////////////////////////////////////////////////////////////////////// // LibFile: attachments.scad // This is the file that handles attachments and orientation of children. // To use, add the following lines to the beginning of your file: // ``` // include // ``` ////////////////////////////////////////////////////////////////////// // Default values for attachment code. $tags = ""; $overlap = 0.01; $color = undef; $attach_to = undef; $attach_anchor = [CENTER, CENTER, UP, 0]; $attach_norot = false; $parent_anchor = BOTTOM; $parent_spin = 0; $parent_orient = UP; $parent_size = undef; $parent_geom = undef; $tags_shown = []; $tags_hidden = []; // Section: Anchors, Spin, and Orientation // This library adds the concept of anchoring, spin and orientation to the `cube()`, `cylinder()` // and `sphere()` builtins, as well as to most of the shapes provided by this library itself. // * An anchor is a place on an object which you can align the object to, or attach other objects // to using `attach()` or `position()`. An anchor has a position, a direction, and a spin. // The direction and spin are used to orient other objects to match when using `attach()`. // * Spin is a simple rotation around the Z axis. // * Orientation is rotating an object so that its top is pointed towards a given vector. // An object will first be translated to its anchor position, then spun, then oriented. // // ## Anchor // Anchoring is specified with the `anchor` argument in most shape modules. // Specifying `anchor` when creating an object will translate the object so // that the anchor point is at the origin (0,0,0). Anchoring always occurs // before spin and orientation are applied. // // An anchor can be referred to in one of two ways; as a directional vector, // or as a named anchor string. // // When given as a vector, it points, in a general way, towards the face, edge, or // corner of the object that you want the anchor for, relative to the center of // the object. There are directional constants named `TOP`, `BOTTOM`, `FRONT`, `BACK`, // `LEFT`, and `RIGHT` that you can add together to specify an anchor point. // For example: // - `[0,0,1]` is the same as `TOP` and refers to the center of the top face. // - `[-1,0,1]` is the same as `TOP+LEFT`, and refers to the center of the top-left edge. // - `[1,1,-1]` is the same as `BOTTOM+BACK+RIGHT`, and refers to the bottom-back-right corner. // // The components of the directional vector should all be `1`, `0`, or `-1`. // When the object is cylindrical, conical, or spherical in nature, the anchors will be // located around the surface of the cylinder, cone, or sphere, relative to the center. // The direction of a face anchor will be perpendicular to the face, pointing outward. // The direction of a edge anchor will be the average of the anchor directions of the // two faces the edge is between. The direction of a corner anchor will be the average // of the anchor directions of the three faces the corner is on. The spin of all standard // anchors is 0. // // Some more complex objects, like screws and stepper motors, have named anchors // to refer to places on the object that are not at one of the standard faces, edges // or corners. For example, stepper motors have anchors for `"screw1"`, `"screw2"`, // etc. to refer to the various screwholes on the stepper motor shape. The names, // positions, directions, and spins of these anchors will be specific to the object, // and will be documented when they exist. // // ## Spin // Spin is specified with the `spin` argument in most shape modules. Specifying `spin` // when creating an object will rotate the object counter-clockwise around the Z axis // by the given number of degrees. Spin is always applied after anchoring, and before // orientation. // // ## Orient // Orientation is specified with the `orient` argument in most shape modules. Specifying // `orient` when creating an object will rotate the object such that the top of the // object will be pointed at the vector direction given in the `orient` argument. // Orientation is always applied after anchoring and spin. The constants `UP`, `DOWN`, // `FRONT`, `BACK`, `LEFT`, and `RIGHT` can be added together to form the directional // vector for this. ie: `LEFT+BACK` // Section: Functions // Function: anchorpt() // Usage: // anchor(name, pos, [dir], [rot]) // Description: // Creates a anchor data structure. // Arguments: // name = The string name of the anchor. Lowercase. Words separated by single dashes. No spaces. // pos = The [X,Y,Z] position of the anchor. // orient = A vector pointing in the direction parts should project from the anchor position. // spin = If needed, the angle to rotate the part around the direction vector. function anchorpt(name, pos=[0,0,0], orient=UP, spin=0) = [name, pos, orient, spin]; // Function: attach_geom() // // Usage: // geom = attach_geom(anchor, spin, [orient], two_d, size, [size2], [shift], [offset], [anchors]); // geom = attach_geom(anchor, spin, [orient], two_d, r|d, [offset], [anchors]); // geom = attach_geom(anchor, spin, [orient], two_d, path, [extent], [offset], [anchors]); // geom = attach_geom(anchor, spin, [orient], size, [size2], [shift], [offset], [anchors]); // geom = attach_geom(anchor, spin, [orient], r|d, l, [offset], [anchors]); // geom = attach_geom(anchor, spin, [orient], r1|d1, r2|d2, l, [offset], [anchors]); // geom = attach_geom(anchor, spin, [orient], r|d, [offset], [anchors]); // geom = attach_geom(anchor, spin, [orient], vnf, [extent], [offset], [anchors]); // // Description: // Given arguments that describe the geometry of an attachable object, returns the internal geometry description. // // Arguments: // size = If given as a 3D vector, contains the XY size of the bottom of the cuboidal/prismoidal volume, and the Z height. If given as a 2D vector, contains the front X width of the rectangular/trapezoidal shape, and the Y length. // size2 = If given as a 2D vector, contains the XY size of the top of the prismoidal volume. If given as a number, contains the back width of the trapezoidal shape. // shift = If given as a 2D vector, shifts the top of the prismoidal or conical shape by the given amount. If given as a number, shifts the back of the trapezoidal shape right by that amount. Default: No shift. // r = Radius of the cylindrical/conical volume. Can be a scalar, or a list of sizes per axis. // d = Diameter of the cylindrical/conical volume. Can be a scalar, or a list of sizes per axis. // r1 = Radius of the bottom of the conical volume. Can be a scalar, or a list of sizes per axis. // r2 = Radius of the top of the conical volume. Can be a scalar, or a list of sizes per axis. // d1 = Diameter of the bottom of the conical volume. Can be a scalar, a list of sizes per axis. // d2 = Diameter of the top of the conical volume. Can be a scalar, a list of sizes per axis. // l = Length of the cylindrical/conical volume along axis. // vnf = The [VNF](vnf.scad) of the volume. // path = The path to generate a polygon from. // extent = If true, calculate anchors by extents, rather than intersection. Default: true. // offset = If given, offsets the center of the volume. // anchors = If given as a list of anchor points, allows named anchor points. // two_d = If true, the attachable shape is 2D. If false, 3D. Default: false (3D) // // Example(NORENDER): Cubical Shape // geom = attach_geom(anchor, spin, orient, size=size); // // Example(NORENDER): Prismoidal Shape // geom = attach_geom( // anchor, spin, orient, // size=point3d(botsize,h), // size2=topsize, shift=shift // ); // // Example(NORENDER): Cylindrical Shape // geom = attach_geom(anchor, spin, orient, r=r, h=h); // // Example(NORENDER): Conical Shape // geom = attach_geom(anchor, spin, orient, r1=r1, r2=r2, h=h); // // Example(NORENDER): Spherical Shape // geom = attach_geom(anchor, spin, orient, r=r); // // Example(NORENDER): Arbitrary VNF Shape // geom = attach_geom(anchor, spin, orient, vnf=vnf); // // Example(NORENDER): 2D Rectangular Shape // geom = attach_geom(anchor, spin, orient, size=size); // // Example(NORENDER): 2D Trapezoidal Shape // geom = attach_geom( // anchor, spin, orient, // size=[x1,y], size2=x2, shift=shift // ); // // Example(NORENDER): 2D Circular Shape // geom = attach_geom(anchor, spin, orient, two_d=true, r=r); // // Example(NORENDER): Arbitrary 2D Polygon Shape // geom = attach_geom(anchor, spin, orient, path=path); // function attach_geom( size, size2, shift, r,r1,r2, d,d1,d2, l,h, vnf, path, extent=true, offset=[0,0,0], anchors=[], two_d=false ) = assert(is_bool(extent)) assert(is_vector(offset)) assert(is_list(anchors)) assert(is_bool(two_d)) !is_undef(size)? ( two_d? ( let( size2 = default(size2, size.x), shift = default(shift, 0) ) assert(is_vector(size,2)) assert(is_num(size2)) assert(is_num(shift)) ["rect", point2d(size), size2, shift, offset, anchors] ) : ( let( size2 = default(size2, point2d(size)), shift = default(shift, [0,0]) ) assert(is_vector(size,3)) assert(is_vector(size2,2)) assert(is_vector(shift,2)) ["cuboid", size, size2, shift, offset, anchors] ) ) : !is_undef(vnf)? ( assert(is_vnf(vnf)) assert(two_d == false) extent? ["vnf_extent", vnf, offset, anchors] : ["vnf_isect", vnf, offset, anchors] ) : !is_undef(path)? ( assert(is_path(path),2) assert(two_d == true) extent? ["path_extent", path, offset, anchors] : ["path_isect", path, offset, anchors] ) : let( r1 = get_radius(r1=r1,d1=d1,r=r,d=d,dflt=undef) ) !is_undef(r1)? ( let( l = default(l, h) ) !is_undef(l)? ( let( shift = default(shift, [0,0]), r2 = get_radius(r1=r2,d1=d2,r=r,d=d,dflt=undef) ) assert(is_num(r1) || is_vector(r1,2)) assert(is_num(r2) || is_vector(r2,2)) assert(is_num(l)) assert(is_vector(shift,2)) ["cyl", r1, r2, l, shift, offset, anchors] ) : ( two_d? ( assert(is_num(r1) || is_vector(r1,2)) ["circle", r1, offset, anchors] ) : ( assert(is_num(r1) || is_vector(r1,3)) ["spheroid", r1, offset, anchors] ) ) ) : assert(false, "Unrecognizable geometry description."); // Function: attach_geom_2d() // Usage: // attach_geom_2d(geom); // Description: // Returns true if the given attachment geometry description is for a 2D shape. function attach_geom_2d(geom) = let( type = geom[0] ) type == "rect" || type == "circle" || type == "path_isect" || type == "path_extent"; // Function: attach_geom_size() // Usage: // attach_geom_size(geom); // Description: // Returns the `[X,Y,Z]` bounding size for the given attachment geometry description. function attach_geom_size(geom) = let( type = geom[0] ) type == "cuboid"? ( //size, size2, shift let( size=geom[1], size2=geom[2], shift=point2d(geom[3]), maxx = max(size.x,size2.x), maxy = max(size.y,size2.y), z = size.z ) [maxx, maxy, z] ) : type == "cyl"? ( //r1, r2, l, shift let( r1=geom[1], r2=geom[2], l=geom[3], shift=point2d(geom[4]), rx1 = default(r1[0],r1), ry1 = default(r1[1],r1), rx2 = default(r2[0],r2), ry2 = default(r2[1],r2), maxxr = max(rx1,rx2), maxyr = max(ry1,ry2) ) [2*maxxr,2*maxyr,l] ) : type == "spheroid"? ( //r let( r=geom[1] ) is_num(r)? [2,2,2]*r : vmul([2,2,2],r) ) : type == "vnf_extent" || type=="vnf_isect"? ( //vnf let( mm = pointlist_bounds(geom[1][0]), delt = mm[1]-mm[0] ) delt ) : type == "rect"? ( //size, size2 let( size=geom[1], size2=geom[2], maxx = max(size.x,size2) ) [maxx, size.y] ) : type == "circle"? ( //r let( r=geom[1] ) is_num(r)? [2,2]*r : vmul([2,2],r) ) : type == "path_isect" || type == "path_extent"? ( //path let( mm = pointlist_bounds(geom[1]), delt = mm[1]-mm[0] ) [delt.x, delt.y] ) : assert(false, "Unknown attachment geometry type."); // Function: attach_transform() // Usage: // mat = attach_transform(anchor=CENTER, spin=0, orient=UP, geom); // Description: // Returns the affine3d transformation matrix needed to `anchor`, `spin`, and `orient` // the given geometry `geom` shape into position. // Arguments: // anchor = Anchor point to translate to the origin `[0,0,0]`. See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // geom = The geometry description of the shape. // p = If given as a VNF, path, or point, applies the affine3d transformation matrix to it and returns the result. function attach_transform(anchor=CENTER, spin=0, orient=UP, geom, p) = assert(is_string(anchor) || is_vector(anchor)) assert(is_vector(orient)) let( two_d = attach_geom_2d(geom), m = ($attach_to != undef)? ( let( anch = find_anchor($attach_to, geom), pos = anch[1] ) two_d? ( assert(two_d && is_num(spin)) affine3d_zrot(spin) * rot(to=FWD, from=point3d(anch[2])) * affine3d_translate(point3d(-pos)) ) : ( assert(is_num(spin) || is_vector(spin,3)) let( ang = vector_angle(anch[2], DOWN), axis = vector_axis(anch[2], DOWN), ang2 = (anch[2]==UP || anch[2]==DOWN)? 0 : 180-anch[3], axis2 = rot(p=axis,[0,0,ang2]) ) affine3d_rot_by_axis(axis2,ang) * ( is_num(spin)? affine3d_zrot(ang2+spin) : ( affine3d_zrot(spin.z) * affine3d_yrot(spin.y) * affine3d_xrot(spin.x) * affine3d_zrot(ang2) ) ) * affine3d_translate(point3d(-pos)) ) ) : ( let( pos = find_anchor(anchor, geom)[1] ) two_d? ( assert(two_d && is_num(spin)) affine3d_zrot(spin) * affine3d_translate(point3d(-pos)) ) : ( assert(is_num(spin) || is_vector(spin,3)) let( axis = vector_axis(UP,orient), ang = vector_angle(UP,orient) ) affine3d_rot_by_axis(axis,ang) * ( is_num(spin)? affine3d_zrot(spin) : ( affine3d_zrot(spin.z) * affine3d_yrot(spin.y) * affine3d_xrot(spin.x) ) ) * affine3d_translate(point3d(-pos)) ) ) ) is_undef(p)? m : is_vnf(p)? [apply(m, p[0]), p[1]] : apply(m, p); // Function: find_anchor() // Usage: // find_anchor(anchor, geom); // Description: // Calculates the anchor data for the given `anchor` vector or name, in the given attachment // geometry. Returns `[ANCHOR, POS, VEC, ANG]` where `ANCHOR` is the requested anchorname // or vector, `POS` is the anchor position, `VEC` is the direction vector of the anchor, and // `ANG` is the angle to align with around the rotation axis of th anchor direction vector. // Arguments: // anchor = Vector or named anchor string. // geom = The geometry description of the shape. function find_anchor(anchor, geom) = let( offset = anchor==CENTER? CENTER : select(geom,-2), anchors = select(geom,-1), type = geom[0] ) is_string(anchor)? ( let(found = search([anchor], anchors, num_returns_per_match=1)[0]) assert(found!=[], str("Unknown anchor: ",anchor)) anchors[found] ) : assert(is_vector(anchor),str("anchor=",anchor)) let(anchor = point3d(anchor)) anchor==CENTER? [anchor, CENTER, UP, 0] : let( oang = ( approx(point2d(anchor), [0,0])? 0 : atan2(anchor.y, anchor.x)+90 ) ) type == "cuboid"? ( //size, size2, shift let( size=geom[1], size2=geom[2], shift=point2d(geom[3]), h = size.z, u = (anchor.z+1)/2, axy = point2d(anchor), bot = point3d(vmul(point2d(size)/2,axy),-h/2), top = point3d(vmul(point2d(size2)/2,axy)+shift,h/2), pos = lerp(bot,top,u)+offset, sidevec = unit(rot(from=UP, to=top-bot, p=point3d(axy))), vvec = unit([0,0,anchor.z]), vec = anchor==CENTER? UP : approx(axy,[0,0])? unit(anchor) : approx(anchor.z,0)? sidevec : unit((sidevec+vvec)/2) ) [anchor, pos, vec, oang] ) : type == "cyl"? ( //r1, r2, l, shift let( rr1=geom[1], rr2=geom[2], l=geom[3], shift=point2d(geom[4]), r1 = is_num(rr1)? [rr1,rr1] : rr1, r2 = is_num(rr2)? [rr2,rr2] : rr2, u = (anchor.z+1)/2, axy = unit(point2d(anchor)), bot = point3d(vmul(r1,axy), -l/2), top = point3d(vmul(r2,axy)+shift, l/2), pos = lerp(bot,top,u)+offset, sidevec = rot(from=UP, to=top-bot, p=point3d(axy)), vvec = unit([0,0,anchor.z]), vec = anchor==CENTER? UP : approx(axy,[0,0])? unit(anchor) : approx(anchor.z,0)? sidevec : unit((sidevec+vvec)/2) ) [anchor, pos, vec, oang] ) : type == "spheroid"? ( //r let( rr = geom[1], r = is_num(rr)? [rr,rr,rr] : rr, anchor = unit(point3d(anchor)) ) [anchor, vmul(r,anchor)+offset, unit(vmul(r,anchor)), oang] ) : type == "vnf_isect"? ( //vnf let( vnf=geom[1], eps = 1/2048, rpts = rot(from=anchor, to=RIGHT, p=vnf[0]), hits = [ for (i = idx(vnf[1])) let( face = vnf[1][i], verts = select(rpts, face) ) if ( max(subindex(verts,0)) >= -eps && max(subindex(verts,1)) >= -eps && max(subindex(verts,2)) >= -eps && min(subindex(verts,1)) <= eps && min(subindex(verts,2)) <= eps ) let( pt = polygon_line_intersection( select(vnf[0], face), [CENTER,anchor], eps=eps ) ) if (!is_undef(pt)) [norm(pt),i,pt] ] ) assert(len(hits)>0, "Anchor vector does not intersect with the shape. Attachment failed.") let( furthest = max_index(subindex(hits,0)), pos = hits[furthest][2], dist = hits[furthest][0], nfaces = [for (hit = hits) if(approx(hit[0],dist,eps=eps)) hit[1]], n = unit( sum([ for (i = nfaces) let( faceverts = select(vnf[0],vnf[1][i]), faceplane = plane_from_points(faceverts), nrm = plane_normal(faceplane) ) nrm ]) / len(nfaces) ) ) [anchor, pos, n, oang] ) : type == "vnf_extent"? ( //vnf let( vnf=geom[1], rpts = rot(from=anchor, to=RIGHT, p=vnf[0]), maxx = max(subindex(rpts,0)), idxs = [for (i = idx(rpts)) if (approx(rpts[i].x, maxx)) i], mm = pointlist_bounds(select(rpts,idxs)), avgy = (mm[0].y+mm[1].y)/2, avgz = (mm[0].z+mm[1].z)/2, mpt = approx(point2d(anchor),[0,0])? [maxx,0,0] : [maxx, avgy, avgz], pos = rot(from=RIGHT, to=anchor, p=mpt) ) [anchor, pos, anchor, oang] ) : type == "rect"? ( //size, size2 let( size=geom[1], size2=geom[2], u = (anchor.y+1)/2, frpt = [size.x/2*anchor.x, -size.y/2], bkpt = [size2/2*anchor.x, size.y/2], pos = lerp(frpt, bkpt, u), vec = unit(rot(from=BACK, to=bkpt-frpt, p=anchor)) ) [anchor, pos, vec, 0] ) : type == "circle"? ( //r let( rr = geom[1], r = is_num(rr)? [rr,rr] : rr, anchor = unit(point2d(anchor)) ) [anchor, vmul(r,anchor)+offset, unit(vmul([r.y,r.x],anchor)), 0] ) : type == "path_isect"? ( //path let( path=geom[1], anchor = point2d(anchor), isects = [ for (t=triplet_wrap(path)) let( seg1 = [t[0],t[1]], seg2 = [t[1],t[2]], isect = ray_segment_intersection([[0,0],anchor], seg1), n = is_undef(isect)? [0,1] : !approx(isect, t[1])? line_normal(seg1) : unit((line_normal(seg1)+line_normal(seg2))/2), n2 = vector_angle(anchor,n)>90? -n : n ) if(!is_undef(isect) && !approx(isect,t[0])) [norm(isect), isect, n2] ], maxidx = max_index(subindex(isects,0)), isect = isects[maxidx], pos = isect[1], vec = unit(isect[2]) ) [anchor, pos, vec, 0] ) : type == "path_extent"? ( //path let( path=geom[1], anchor = point2d(anchor), rpath = rot(from=anchor, to=RIGHT, p=path), maxx = max(subindex(rpath,0)), idxs = [for (i = idx(rpath)) if (approx(rpath[i].x, maxx)) i], miny = min([for (i=idxs) rpath[i].y]), maxy = max([for (i=idxs) rpath[i].y]), avgy = (miny+maxy)/2, pos = rot(from=RIGHT, to=anchor, p=[maxx,avgy]) ) [anchor, pos, anchor, 0] ) : assert(false, "Unknown attachment geometry type."); // Function: attachment_is_shown() // Usage: // attachment_is_shown(tags); // Description: // Returns true if the given space-delimited string of tag names should currently be shown. function attachment_is_shown(tags) = assert(!is_undef($tags_shown)) assert(!is_undef($tags_hidden)) let( tags = str_split(tags, " "), shown = !$tags_shown || any([for (tag=tags) in_list(tag, $tags_shown)]), hidden = any([for (tag=tags) in_list(tag, $tags_hidden)]) ) shown && !hidden; // Function: reorient() // // Usage: // reorient(anchor, spin, [orient], two_d, size, [size2], [shift], [offset], [anchors], [p]); // reorient(anchor, spin, [orient], two_d, r|d, [offset], [anchors], [p]); // reorient(anchor, spin, [orient], two_d, path, [extent], [offset], [anchors], [p]); // reorient(anchor, spin, [orient], size, [size2], [shift], [offset], [anchors], [p]); // reorient(anchor, spin, [orient], r|d, l, [offset], [anchors], [p]); // reorient(anchor, spin, [orient], r1|d1, r2|d2, l, [offset], [anchors], [p]); // reorient(anchor, spin, [orient], r|d, [offset], [anchors], [p]); // reorient(anchor, spin, [orient], vnf, [extent], [offset], [anchors], [p]); // // Description: // Given anchor, spin, orient, and general geometry info for a managed volume, this calculates // the transformation matrix needed to be applied to the contents of that volume. A managed 3D // volume is assumed to be vertically (Z-axis) oriented, and centered. A managed 2D area is just // assumed to be centered. // // If `p` is not given, then the transformation matrix will be returned. // If `p` contains a VNF, a new VNF will be returned with the vertices transformed by the matrix. // If `p` contains a path, a new path will be returned with the vertices transformed by the matrix. // If `p` contains a point, a new point will be returned, transformed by the matrix. // // If `$attach_to` is not defined, then the following transformations are performed in order: // * Translates so the `anchor` point is at the origin (0,0,0). // * Rotates around the Z axis by `spin` degrees counter-clockwise. // * Rotates so the top of the part points towards the vector `orient`. // // If `$attach_to` is defined, as a consequence of `attach(from,to)`, then // the following transformations are performed in order: // * Translates this part so it's anchor position matches the parent's anchor position. // * Rotates this part so it's anchor direction vector exactly opposes the parent's anchor direction vector. // * Rotates this part so it's anchor spin matches the parent's anchor spin. // // Arguments: // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // size = If given as a 3D vector, contains the XY size of the bottom of the cuboidal/prismoidal volume, and the Z height. If given as a 2D vector, contains the front X width of the rectangular/trapezoidal shape, and the Y length. // size2 = If given as a 2D vector, contains the XY size of the top of the prismoidal volume. If given as a number, contains the back width of the trapezoidal shape. // shift = If given as a 2D vector, shifts the top of the prismoidal or conical shape by the given amount. If given as a number, shifts the back of the trapezoidal shape right by that amount. Default: No shift. // r = Radius of the cylindrical/conical volume. Can be a scalar, or a list of sizes per axis. // d = Diameter of the cylindrical/conical volume. Can be a scalar, or a list of sizes per axis. // r1 = Radius of the bottom of the conical volume. Can be a scalar, or a list of sizes per axis. // r2 = Radius of the top of the conical volume. Can be a scalar, or a list of sizes per axis. // d1 = Diameter of the bottom of the conical volume. Can be a scalar, a list of sizes per axis. // d2 = Diameter of the top of the conical volume. Can be a scalar, a list of sizes per axis. // l = Length of the cylindrical/conical volume along axis. // vnf = The [VNF](vnf.scad) of the volume. // path = The path to generate a polygon from. // extent = If true, calculate anchors by extents, rather than intersection. Default: false. // offset = If given, offsets the center of the volume. // anchors = If given as a list of anchor points, allows named anchor points. // two_d = If true, the attachable shape is 2D. If false, 3D. Default: false (3D) // p = The VNF, path, or point to transform. function reorient( anchor=CENTER, spin=0, orient=UP, size, size2, shift, r,r1,r2, d,d1,d2, l,h, vnf, path, extent=true, offset=[0,0,0], anchors=[], two_d=false, p=undef ) = (anchor==CENTER && spin==0 && orient==UP && p!=undef)? p : let( geom = attach_geom( size=size, size2=size2, shift=shift, r=r, r1=r1, r2=r2, h=h, d=d, d1=d1, d2=d2, l=l, vnf=vnf, path=path, extent=extent, offset=offset, anchors=anchors, two_d=two_d ), $attach_to = undef ) attach_transform(anchor,spin,orient,geom,p); // Section: Attachability Modules // Module: attachable() // // Usage: // attachable(anchor, spin, [orient], two_d, size, [size2], [shift], [offset], [anchors] ... // attachable(anchor, spin, [orient], two_d, r|d, [offset], [anchors]) ... // attachable(anchor, spin, [orient], two_d, path, [extent], [offset], [anchors] ... // attachable(anchor, spin, [orient], size, [size2], [shift], [offset], [anchors] ... // attachable(anchor, spin, [orient], r|d, l, [offset], [anchors]) ... // attachable(anchor, spin, [orient], r1|d1, r2|d2, l, [offset], [anchors]) ... // attachable(anchor, spin, [orient], r|d, [offset], [anchors]) ... // attachable(anchor, spin, [orient], vnf, [extent], [offset], [anchors]) ... // // Description: // Manages the anchoring, spin, orientation, and attachments for a 3D volume or 2D area. // A managed 3D volume is assumed to be vertically (Z-axis) oriented, and centered. // A managed 2D area is just assumed to be centered. The shape to be managed is given // as the first child to this module, and the second child should be given as `children()`. // For example, to manage a conical shape: // ```openscad // attachable(anchor, spin, orient, r1=r1, r2=r2, l=h) { // cyl(r1=r1, r2=r2, l=h); // children(); // } // ``` // // If this is *not* run as a child of `attach()` with the `to` argument // given, then the following transformations are performed in order: // * Translates so the `anchor` point is at the origin (0,0,0). // * Rotates around the Z axis by `spin` degrees counter-clockwise. // * Rotates so the top of the part points towards the vector `orient`. // // If this is called as a child of `attach(from,to)`, then the info // for the anchor points referred to by `from` and `to` are fetched, // which will include position, direction, and spin. With that info, // the following transformations are performed: // * Translates this part so it's anchor position matches the parent's anchor position. // * Rotates this part so it's anchor direction vector exactly opposes the parent's anchor direction vector. // * Rotates this part so it's anchor spin matches the parent's anchor spin. // // Arguments: // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // size = If given as a 3D vector, contains the XY size of the bottom of the cuboidal/prismoidal volume, and the Z height. If given as a 2D vector, contains the front X width of the rectangular/trapezoidal shape, and the Y length. // size2 = If given as a 2D vector, contains the XY size of the top of the prismoidal volume. If given as a number, contains the back width of the trapezoidal shape. // shift = If given as a 2D vector, shifts the top of the prismoidal or conical shape by the given amount. If given as a number, shifts the back of the trapezoidal shape right by that amount. Default: No shift. // r = Radius of the cylindrical/conical volume. Can be a scalar, or a list of sizes per axis. // d = Diameter of the cylindrical/conical volume. Can be a scalar, or a list of sizes per axis. // r1 = Radius of the bottom of the conical volume. Can be a scalar, or a list of sizes per axis. // r2 = Radius of the top of the conical volume. Can be a scalar, or a list of sizes per axis. // d1 = Diameter of the bottom of the conical volume. Can be a scalar, a list of sizes per axis. // d2 = Diameter of the top of the conical volume. Can be a scalar, a list of sizes per axis. // l = Length of the cylindrical/conical volume along axis. // vnf = The [VNF](vnf.scad) of the volume. // path = The path to generate a polygon from. // extent = If true, calculate anchors by extents, rather than intersection. Default: false. // offset = If given, offsets the center of the volume. // anchors = If given as a list of anchor points, allows named anchor points. // two_d = If true, the attachable shape is 2D. If false, 3D. Default: false (3D) // // Side Effects: // `$parent_anchor` is set to the parent object's `anchor` value. // `$parent_spin` is set to the parent object's `spin` value. // `$parent_orient` is set to the parent object's `orient` value. // `$parent_geom` is set to the parent object's `geom` value. // `$parent_size` is set to the parent object's cubical `[X,Y,Z]` volume size. // // Example(NORENDER): Cubical Shape // attachable(anchor, spin, orient, size=size) { // cube(size, center=true); // children(); // } // // Example(NORENDER): Prismoidal Shape // attachable( // anchor, spin, orient, // size=point3d(botsize,h), // size2=topsize, // shift=shift // ) { // prismoid(botsize, topsize, h=h, shift=shift); // children(); // } // // Example(NORENDER): Cylindrical Shape // attachable(anchor, spin, orient, r=r, l=h) { // cyl(r=r, l=h); // children(); // } // // Example(NORENDER): Conical Shape // attachable(anchor, spin, orient, r1=r1, r2=r2, l=h) { // cyl(r1=r1, r2=r2, l=h); // children(); // } // // Example(NORENDER): Spherical Shape // attachable(anchor, spin, orient, r=r) { // sphere(r=r); // children(); // } // // Example(NORENDER): Arbitrary VNF Shape // attachable(anchor, spin, orient, vnf=vnf) { // vnf_polyhedron(vnf); // children(); // } // // Example(NORENDER): 2D Rectangular Shape // attachable(anchor, spin, orient, size=size) { // square(size, center=true); // children(); // } // // Example(NORENDER): 2D Trapezoidal Shape // attachable( // anchor, spin, orient, // size=[x1,y], // size2=x2, // shift=shift // ) { // trapezoid(w1=x1, w2=x2, h=y, shift=shift); // children(); // } // // Example(NORENDER): 2D Circular Shape // attachable(anchor, spin, orient, two_d=true, r=r) { // circle(r=r); // children(); // } // // Example(NORENDER): Arbitrary 2D Polygon Shape // attachable(anchor, spin, orient, path=path) { // polygon(path); // children(); // } module attachable( anchor=CENTER, spin=0, orient=UP, size, size2, shift, r,r1,r2, d,d1,d2, l,h, vnf, path, extent=true, offset=[0,0,0], anchors=[], two_d=false ) { assert($children==2, "attachable() expects exactly two children; the shape to manage, and the union of all attachment candidates."); assert(!is_undef(anchor), str("anchor undefined in attachable(). Did you forget to set a default value for anchor in ", parent_module(1))); assert(!is_undef(spin), str("spin undefined in attachable(). Did you forget to set a default value for spin in ", parent_module(1))); assert(!is_undef(orient), str("orient undefined in attachable(). Did you forget to set a default value for orient in ", parent_module(1))); geom = attach_geom( size=size, size2=size2, shift=shift, r=r, r1=r1, r2=r2, h=h, d=d, d1=d1, d2=d2, l=l, vnf=vnf, path=path, extent=extent, offset=offset, anchors=anchors, two_d=two_d ); m = attach_transform(anchor,spin,orient,geom); multmatrix(m) { $parent_anchor = anchor; $parent_spin = spin; $parent_orient = orient; $parent_geom = geom; $parent_size = attach_geom_size(geom); $attach_to = undef; if (attachment_is_shown($tags)) { if (is_undef($color)) { children(0); } else color($color) { $color = undef; children(0); } } children(1); } } // Section: Attachment Positioning // Module: position() // Usage: // position(from, [overlap]) ... // Description: // Attaches children to a parent object at an anchor point. // Arguments: // from = The vector, or name of the parent anchor point to attach to. // Example: // spheroid(d=20) { // position(TOP) cyl(l=10, d1=10, d2=5, anchor=BOTTOM); // position(RIGHT) cyl(l=10, d1=10, d2=5, anchor=BOTTOM); // position(FRONT) cyl(l=10, d1=10, d2=5, anchor=BOTTOM); // } module position(from) { assert($parent_geom != undef, "No object to attach to!"); anchors = (is_vector(from)||is_string(from))? [from] : from; for (anchr = anchors) { anch = find_anchor(anchr, $parent_geom); $attach_to = undef; $attach_anchor = anch; $attach_norot = true; translate(anch[1]) children(); } } // Module: attach() // Usage: // attach(from, [overlap]) ... // attach(from, to, [overlap]) ... // Description: // Attaches children to a parent object at an anchor point and orientation. // Attached objects will be overlapped into the parent object by a little bit, // as specified by the default `$overlap` value (0.01 by default), or by the // overriding `overlap=` argument. This is to prevent OpenSCAD from making // non-manifold objects. You can also define `$overlap=` as an argument in a // parent module to set the default for all attachments to it. // Arguments: // from = The vector, or name of the parent anchor point to attach to. // to = Optional name of the child anchor point. If given, orients the child such that the named anchors align together rotationally. // overlap = Amount to sink child into the parent. Equivalent to `down(X)` after the attach. This defaults to the value in `$overlap`, which is `0.01` by default. // norot = If true, don't rotate children when attaching to the anchor point. Only translate to the anchor point. // Example: // spheroid(d=20) { // attach(TOP) down(1.5) cyl(l=11.5, d1=10, d2=5, anchor=BOTTOM); // attach(RIGHT, BOTTOM) down(1.5) cyl(l=11.5, d1=10, d2=5); // attach(FRONT, BOTTOM, overlap=1.5) cyl(l=11.5, d1=10, d2=5); // } module attach(from, to=undef, overlap=undef, norot=false) { assert($parent_geom != undef, "No object to attach to!"); overlap = (overlap!=undef)? overlap : $overlap; anchors = (is_vector(from)||is_string(from))? [from] : from; for (anchr = anchors) { anch = find_anchor(anchr, $parent_geom); two_d = attach_geom_2d($parent_geom); $attach_to = to; $attach_anchor = anch; $attach_norot = norot; if (norot || (norm(anch[2]-UP)<1e-9 && anch[3]==0)) { translate(anch[1]) translate([0,0,-overlap]) children(); } else { fromvec = two_d? BACK : UP; translate(anch[1]) rot(anch[3],from=fromvec,to=anch[2]) translate([0,0,-overlap]) children(); } } } // Module: face_profile() // Usage: // face_profile(faces=[], convexity=10, r, d) ... // Description: // Given a 2D edge profile, extrudes it into a mask for all edges and corners bounding each given face. // Arguments: // faces = Faces to mask edges and corners of. // r = Radius of corner mask. // d = Diameter of corner mask. // convexity = Max number of times a line could intersect the perimeter of the mask shape. Default: 10 module face_profile(faces=[], r, d, convexity=10) { faces = is_vector(faces)? [faces] : faces; assert(all([for (face=faces) is_vector(face) && sum([for (x=face) x!=0? 1 : 0])==1]), "Vector in faces doesn't point at a face."); r = get_radius(r=r, d=d, dflt=undef); assert(is_num(r) && r>0); edge_profile(faces) children(); corner_profile(faces, convexity=convexity, r=r) children(); } // Module: edge_profile() // Usage: // edge_profile([edges], [except], [convexity]) ... // Description: // Takes a 2D mask shape and attaches it to the selected edges, with the appropriate orientation // and extruded length to be `diff()`ed away, to give the edge a matching profile. // Arguments: // edges = Edges to mask. See the docs for [`edges()`](edges.scad#edges) to see acceptable values. Default: All edges. // except = Edges to explicitly NOT mask. See the docs for [`edges()`](edges.scad#edges) to see acceptable values. Default: No edges. // convexity = Max number of times a line could intersect the perimeter of the mask shape. Default: 10 // Side Effects: // Sets `$tags = "mask"` for all children. // Example: // diff("mask") // cube([50,60,70],center=true) // edge_profile([TOP,"Z"],except=[BACK,TOP+LEFT]) // mask2d_roundover(r=10, inset=2); module edge_profile(edges=EDGES_ALL, except=[], convexity=10) { assert($parent_geom != undef, "No object to attach to!"); edges = edges(edges, except=except); vecs = [ for (i = [0:3], axis=[0:2]) if (edges[axis][i]>0) EDGE_OFFSETS[axis][i] ]; for (vec = vecs) { vcount = (vec.x?1:0) + (vec.y?1:0) + (vec.z?1:0); assert(vcount == 2, "Not an edge vector!"); anch = find_anchor(vec, $parent_geom); $attach_to = undef; $attach_anchor = anch; $attach_norot = true; $tags = "mask"; length = sum(vmul($parent_size, [for (x=vec) x?0:1]))+0.1; rotang = vec.z<0? [90,0,180+vang(point2d(vec))] : vec.z==0 && sign(vec.x)==sign(vec.y)? 135+vang(point2d(vec)) : vec.z==0 && sign(vec.x)!=sign(vec.y)? [0,180,45+vang(point2d(vec))] : [-90,0,180+vang(point2d(vec))]; translate(anch[1]) { rot(rotang) { linear_extrude(height=length, center=true, convexity=convexity) { children(); } } } } } // Module: corner_profile() // Usage: // corner_profile([corners], [except], [convexity]) ... // Description: // Takes a 2D mask shape, rotationally extrudes and converts it into a corner mask, and attaches it // to the selected corners with the appropriate orientation. Tags it as a "mask" to allow it to be // `diff()`ed away, to give the corner a matching profile. // Arguments: // corners = Edges to mask. See the docs for [`corners()`](edges.scad#corners) to see acceptable values. Default: All corners. // except = Edges to explicitly NOT mask. See the docs for [`corners()`](edges.scad#corners) to see acceptable values. Default: No corners. // r = Radius of corner mask. // d = Diameter of corner mask. // convexity = Max number of times a line could intersect the perimeter of the mask shape. Default: 10 // Side Effects: // Sets `$tags = "mask"` for all children. // Example: // diff("mask") // cuboid([50,60,70],rounding=10,edges="Z",anchor=CENTER) { // corner_profile(BOT,r=10) // mask2d_teardrop(r=10, angle=40); // } module corner_profile(corners=CORNERS_ALL, except=[], r, d, convexity=10) { assert($parent_geom != undef, "No object to attach to!"); r = get_radius(r=r, d=d, dflt=undef); assert(is_num(r)); corners = corners(corners, except=except); vecs = [for (i = [0:7]) if (corners[i]>0) CORNER_OFFSETS[i]]; for (vec = vecs) { vcount = (vec.x?1:0) + (vec.y?1:0) + (vec.z?1:0); assert(vcount == 3, "Not an edge vector!"); anch = find_anchor(vec, $parent_geom); $attach_to = undef; $attach_anchor = anch; $attach_norot = true; $tags = "mask"; rotang = vec.z<0? [ 0,0,180+vang(point2d(vec))-45] : [180,0,-90+vang(point2d(vec))-45]; translate(anch[1]) { rot(rotang) { render(convexity=convexity) difference() { translate(-0.1*[1,1,1]) cube(r+0.1, center=false); right(r) back(r) zrot(180) { rotate_extrude(angle=90, convexity=convexity) { xflip() left(r) { difference() { square(r,center=false); children(); } } } } } } } } } // Module: edge_mask() // Usage: // edge_mask([edges], [except]) ... // Description: // Takes a 3D mask shape, and attaches it to the given edges, with the // appropriate orientation to be `diff()`ed away. // Arguments: // edges = Edges to mask. See the docs for [`edges()`](edges.scad#edges) to see acceptable values. Default: All edges. // except = Edges to explicitly NOT mask. See the docs for [`edges()`](edges.scad#edges) to see acceptable values. Default: No edges. // Side Effects: // Sets `$tags = "mask"` for all children. // Example: // diff("mask") // cube([50,60,70],center=true) // edge_mask([TOP,"Z"],except=[BACK,TOP+LEFT]) // rounding_mask_z(l=71,r=10); module edge_mask(edges=EDGES_ALL, except=[]) { assert($parent_geom != undef, "No object to attach to!"); edges = edges(edges, except=except); vecs = [ for (i = [0:3], axis=[0:2]) if (edges[axis][i]>0) EDGE_OFFSETS[axis][i] ]; for (vec = vecs) { vcount = (vec.x?1:0) + (vec.y?1:0) + (vec.z?1:0); assert(vcount == 2, "Not an edge vector!"); anch = find_anchor(vec, $parent_geom); $attach_to = undef; $attach_anchor = anch; $attach_norot = true; $tags = "mask"; rotang = vec.z<0? [90,0,180+vang(point2d(vec))] : vec.z==0 && sign(vec.x)==sign(vec.y)? 135+vang(point2d(vec)) : vec.z==0 && sign(vec.x)!=sign(vec.y)? [0,180,45+vang(point2d(vec))] : [-90,0,180+vang(point2d(vec))]; translate(anch[1]) rot(rotang) children(); } } // Module: corner_mask() // Usage: // corner_mask([corners], [except]) ... // Description: // Takes a 3D mask shape, and attaches it to the given corners, with the appropriate // orientation to be `diff()`ed away. The 3D corner mask shape should be designed to // mask away the X+Y+Z+ octant. // Arguments: // corners = Edges to mask. See the docs for [`corners()`](edges.scad#corners) to see acceptable values. Default: All corners. // except = Edges to explicitly NOT mask. See the docs for [`corners()`](edges.scad#corners) to see acceptable values. Default: No corners. // Side Effects: // Sets `$tags = "mask"` for all children. // Example: // diff("mask") // cube(100, center=true) // corner_mask([TOP,FRONT],LEFT+FRONT+TOP) // difference() { // translate(-0.01*[1,1,1]) cube(20); // translate([20,20,20]) sphere(r=20); // } module corner_mask(corners=CORNERS_ALL, except=[]) { assert($parent_geom != undef, "No object to attach to!"); corners = corners(corners, except=except); vecs = [for (i = [0:7]) if (corners[i]>0) CORNER_OFFSETS[i]]; for (vec = vecs) { vcount = (vec.x?1:0) + (vec.y?1:0) + (vec.z?1:0); assert(vcount == 3, "Not an edge vector!"); anch = find_anchor(vec, $parent_geom); $attach_to = undef; $attach_anchor = anch; $attach_norot = true; $tags = "mask"; rotang = vec.z<0? [ 0,0,180+vang(point2d(vec))-45] : [180,0,-90+vang(point2d(vec))-45]; translate(anch[1]) rot(rotang) children(); } } // Module: tags() // Usage: // tags(tags) ... // Description: // Marks all children with the given tags. // Arguments: // tags = String containing space delimited set of tags to apply. module tags(tags) { $tags = tags; children(); } // Module: recolor() // Usage: // recolor(c) ... // Description: // Sets the color for children that can use the $color special variable. // Arguments: // c = Color name or RGBA vector. // Example: // recolor("red") cyl(l=20, d=10); module recolor(c) { $color = c; children(); } // Module: hide() // Usage: // hide(tags) ... // Description: // Hides all children with the given tags. // Example: // hide("A") cube(50, anchor=CENTER, $tags="Main") { // attach(LEFT, BOTTOM) cylinder(d=30, l=30, $tags="A"); // attach(RIGHT, BOTTOM) cylinder(d=30, l=30, $tags="B"); // } module hide(tags="") { $tags_hidden = tags==""? [] : str_split(tags, " "); children(); } // Module: show() // Usage: // show(tags) ... // Description: // Shows only children with the given tags. // Example: // show("A B") cube(50, anchor=CENTER, $tags="Main") { // attach(LEFT, BOTTOM) cylinder(d=30, l=30, $tags="A"); // attach(RIGHT, BOTTOM) cylinder(d=30, l=30, $tags="B"); // } module show(tags="") { $tags_shown = tags==""? [] : str_split(tags, " "); children(); } // Module: diff() // Usage: // diff(neg, [keep]) ... // diff(neg, pos, [keep]) ... // Description: // If `neg` is given, takes the union of all children with tags // that are in `neg`, and differences them from the union of all // children with tags in `pos`. If `pos` is not given, then all // items in `neg` are differenced from all items not in `neg`. If // `keep` is given, all children with tags in `keep` are then unioned // with the result. If `keep` is not given, all children without // tags in `pos` or `neg` are then unioned with the result. // Arguments: // neg = String containing space delimited set of tag names of children to difference away. // pos = String containing space delimited set of tag names of children to be differenced away from. // keep = String containing space delimited set of tag names of children to keep whole. // Example: // diff("neg", "pos", keep="axle") // sphere(d=100, $tags="pos") { // attach(CENTER) xcyl(d=40, l=120, $tags="axle"); // attach(CENTER) cube([40,120,100], anchor=CENTER, $tags="neg"); // } // Example: Masking // diff("mask") // cube([80,90,100], center=true) { // let(p = $parent_size*1.01, $tags="mask") { // position([for (y=[-1,1],z=[-1,1]) [0,y,z]]) // rounding_mask_x(l=p.x, r=25); // position([for (x=[-1,1],z=[-1,1]) [x,0,z]]) // rounding_mask_y(l=p.y, r=20); // position([for (x=[-1,1],y=[-1,1]) [x,y,0]]) // rounding_mask_z(l=p.z, r=25); // } // } module diff(neg, pos=undef, keep=undef) { difference() { if (pos != undef) { show(pos) children(); } else { if (keep == undef) { hide(neg) children(); } else { hide(str(neg," ",keep)) children(); } } show(neg) children(); } if (keep!=undef) { show(keep) children(); } else if (pos!=undef) { hide(str(pos," ",neg)) children(); } } // Module: intersect() // Usage: // intersect(a, [keep]) ... // intersect(a, b, [keep]) ... // Description: // If `a` is given, takes the union of all children with tags that // are in `a`, and intersection()s them with the union of all // children with tags in `b`. If `b` is not given, then the union // of all items with tags in `a` are intersection()ed with the union // of all items without tags in `a`. If `keep` is given, then the // result is unioned with all the children with tags in `keep`. If // `keep` is not given, all children without tags in `a` or `b` are // unioned with the result. // Arguments: // a = String containing space delimited set of tag names of children. // b = String containing space delimited set of tag names of children. // keep = String containing space delimited set of tag names of children to keep whole. // Example: // intersect("wheel", "mask", keep="axle") // sphere(d=100, $tags="wheel") { // attach(CENTER) cube([40,100,100], anchor=CENTER, $tags="mask"); // attach(CENTER) xcyl(d=40, l=100, $tags="axle"); // } module intersect(a, b=undef, keep=undef) { intersection() { if (b != undef) { show(b) children(); } else { if (keep == undef) { hide(a) children(); } else { hide(str(a," ",keep)) children(); } } show(a) children(); } if (keep!=undef) { show(keep) children(); } else if (b!=undef) { hide(str(a," ",b)) children(); } } // Module: hulling() // Usage: // hulling(a, [keep]) ... // Description: // Takes the union of all children with tags that are in `a`, and hull()s them. // If `keep` is given, then the result is unioned with all the children with // tags in `keep`. If `keep` is not given, all children without tags in `a` are // unioned with the result. // Arguments: // a = String containing space delimited set of tag names of children. // keep = String containing space delimited set of tag names of children to keep whole. // Example: // hulling("body") // sphere(d=100, $tags="body") { // attach(CENTER) cube([40,90,90], anchor=CENTER, $tags="body"); // attach(CENTER) xcyl(d=40, l=120, $tags="other"); // } module hulling(a) { hull() show(a) children(); children(); } // vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap