////////////////////////////////////////////////////////////////////// // LibFile: matrices.scad // Matrix math and affine transformation matrices. // To use, add the following lines to the beginning of your file: // ``` // use // ``` ////////////////////////////////////////////////////////////////////// /* BSD 2-Clause License Copyright (c) 2017-2019, Revar Desmera All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // Section: Matrix Manipulation // Function: ident() // Description: Create an `n` by `n` identity matrix. // Arguments: // n = The size of the identity matrix square, `n` by `n`. function ident(n) = [for (i = [0:n-1]) [for (j = [0:n-1]) (i==j)?1:0]]; // Function: matrix_transpose() // Description: Returns the transposition of the given matrix. // Example: // m = [ // [11,12,13,14], // [21,22,23,24], // [31,32,33,34], // [41,42,43,44] // ]; // tm = matrix_transpose(m); // // Returns: // // [ // // [11,21,31,41], // // [12,22,32,42], // // [13,23,33,43], // // [14,24,34,44] // // ] function matrix_transpose(m) = [for (i=[0:len(m[0])-1]) [for (j=[0:len(m)-1]) m[j][i]]]; // Function: mat3_to_mat4() // Description: Takes a 3x3 matrix and returns its 4x4 affine equivalent. function mat3_to_mat4(m) = concat( [for (r = [0:2]) concat( [for (c = [0:2]) m[r][c]], [0] ) ], [[0, 0, 0, 1]] ); // Section: Affine Transformation 3x3 Matrices // Function: matrix3_translate() // Description: // Returns the 3x3 matrix to perform a 2D translation. // Arguments: // v = 2D Offset to translate by. [X,Y] function matrix3_translate(v) = [ [1, 0, v.x], [0, 1, v.y], [0 ,0, 1] ]; // Function: matrix3_scale() // Description: // Returns the 3x3 matrix to perform a 2D scaling transformation. // Arguments: // v = 2D vector of scaling factors. [X,Y] function matrix3_scale(v) = [ [v.x, 0, 0], [ 0, v.y, 0], [ 0, 0, 1] ]; // Function: matrix3_zrot() // Description: // Returns the 3x3 matrix to perform a rotation of a 2D vector around the Z axis. // Arguments: // ang = Number of degrees to rotate. function matrix3_zrot(ang) = [ [cos(ang), -sin(ang), 0], [sin(ang), cos(ang), 0], [ 0, 0, 1] ]; // Function: matrix3_skew() // Usage: // matrix3_skew(xa, ya) // Description: // Returns the 3x3 matrix to skew a 2D vector along the XY plane. // Arguments: // xa = Skew angle, in degrees, in the direction of the X axis. // ya = Skew angle, in degrees, in the direction of the Y axis. function matrix3_skew(xa, ya) = [ [1, tan(xa), 0], [tan(ya), 1, 0], [0, 0, 1] ]; // Function: matrix3_mult() // Usage: // matrix3_mult(matrices) // Description: // Returns a 3x3 transformation matrix which results from applying each matrix in `matrices` in order. // Arguments: // matrices = A list of 3x3 matrices. // m = Optional starting matrix to apply everything to. function matrix3_mult(matrices, m=ident(3), i=0) = (i>=len(matrices))? m : let (newmat = is_undef(m)? matrices[i] : matrices[i] * m) matrix3_mult(matrices, m=newmat, i=i+1); // Function: matrix3_apply() // Usage: // matrix3_apply(pts, matrices) // Description: // Given a list of transformation matrices, applies them in order to the points in the point list. // Arguments: // pts = A list of 2D points to transform. // matrices = A list of 3x3 matrices to apply, in order. // Example: // npts = matrix3_apply( // pts = [for (x=[0:3]) [5*x,0]], // matrices =[ // matrix3_scale([3,1]), // matrix3_rot(90), // matrix3_translate([5,5]) // ] // ); // Returns [[5,5], [5,20], [5,35], [5,50]] function matrix3_apply(pts, matrices) = let(m = matrix3_mult(matrices)) [for (p = pts) point2d(m * concat(point2d(p),[1]))]; // Section: Affine Transformation 4x4 Matrices // Function: matrix4_translate() // Description: // Returns the 4x4 matrix to perform a 3D translation. // Arguments: // v = 3D offset to translate by. [X,Y,Z] function matrix4_translate(v) = [ [1, 0, 0, v.x], [0, 1, 0, v.y], [0, 0, 1, v.z], [0 ,0, 0, 1] ]; // Function: matrix4_scale() // Description: // Returns the 4x4 matrix to perform a 3D scaling transformation. // Arguments: // v = 3D vector of scaling factors. [X,Y,Z] function matrix4_scale(v) = [ [v.x, 0, 0, 0], [ 0, v.y, 0, 0], [ 0, 0, v.z, 0], [ 0, 0, 0, 1] ]; // Function: matrix4_xrot() // Description: // Returns the 4x4 matrix to perform a rotation of a 3D vector around the X axis. // Arguments: // ang = number of degrees to rotate. function matrix4_xrot(ang) = [ [1, 0, 0, 0], [0, cos(ang), -sin(ang), 0], [0, sin(ang), cos(ang), 0], [0, 0, 0, 1] ]; // Function: matrix4_yrot() // Description: // Returns the 4x4 matrix to perform a rotation of a 3D vector around the Y axis. // Arguments: // ang = Number of degrees to rotate. function matrix4_yrot(ang) = [ [ cos(ang), 0, sin(ang), 0], [ 0, 1, 0, 0], [-sin(ang), 0, cos(ang), 0], [ 0, 0, 0, 1] ]; // Function: matrix4_zrot() // Usage: // matrix4_zrot(ang) // Description: // Returns the 4x4 matrix to perform a rotation of a 3D vector around the Z axis. // Arguments: // ang = number of degrees to rotate. function matrix4_zrot(ang) = [ [cos(ang), -sin(ang), 0, 0], [sin(ang), cos(ang), 0, 0], [ 0, 0, 1, 0], [ 0, 0, 0, 1] ]; // Function: matrix4_rot_by_axis() // Usage: // matrix4_rot_by_axis(u, ang); // Description: // Returns the 4x4 matrix to perform a rotation of a 3D vector around an axis. // Arguments: // u = 3D axis vector to rotate around. // ang = number of degrees to rotate. function matrix4_rot_by_axis(u, ang) = let( u = normalize(u), c = cos(ang), c2 = 1-c, s = sin(ang) ) [ [u[0]*u[0]*c2+c , u[0]*u[1]*c2-u[2]*s, u[0]*u[2]*c2+u[1]*s, 0], [u[1]*u[0]*c2+u[2]*s, u[1]*u[1]*c2+c , u[1]*u[2]*c2-u[0]*s, 0], [u[2]*u[0]*c2-u[1]*s, u[2]*u[1]*c2+u[0]*s, u[2]*u[2]*c2+c , 0], [ 0, 0, 0, 1] ]; // Function: matrix4_skew_xy() // Usage: // matrix4_skew_xy(xa, ya) // Description: // Returns the 4x4 matrix to perform a skew transformation along the XY plane.. // Arguments: // xa = Skew angle, in degrees, in the direction of the X axis. // ya = Skew angle, in degrees, in the direction of the Y axis. function matrix4_skew_xy(xa, ya) = [ [1, 0, tan(xa), 0], [0, 1, tan(ya), 0], [0, 0, 1, 0], [0, 0, 0, 1] ]; // Function: matrix4_skew_xz() // Usage: // matrix4_skew_xz(xa, za) // Description: // Returns the 4x4 matrix to perform a skew transformation along the XZ plane. // Arguments: // xa = Skew angle, in degrees, in the direction of the X axis. // za = Skew angle, in degrees, in the direction of the Z axis. function matrix4_skew_xz(xa, za) = [ [1, tan(xa), 0, 0], [0, 1, 0, 0], [0, tan(za), 1, 0], [0, 0, 0, 1] ]; // Function: matrix4_skew_yz() // Usage: // matrix4_skew_yz(ya, za) // Description: // Returns the 4x4 matrix to perform a skew transformation along the YZ plane. // Arguments: // ya = Skew angle, in degrees, in the direction of the Y axis. // za = Skew angle, in degrees, in the direction of the Z axis. function matrix4_skew_yz(ya, za) = [ [ 1, 0, 0, 0], [tan(ya), 1, 0, 0], [tan(za), 0, 1, 0], [ 0, 0, 0, 1] ]; // Function: matrix4_mult() // Usage: // matrix4_mult(matrices) // Description: // Returns a 4x4 transformation matrix which results from applying each matrix in `matrices` in order. // Arguments: // matrices = A list of 4x4 matrices. // m = Optional starting matrix to apply everything to. function matrix4_mult(matrices, m=ident(4), i=0) = (i>=len(matrices))? m : let (newmat = is_undef(m)? matrices[i] : matrices[i] * m) matrix4_mult(matrices, m=newmat, i=i+1); // Function: matrix4_apply() // Usage: // matrix4_apply(pts, matrices) // Description: // Given a list of transformation matrices, applies them in order to the points in the point list. // Arguments: // pts = A list of 3D points to transform. // matrices = A list of 4x4 matrices to apply, in order. // Example: // npts = matrix4_apply( // pts = [for (x=[0:3]) [5*x,0,0]], // matrices =[ // matrix4_scale([2,1,1]), // matrix4_zrot(90), // matrix4_translate([5,5,10]) // ] // ); // Returns [[5,5,10], [5,15,10], [5,25,10], [5,35,10]] function matrix4_apply(pts, matrices) = let(m = matrix4_mult(matrices)) [for (p = pts) point3d(m * concat(point3d(p),[1]))]; // vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap