////////////////////////////////////////////////////////////////////// // LibFile: joiners.scad // Snap-together joiners. // To use, add the following lines to the beginning of your file: // ``` // include // include // ``` ////////////////////////////////////////////////////////////////////// include include // Section: Half Joiners // Module: half_joiner_clear() // Description: // Creates a mask to clear an area so that a half_joiner can be placed there. // Usage: // half_joiner_clear(h, w, [a], [clearance], [overlap]) // Arguments: // h = Height of the joiner to clear space for. // w = Width of the joiner to clear space for. // a = Overhang angle of the joiner. // clearance = Extra width to clear. // overlap = Extra depth to clear. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // Example: // half_joiner_clear(spin=-90); module half_joiner_clear(h=20, w=10, a=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP) { dmnd_height = h*1.0; dmnd_width = dmnd_height*tan(a); guide_size = w/3; guide_width = 2*(dmnd_height/2-guide_size)*tan(a); orient_and_anchor([w, guide_width, h], orient, anchor, spin=spin) { union() { yspread(overlap, n=overlap>0? 2 : 1) { difference() { // Diamonds. scale([w+clearance, dmnd_width/2, dmnd_height/2]) { xrot(45) cube(size=[1,sqrt(2),sqrt(2)], center=true); } // Blunt point of tab. yspread(guide_width+4) { cube(size=[(w+clearance)*1.05, 4, h*0.99], center=true); } } } if (overlap>0) cube([w+clearance, overlap+0.001, h], center=true); } } } // Module: half_joiner() // Usage: // half_joiner(h, w, l, [a], [screwsize], [guides], [$slop]) // Description: // Creates a half_joiner object that can be attached to half_joiner2 object. // Arguments: // h = Height of the half_joiner. // w = Width of the half_joiner. // l = Length of the backing to the half_joiner. // a = Overhang angle of the half_joiner. // screwsize = Diameter of screwhole. // guides = If true, create sliding alignment guides. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // $slop = Printer specific slop value to make parts fit more closely. // Example: // half_joiner(screwsize=3, spin=-90); module half_joiner(h=20, w=10, l=10, a=30, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP) { dmnd_height = h*1.0; dmnd_width = dmnd_height*tan(a); guide_size = w/3; guide_width = 2*(dmnd_height/2-guide_size)*tan(a); if ($children > 0) { difference() { children(); half_joiner_clear(h=h, w=w, a=a, clearance=0.1, overlap=0.01, anchor=anchor, spin=spin, orient=orient); } } render(convexity=12) orient_and_anchor([w, 2*l, h], orient, anchor, spin=spin) { difference() { union() { // Make base. difference() { // Solid backing base. fwd(l/2) cube(size=[w, l, h], center=true); // Clear diamond for tab grid3d(xa=[-(w*2/3), (w*2/3)]) { half_joiner_clear(h=h+0.01, w=w, clearance=$slop*2, a=a); } } difference() { // Make tab scale([w/3-$slop*2, dmnd_width/2, dmnd_height/2]) xrot(45) cube(size=[1,sqrt(2),sqrt(2)], center=true); // Blunt point of tab. back(guide_width/2+2) cube(size=[w*0.99,4,guide_size*2], center=true); } // Guide ridges. if (guides == true) { xspread(w/3-$slop*2) { // Guide ridge. fwd(0.05/2) { scale([0.75, 1, 2]) yrot(45) cube(size=[guide_size/sqrt(2), guide_width+0.05, guide_size/sqrt(2)], center=true); } // Snap ridge. scale([0.25, 0.5, 1]) zrot(45) cube(size=[guide_size/sqrt(2), guide_size/sqrt(2), dmnd_width], center=true); } } } // Make screwholes, if needed. if (screwsize != undef) { yrot(90) cylinder(r=screwsize*1.1/2, h=w+1, center=true, $fn=12); } } } } //half_joiner(screwsize=3); // Module: half_joiner2() // Usage: // half_joiner2(h, w, l, [a], [screwsize], [guides]) // Description: // Creates a half_joiner2 object that can be attached to half_joiner object. // Arguments: // h = Height of the half_joiner. // w = Width of the half_joiner. // l = Length of the backing to the half_joiner. // a = Overhang angle of the half_joiner. // screwsize = Diameter of screwhole. // guides = If true, create sliding alignment guides. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // Example: // half_joiner2(screwsize=3, spin=-90); module half_joiner2(h=20, w=10, l=10, a=30, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP) { dmnd_height = h*1.0; dmnd_width = dmnd_height*tan(a); guide_size = w/3; guide_width = 2*(dmnd_height/2-guide_size)*tan(a); if ($children > 0) { difference() { children(); half_joiner_clear(h=h, w=w, a=a, clearance=0.1, overlap=0.01, orient=orient, spin=spin, anchor=anchor); } } render(convexity=12) orient_and_anchor([w, 2*l, h], orient, anchor, spin=spin) { difference() { union () { fwd(l/2) cube(size=[w, l, h], center=true); cube([w, guide_width, h], center=true); } // Subtract mated half_joiner. zrot(180) half_joiner(h=h+0.01, w=w+0.01, l=guide_width+0.01, a=a, screwsize=undef, guides=guides, $slop=0.0); // Make screwholes, if needed. if (screwsize != undef) { xcyl(r=screwsize*1.1/2, l=w+1, $fn=12); } } } } // Section: Full Joiners // Module: joiner_clear() // Description: // Creates a mask to clear an area so that a joiner can be placed there. // Usage: // joiner_clear(h, w, [a], [clearance], [overlap]) // Arguments: // h = Height of the joiner to clear space for. // w = Width of the joiner to clear space for. // a = Overhang angle of the joiner. // clearance = Extra width to clear. // overlap = Extra depth to clear. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // Example: // joiner_clear(spin=-90); module joiner_clear(h=40, w=10, a=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP) { dmnd_height = h*0.5; dmnd_width = dmnd_height*tan(a); guide_size = w/3; guide_width = 2*(dmnd_height/2-guide_size)*tan(a); orient_and_anchor([w, guide_width, h], orient, anchor, spin=spin) { union() { up(h/4) half_joiner_clear(h=h/2.0-0.01, w=w, a=a, overlap=overlap, clearance=clearance); down(h/4) half_joiner_clear(h=h/2.0-0.01, w=w, a=a, overlap=overlap, clearance=-0.01); } } } // Module: joiner() // Usage: // joiner(h, w, l, [a], [screwsize], [guides], [$slop]) // Description: // Creates a joiner object that can be attached to another joiner object. // Arguments: // h = Height of the joiner. // w = Width of the joiner. // l = Length of the backing to the joiner. // a = Overhang angle of the joiner. // screwsize = Diameter of screwhole. // guides = If true, create sliding alignment guides. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // $slop = Printer specific slop value to make parts fit more closely. // Examples: // joiner(screwsize=3, spin=-90); // joiner(w=10, l=10, h=40, spin=-90) cuboid([10, 10*2, 40], anchor=RIGHT); module joiner(h=40, w=10, l=10, a=30, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP) { if ($children > 0) { difference() { children(); joiner_clear(h=h, w=w, a=a, clearance=0.1, orient=orient, spin=spin, anchor=anchor); } } orient_and_anchor([w, 2*l, h], orient, anchor, spin=spin) { union() { up(h/4) half_joiner(h=h/2, w=w, l=l, a=a, screwsize=screwsize, guides=guides); down(h/4) half_joiner2(h=h/2, w=w, l=l, a=a, screwsize=screwsize, guides=guides); } } } // Section: Full Joiners Pairs/Sets // Module: joiner_pair_clear() // Description: // Creates a mask to clear an area so that a pair of joiners can be placed there. // Usage: // joiner_pair_clear(spacing, [n], [h], [w], [a], [clearance], [overlap]) // Arguments: // spacing = Spacing between joiner centers. // h = Height of the joiner to clear space for. // w = Width of the joiner to clear space for. // a = Overhang angle of the joiner. // n = Number of joiners (2 by default) to clear for. // clearance = Extra width to clear. // overlap = Extra depth to clear. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // Examples: // joiner_pair_clear(spacing=50, n=2); // joiner_pair_clear(spacing=50, n=3); module joiner_pair_clear(spacing=100, h=40, w=10, a=30, n=2, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP) { dmnd_height = h*0.5; dmnd_width = dmnd_height*tan(a); guide_size = w/3; guide_width = 2*(dmnd_height/2-guide_size)*tan(a); orient_and_anchor([spacing+w, guide_width, h], orient, anchor, spin=spin) { xspread(spacing, n=n) { joiner_clear(h=h, w=w, a=a, clearance=clearance, overlap=overlap); } } } // Module: joiner_pair() // Usage: // joiner_pair(h, w, l, [a], [screwsize], [guides], [$slop]) // Description: // Creates a joiner_pair object that can be attached to other joiner_pairs . // Arguments: // spacing = Spacing between joiner centers. // h = Height of the joiners. // w = Width of the joiners. // l = Length of the backing to the joiners. // a = Overhang angle of the joiners. // n = Number of joiners in a row. Default: 2 // alternate = If true (default), each joiner alternates it's orientation. If alternate is "alt", do opposite alternating orientations. // screwsize = Diameter of screwhole. // guides = If true, create sliding alignment guides. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // $slop = Printer specific slop value to make parts fit more closely. // Examples: // joiner_pair(spacing=50, l=10, spin=-90) cuboid([10, 50+10-0.1, 40], anchor=RIGHT); // joiner_pair(spacing=50, l=10, n=2, spin=-90); // joiner_pair(spacing=50, l=10, n=3, alternate=false, spin=-90); // joiner_pair(spacing=50, l=10, n=3, alternate=true, spin=-90); // joiner_pair(spacing=50, l=10, n=3, alternate="alt", spin=-90); module joiner_pair(spacing=100, h=40, w=10, l=10, a=30, n=2, alternate=true, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP) { if ($children > 0) { difference() { children(); joiner_pair_clear(spacing=spacing, h=h, w=w, a=a, clearance=0.1, orient=orient, spin=spin, anchor=anchor); } } orient_and_anchor([spacing+w, 2*l, h], orient, anchor, spin=spin) { left((n-1)*spacing/2) { for (i=[0:1:n-1]) { right(i*spacing) { yrot(180 + (alternate? (i*180+(alternate=="alt"?180:0))%360 : 0)) { joiner(h=h, w=w, l=l, a=a, screwsize=screwsize, guides=guides); } } } } } } // Section: Full Joiners Quads/Sets // Module: joiner_quad_clear() // Description: // Creates a mask to clear an area so that a pair of joiners can be placed there. // Usage: // joiner_quad_clear(spacing, [n], [h], [w], [a], [clearance], [overlap]) // Arguments: // spacing1 = Spacing between joiner centers. // spacing2 = Spacing between back-to-back pairs/sets of joiners. // h = Height of the joiner to clear space for. // w = Width of the joiner to clear space for. // a = Overhang angle of the joiner. // n = Number of joiners in a row. Default: 2 // clearance = Extra width to clear. // overlap = Extra depth to clear. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // Examples: // joiner_quad_clear(spacing1=50, spacing2=50, n=2); // joiner_quad_clear(spacing1=50, spacing2=50, n=3); module joiner_quad_clear(xspacing=undef, yspacing=undef, spacing1=undef, spacing2=undef, n=2, h=40, w=10, a=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP) { spacing1 = first_defined([spacing1, xspacing, 100]); spacing2 = first_defined([spacing2, yspacing, 50]); orient_and_anchor([w+spacing1, spacing2, h], orient, anchor, spin=spin) { zrot_copies(n=2) { back(spacing2/2) { joiner_pair_clear(spacing=spacing1, n=n, h=h, w=w, a=a, clearance=clearance, overlap=overlap); } } } } // Module: joiner_quad() // Usage: // joiner_quad(h, w, l, [a], [screwsize], [guides], [$slop]) // Description: // Creates a joiner_quad object that can be attached to other joiner_pairs . // Arguments: // spacing = Spacing between joiner centers. // h = Height of the joiners. // w = Width of the joiners. // l = Length of the backing to the joiners. // a = Overhang angle of the joiners. // n = Number of joiners in a row. Default: 2 // alternate = If true (default), each joiner alternates it's orientation. If alternate is "alt", do opposite alternating orientations. // screwsize = Diameter of screwhole. // guides = If true, create sliding alignment guides. // $slop = Printer specific slop value to make parts fit more closely. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // Examples: // joiner_quad(spacing1=50, spacing2=50, l=10, spin=-90) cuboid([50, 50+10-0.1, 40]); // joiner_quad(spacing1=50, spacing2=50, l=10, n=2, spin=-90); // joiner_quad(spacing1=50, spacing2=50, l=10, n=3, alternate=false, spin=-90); // joiner_quad(spacing1=50, spacing2=50, l=10, n=3, alternate=true, spin=-90); // joiner_quad(spacing1=50, spacing2=50, l=10, n=3, alternate="alt", spin=-90); module joiner_quad(spacing1=undef, spacing2=undef, xspacing=undef, yspacing=undef, h=40, w=10, l=10, a=30, n=2, alternate=true, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP) { spacing1 = first_defined([spacing1, xspacing, 100]); spacing2 = first_defined([spacing2, yspacing, 50]); if ($children > 0) { difference() { children(); joiner_quad_clear(spacing1=spacing1, spacing2=spacing2, h=h, w=w, a=a, clearance=0.1, orient=orient, spin=spin, anchor=anchor); } } orient_and_anchor([w+spacing1, spacing2, h], orient, anchor, spin=spin) { zrot_copies(n=2) { back(spacing2/2) { joiner_pair(spacing=spacing1, n=n, h=h, w=w, l=l, a=a, screwsize=screwsize, guides=guides); } } } } // Module: dovetail() // // Description: // Produces a possibly tapered dovetail joint shape to attach to or subtract from two parts you wish to join together. // The tapered dovetail is particularly advantageous for long joints because the joint assembles without binding until // it is fully closed, and then wedges tightly. You can chamfer or round the corners of the dovetail shape for better // printing and assembly, or choose a fully rounded joint that looks more like a puzzle piece. The dovetail appears // parallel to the X axis and projecting upwards, so in its default orientation it will slide together with a translation // in the X direction. // // Usage: // dovetail(l|length, h|height, w|width, slope|angle, taper|width2, chamfer, r|radius, round, anchor, orient, spin) // // Arguments: // l / length = Length of the dovetail (amount the joint slides during assembly) // h / height = Height of the dovetail // w / width = Width (at the wider, top end) of the dovetail before tapering // slope = slope of the dovetail. Standard woodworking slopes are 4, 6, or 8. Default: 6. // angle = angle (in degrees) of the dovetail. Specify only one of slope and angle. // taper = taper angle (in degrees). Dovetail gets wider by this angle. Default: no taper // width2 = width of right hand end of the dovetail. This alternate method of specifying the taper may be easier to manage. Specify only one of taper and width2. // chamfer = amount to chamfer the corners of the joint (Default: no chamfer) // r / radius = amount to round over the corners of the joint (Default: no rounding) // round = // Example: Ordinary straight dovetail, male version (sticking up) and female verison (below the xy plane) // dovetail("male", length=30, width=15, height=8); // fwd(25) dovetail("female", length=30, width=15, height=8); // Example: Adding a 6 degree taper (Such a big taper is usually not necessary, but easier to see for the example.) // dovetail("male", length=30, width=15, height=8, taper=6); // fwd(25) dovetail("female", length=30, width=15, height=8, taper=6); // Example: A block that can link to itself // diff("remove") // cuboid([50,30,10]){ // attach(BACK) dovetail("male", length=10, width=15, height=8,spin=90); // attach(FRONT) dovetail("female", length=10, width=15, height=8,spin=90,$tags="remove"); // } // Example: Setting the dovetail angle. This is too extreme to be useful. // diff("remove") // cuboid([50,30,10]){ // attach(BACK) dovetail("male", length=10, width=15, height=8,angle=30,spin=90); // attach(FRONT) dovetail("female", length=10, width=15, height=8,angle=30,spin=90,$tags="remove"); // } // Example: Adding a chamfer helps printed parts fit together without problems at the corners // diff("remove") // cuboid([50,30,10]){ // attach(BACK) dovetail("male", length=10, width=15, height=8,spin=90,chamfer=1); // attach(FRONT) dovetail("female", length=10, width=15, height=8,spin=90,chamfer=1,$tags="remove"); // } // Example: Rounding the outside corners is another option // diff("remove") // cuboid([50,30,10]){ // attach(BACK) dovetail("male", length=10, width=15, height=8,spin=90,radius=1); // attach(FRONT) dovetail("female", length=10, width=15, height=8,spin=90,radius=1,$tags="remove"); // } // Example: Or you can make a fully rounded joint // diff("remove") // cuboid([50,30,10]){ // attach(BACK) dovetail("male", length=10, width=15, height=8,spin=90,radius=1.5, round=true); // attach(FRONT) dovetail("female", length=10, width=15, height=8,spin=90,radius=1.5, round=true, $tags="remove"); // } // Example: With a long joint like this, a taper makes the joint easy to assemble. It will go together easily and wedge tightly if you get the tolerances right. Specifying the taper with `width2` may be easier than using a taper angle. // cuboid([50,30,10]) // attach(TOP) dovetail("male", length=50, width=15, height=4, width2=18); // fwd(35) // diff("remove") // cuboid([50,30,10]) // attach(TOP) dovetail("female", length=50, width=15, height=4, width2=18, $tags="remove"); // Example: A series of dovtails // cuboid([50,30,10]) // attach(BACK) xspread(10,5) dovetail("male", length=10, width=7, height=4, spin=90); // Example: Mating pin board for a right angle joint // diff("remove") // cuboid([50,30,10]) // position(TOP+BACK) xspread(10,5) dovetail("female", length=10, width=7, height=4, spin=90,$tags="remove",anchor=BOTTOM+RIGHT); module dovetail(gender, length, l, width, w, height, h, angle, slope, taper, width2, chamfer, extra=0.01, r, radius, round=false, anchor=BOTTOM, spin=0, orient) { radius = get_radius(r1=radius,r2=r); lcount = num_defined([l,length]); hcount = num_defined([h,height]); wcount = num_defined([w,width]); assert(lcount==1, "Must define exactly one of l and length"); assert(wcount==1, "Must define exactly one of w and width"); assert(hcount==1, "Must define exactly one of h and height"); h = first_defined([h,height]); w = first_defined([w,width]); length = first_defined([l,length]); orient = is_def(orient) ? orient : gender == "female" ? DOWN : UP; count = num_defined([angle,slope]); assert(count<=1, "Do not specify both angle and slope"); count2 = num_defined([taper,width2]); assert(count2<=1, "Do not specify both taper and width2"); count3 = num_defined([chamfer, radius]); assert(count3<=1 || (radius==0 && chamfer==0), "Do not specify both chamfer and radius"); slope = is_def(slope) ? slope : is_def(angle) ? 1/tan(angle) : 6; width = gender == "male" ? w : w + $slop; height = h + (gender == "female" ? $slop : 0); front_offset = is_def(taper) ? extra * tan(taper) : is_def(width2) ? extra * (width2-width)/length/2 : 0; size = is_def(chamfer) && chamfer>0 ? chamfer : is_def(radius) && radius>0 ? radius : 0; type = is_def(chamfer) && chamfer>0 ? "chamfer" : "circle"; fullsize = round ? [0,size,size] : gender == "male" ? [0,size,0] : [0,0,size]; smallend_half = round_corners( move( [-length/2-extra,0,0], p=[ [0,0 , height], [0,width/2-front_offset , height], [0,width/2 - height/slope - front_offset, 0 ], [0,width/2 - front_offset + height, 0] ] ), curve=type, size=fullsize, closed=false ); smallend_points = concat(select(smallend_half, 1, -2), [down(extra,p=select(smallend_half, -2))]); offset = is_def(taper) ? (length+extra) * tan(taper) : is_def(width2) ? (width2-width) / 2 : 0; bigend_points = move([length+2*extra,offset,0], p=smallend_points); adjustment = gender == "male" ? -0.01 : 0.01; // Adjustment for default overlap in attach() orient_and_anchor([length, width+2*offset, height],anchor=anchor,orient=orient,spin=spin, chain=true) { down(height/2+adjustment) { skin( [ concat(smallend_points, yflip(p=reverse(smallend_points))), concat(bigend_points, yflip(p=reverse(bigend_points))) ], convexity=4 ); } children(); } } // vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap