function&Module: vnf_validate() // Usage: As Function // fails = vnf_validate(vnf); // Usage: As Module // vnf_validate(vnf, ); // Description: // When called as a function, returns a list of non-manifold errors with the given VNF. // Each error has the format `[ERR_OR_WARN,CODE,MESG,POINTS,COLOR]`. // When called as a module, echoes the non-manifold errors to the console, and color hilites the // bad edges and vertices, overlaid on a transparent gray polyhedron of the VNF. // . // Currently checks for these problems: // Type | Color | Code | Message // ------- | -------- | ------------ | --------------------------------- // WARNING | Yellow | BIG_FACE | Face has more than 3 vertices, and may confuse CGAL. // WARNING | Brown | NULL_FACE | Face has zero area. // ERROR | Cyan | NONPLANAR | Face vertices are not coplanar. // ERROR | Brown | DUP_FACE | Multiple instances of the same face. // ERROR | Orange | MULTCONN | Multiply Connected Geometry. Too many faces attached at Edge. // ERROR | Violet | REVERSAL | Faces reverse across edge. // ERROR | Red | T_JUNCTION | Vertex is mid-edge on another Face. // ERROR | Blue | FACE_ISECT | Faces intersect. // ERROR | Magenta | HOLE_EDGE | Edge bounds Hole. // . // Still to implement: // - Overlapping coplanar faces. // Arguments: // vnf = The VNF to validate. // size = The width of the lines and diameter of points used to highlight edges and vertices. Module only. Default: 1 // check_isects = If true, performs slow checks for intersecting faces. Default: false // Example: BIG_FACE Warnings; Faces with More Than 3 Vertices. CGAL often will fail to accept that a face is planar after a rotation, if it has more than 3 vertices. // vnf = skin([ // path3d(regular_ngon(n=3, d=100),0), // path3d(regular_ngon(n=5, d=100),100) // ], slices=0, caps=true, method="tangent"); // vnf_validate(vnf); // Example: NONPLANAR Errors; Face Vertices are Not Coplanar // a = [ 0, 0,-50]; // b = [-50,-50, 50]; // c = [-50, 50, 50]; // d = [ 50, 50, 60]; // e = [ 50,-50, 50]; // vnf = vnf_add_faces(faces=[ // [a, b, e], [a, c, b], [a, d, c], [a, e, d], [b, c, d, e] // ]); // vnf_validate(vnf); // Example: MULTCONN Errors; More Than Two Faces Attached to the Same Edge. This confuses CGAL, and can lead to failed renders. // vnf = vnf_triangulate(linear_sweep(union(square(50), square(50,anchor=BACK+RIGHT)), height=50)); // vnf_validate(vnf); // Example: REVERSAL Errors; Faces Reversed Across Edge // vnf1 = skin([ // path3d(square(100,center=true),0), // path3d(square(100,center=true),100), // ], slices=0, caps=false); // vnf = vnf_add_faces(vnf=vnf1, faces=[ // [[-50,-50, 0], [ 50, 50, 0], [-50, 50, 0]], // [[-50,-50, 0], [ 50,-50, 0], [ 50, 50, 0]], // [[-50,-50,100], [-50, 50,100], [ 50, 50,100]], // [[-50,-50,100], [ 50,-50,100], [ 50, 50,100]], // ]); // vnf_validate(vnf); // Example: T_JUNCTION Errors; Vertex is Mid-Edge on Another Face. // vnf1 = skin([ // path3d(square(100,center=true),0), // path3d(square(100,center=true),100), // ], slices=0, caps=false); // vnf = vnf_add_faces(vnf=vnf1, faces=[ // [[-50,-50,0], [50,50,0], [-50,50,0]], // [[-50,-50,0], [50,-50,0], [50,50,0]], // [[-50,-50,100], [-50,50,100], [0,50,100]], // [[-50,-50,100], [0,50,100], [0,-50,100]], // [[0,-50,100], [0,50,100], [50,50,100]], // [[0,-50,100], [50,50,100], [50,-50,100]], // ]); // vnf_validate(vnf); // Example: FACE_ISECT Errors; Faces Intersect // vnf = vnf_merge([ // vnf_triangulate(linear_sweep(square(100,center=true), height=100)), // move([75,35,30],p=vnf_triangulate(linear_sweep(square(100,center=true), height=100))) // ]); // vnf_validate(vnf,size=2,check_isects=true); // Example: HOLE_EDGE Errors; Edges Adjacent to Holes. // vnf = skin([ // path3d(regular_ngon(n=4, d=100),0), // path3d(regular_ngon(n=5, d=100),100) // ], slices=0, caps=false); // vnf_validate(vnf,size=2); function vnf_validate(vnf, show_warns=true, check_isects=false) = assert(is_path(vnf[0])) let( vnf = vnf_compact(vnf), varr = vnf[0], faces = vnf[1], lvarr = len(varr), edges = sort([ for (face=faces, edge=pair(face,true)) edge[0]=3) face ], face_areas = [ for (face = faces) len(face) < 3? 0 : polygon_area([for (k=face) varr[k]]) ], edgecnts = unique_count(edges), uniq_edges = edgecnts[0], issues = [] ) let( big_faces = !show_warns? [] : [ for (face = faces) if (len(face) > 3) _vnf_validate_err("BIG_FACE", [for (i=face) varr[i]]) ], null_faces = !show_warns? [] : [ for (i = idx(faces)) let( face = faces[i], area = face_areas[i], faceverts = [for (k=face) varr[k]] ) if (is_num(area) && abs(area) < EPSILON) _vnf_validate_err("NULL_FACE", faceverts) ], issues = concat(big_faces, null_faces) ) let( bad_indices = [ for (face = faces, idx = face) if (idx < 0 || idx >= lvarr) _vnf_validate_err("BAD_INDEX", [idx]) ], issues = concat(issues, bad_indices) ) issues? issues : let( repeated_faces = [ for (i=idx(dfaces), j=idx(dfaces)) if (i!=j) let( face1 = dfaces[i], face2 = dfaces[j] ) if (min(face1) == min(face2)) let( min1 = min_index(face1), min2 = min_index(face2) ) if (min1 == min2) let( sface1 = list_rotate(face1,min1), sface2 = list_rotate(face2,min2) ) if (sface1 == sface2) _vnf_validate_err("DUP_FACE", [for (i=sface1) varr[i]]) ], issues = concat(issues, repeated_faces) ) issues? issues : let( multconn_edges = unique([ for (i = idx(uniq_edges)) if (edgecnts[1][i]>2) _vnf_validate_err("MULTCONN", [for (i=uniq_edges[i]) varr[i]]) ]), issues = concat(issues, multconn_edges) ) issues? issues : let( reversals = unique([ for(i = idx(dfaces), j = idx(dfaces)) if(i != j) for(edge1 = pair(faces[i],true)) for(edge2 = pair(faces[j],true)) if(edge1 == edge2) // Valid adjacent faces will never have the same vertex ordering. if(_edge_not_reported(edge1, varr, multconn_edges)) _vnf_validate_err("REVERSAL", [for (i=edge1) varr[i]]) ]), issues = concat(issues, reversals) ) issues? issues : let( t_juncts = unique([ for (v=idx(varr), edge=uniq_edges) let( ia = edge[0], ib = v, ic = edge[1] ) if (ia!=ib && ib!=ic && ia!=ic) let( a = varr[ia], b = varr[ib], c = varr[ic] ) if (!approx(a,b) && !approx(b,c) && !approx(a,c)) let( pt = segment_closest_point([a,c],b) ) if (approx(pt,b)) _vnf_validate_err("T_JUNCTION", [b]) ]), issues = concat(issues, t_juncts) ) issues? issues : let( isect_faces = !check_isects? [] : unique([ for (i = [0:1:len(faces)-2]) let( f1 = faces[i], poly1 = select(varr, faces[i]), plane1 = plane3pt(poly1[0], poly1[1], poly1[2]), normal1 = [plane1[0], plane1[1], plane1[2]] ) for (j = [i+1:1:len(faces)-1]) let( f2 = faces[j], poly2 = select(varr, f2), val = poly2 * normal1 ) if( min(val)<=plane1[3] && max(val)>=plane1[3] ) let( plane2 = plane_from_polygon(poly2), normal2 = [plane2[0], plane2[1], plane2[2]], val = poly1 * normal2 ) if( min(val)<=plane2[3] && max(val)>=plane2[3] ) let( shared_edges = [ for (edge1 = pair(f1, true), edge2 = pair(f2, true)) if (edge1 == [edge2[1], edge2[0]]) 1 ] ) if (!shared_edges) let( line = plane_intersection(plane1, plane2) ) if (!is_undef(line)) let( isects = polygon_line_intersection(poly1, line) ) if (!is_undef(isects)) for (isect = isects) if (len(isect) > 1) let( isects2 = polygon_line_intersection(poly2, isect, bounded=true) ) if (!is_undef(isects2)) for (seg = isects2) if (seg[0] != seg[1]) _vnf_validate_err("FACE_ISECT", seg) ]), issues = concat(issues, isect_faces) ) issues? issues : let( hole_edges = unique([ for (i=idx(uniq_edges)) if (edgecnts[1][i]<2) if (_pts_not_reported(uniq_edges[i], varr, t_juncts)) if (_pts_not_reported(uniq_edges[i], varr, isect_faces)) _vnf_validate_err("HOLE_EDGE", [for (i=uniq_edges[i]) varr[i]]) ]), issues = concat(issues, hole_edges) ) issues? issues : let( nonplanars = unique([ for (i = idx(faces)) let( face = faces[i], area = face_areas[i], faceverts = [for (k=face) varr[k]] ) if (is_num(area) && abs(area) > EPSILON) if (!coplanar(faceverts)) _vnf_validate_err("NONPLANAR", faceverts) ]), issues = concat(issues, nonplanars) ) issues; _vnf_validate_errs = [ ["BIG_FACE", "WARNING", "cyan", "Face has more than 3 vertices, and may confuse CGAL"], ["NULL_FACE", "WARNING", "blue", "Face has zero area."], ["BAD_INDEX", "ERROR", "cyan", "Invalid face vertex index."], ["NONPLANAR", "ERROR", "yellow", "Face vertices are not coplanar"], ["DUP_FACE", "ERROR", "brown", "Multiple instances of the same face."], ["MULTCONN", "ERROR", "orange", "Multiply Connected Geometry. Too many faces attached at Edge"], ["REVERSAL", "ERROR", "violet", "Faces Reverse Across Edge"], ["T_JUNCTION", "ERROR", "magenta", "Vertex is mid-edge on another Face"], ["FACE_ISECT", "ERROR", "brown", "Faces intersect"], ["HOLE_EDGE", "ERROR", "red", "Edge bounds Hole"] ]; function _vnf_validate_err(name, extra) = let( info = [for (x = _vnf_validate_errs) if (x[0] == name) x][0] ) concat(info, [extra]); function _pts_not_reported(pts, varr, reports) = [ for (i = pts, report = reports, pt = report[3]) if (varr[i] == pt) 1 ] == []; function _edge_not_reported(edge, varr, reports) = let( edge = sort([for (i=edge) varr[i]]) ) [ for (report = reports) let( pts = sort(report[3]) ) if (len(pts)==2 && edge == pts) 1 ] == []; module vnf_validate(vnf, size=1, show_warns=true, check_isects=false) { faults = vnf_validate( vnf, show_warns=show_warns, check_isects=check_isects ); for (fault = faults) { err = fault[0]; typ = fault[1]; clr = fault[2]; msg = fault[3]; pts = fault[4]; echo(str(typ, " ", err, " (", clr ,"): ", msg, " at ", pts)); color(clr) { if (is_vector(pts[0])) { if (len(pts)==2) { stroke(pts, width=size, closed=true, endcaps="butt", hull=false, $fn=8); } else if (len(pts)>2) { stroke(pts, width=size, closed=true, hull=false, $fn=8); polyhedron(pts,[[for (i=idx(pts)) i]]); } else { move_copies(pts) sphere(d=size*3, $fn=18); } } } } color([0.5,0.5,0.5,0.67]) vnf_polyhedron(vnf); } // Section: VNF Transformations // Function: vnf_halfspace() // Usage: // vnf_halfspace([a,b,c,d], vnf) // Description: // returns the intersection of the VNF with the given half-space. // Arguments: // halfspace = half-space to intersect with, given as the four coefficients of the affine inequation a\*x+b\*y+c\*z≥ d. function _vnf_halfspace_pts(halfspace, points, faces, inside=undef, coords=[], map=[]) = /* Recursive function to compute the intersection of points (and edges, * but not faces) with with the half-space. * Parameters: * halfspace a vector(4) * points a list of points3d * faces a list of indexes in points * inside a vector{bool} determining which points belong to the * half-space; if undef, it is initialized at first loop. * coords the coordinates of the points in the intersection * map the logical map (old point) → (new point(s)): * if point i is kept, then map[i] = new-index-for-i; * if point i is dropped, then map[i] = [[j1, k1], [j2, k2], …], * where points j1,… are kept (old index) * and k1,… are the matching intersections (new index). * Returns the triple [coords, map, inside]. * */ let(i=len(map), n=len(coords)) // we are currently processing point i // termination test: i >= len(points) ? [ coords, map, inside ] : let(inside = !is_undef(inside) ? inside : [for(x=points) halfspace*concat(x,[-1]) >= 0], pi = points[i]) // inside half-space: keep the point (and reindex) inside[i] ? _vnf_halfspace_pts(halfspace, points, faces, inside, concat(coords, [pi]), concat(map, [n])) : // else: compute adjacent vertices (adj) let(adj = unique([for(f=faces) let(m=len(f), j=search(i, f)[0]) each if(j!=undef) [f[(j+1)%m], f[(j+m-1)%m]] ]), // filter those which lie in half-space: adj2 = [for(x=adj) if(inside[x]) x], zi = halfspace*concat(pi, [-1])) _vnf_halfspace_pts(halfspace, points, faces, inside, // new points: we append all these intersection points concat(coords, [for(j=adj2) let(zj=halfspace*concat(points[j],[-1])) (zi*points[j]-zj*pi)/(zi-zj)]), // map: we add the info concat(map, [[for(y=enumerate(adj2)) [y[1], n+y[0]]]])); function _vnf_halfspace_face(face, map, inside, i=0, newface=[], newedge=[], exit) = /* Recursive function to intersect a face of the VNF with the half-plane. * Arguments: * face: the list of points of the face (old indices). * map: as produced by _vnf_halfspace_pts * inside: vector{bool} containing half-space info * i: index for iteration * exit: boolean; is first point in newedge an exit or an entrance from * half-space? * newface: list of (new indexes of) points on the face * newedge: list of new points on the plane (even number of points) * Return value: [newface, new-edges], where new-edges is a list of * pairs [entrance-node, exit-node] (new indices). */ // termination condition: (i >= len(face)) ? [ newface, // if exit==true then we return newedge[1,0], newedge[3,2], ... // otherwise newedge[0,1], newedge[2,3], ...; // all edges are oriented (entrance->exit), so that by following the // arrows we obtain a correctly-oriented face: let(k = exit ? 0 : 1) [for(i=[0:2:len(newedge)-2]) [newedge[i+k], newedge[i+1-k]]] ] : // recursion case: p is current point on face, q is next point let(p = face[i], q = face[(i+1)%len(face)], // if p is inside half-plane, keep it in the new face: newface0 = inside[p] ? concat(newface, [map[p]]) : newface) // if the current segment does not intersect, this is all: inside[p] == inside[q] ? _vnf_halfspace_face(face, map, inside, i+1, newface0, newedge, exit) : // otherwise, we must add the intersection point: // rename the two points p,q as inner and outer point: let(in = inside[p] ? p : q, out = p+q-in, inter=[for(a=map[out]) if(a[0]==in) a[1]][0]) _vnf_halfspace_face(face, map, inside, i+1, concat(newface0, [inter]), concat(newedge, [inter]), is_undef(exit) ? inside[p] : exit); function _vnf_halfspace_path_search_edge(edge, paths, i=0, ret=[undef,undef]) = /* given an oriented edge [x,y] and a set of oriented paths, * returns the indices [i,j] of paths [before, after] given edge */ // termination condition i >= len(paths) ? ret: _vnf_halfspace_path_search_edge(edge, paths, i+1, [last(paths[i]) == edge[0] ? i : ret[0], paths[i][0] == edge[1] ? i : ret[1]]); function _vnf_halfspace_paths(edges, i=0, paths=[]) = /* given a set of oriented edges [x,y], returns all paths [x,y,z,..] that may be formed from these edges. A closed path will be returned with equal first and last point. i: index of currently examined edge */ i >= len(edges) ? paths : // termination condition let(e=edges[i], s = _vnf_halfspace_path_search_edge(e, paths)) _vnf_halfspace_paths(edges, i+1, // we keep all paths untouched by e[i] concat([for(i=[0:1:len(paths)-1]) if(i!= s[0] && i != s[1]) paths[i]], is_undef(s[0])? ( // fresh e: create a new path is_undef(s[1]) ? [e] : // e attaches to beginning of previous path [concat([e[0]], paths[s[1]])] ) :// edge attaches to end of previous path is_undef(s[1]) ? [concat(paths[s[0]], [e[1]])] : // edge merges two paths s[0] != s[1] ? [concat(paths[s[0]], paths[s[1]])] : // edge closes a loop [concat(paths[s[0]], [e[1]])])); function vnf_halfspace(_arg1=_undef, _arg2=_undef, halfspace=_undef, vnf=_undef) = // here is where we wish that OpenSCAD had array lvalues... let(args=get_named_args([_arg1, _arg2], [[halfspace],[vnf]]), halfspace=args[0], vnf=args[1]) assert(is_vector(halfspace, 4), "half-space must be passed as a length 4 affine form") assert(is_vnf(vnf), "must pass a vnf") // read points let(tmp1=_vnf_halfspace_pts(halfspace, vnf[0], vnf[1]), coords=tmp1[0], map=tmp1[1], inside=tmp1[2], // cut faces and generate edges tmp2= [for(f=vnf[1]) _vnf_halfspace_face(f, map, inside)], newfaces=[for(x=tmp2) if(x[0]!=[]) x[0]], newedges=[for(x=tmp2) each x[1]], // generate new faces paths=_vnf_halfspace_paths(newedges), loops=[for(p=paths) if(p[0] == last(p)) p]) [coords, concat(newfaces, loops)]; // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap