////////////////////////////////////////////////////////////////////// // LibFile: shapes2d.scad // This file includes redefinitions of the core modules to // work with attachment, and functional forms of those modules // that produce paths. You can create regular polygons // with optional rounded corners and alignment features not // available with circle(). The file also provides teardrop2d, // which is useful for 3D printable holes. // Many of the commands have module forms that produce geometry and // function forms that produce a path. // Includes: // include // FileGroup: Basic Modeling // FileSummary: Attachable circles, squares, polygons, teardrop. Can make geometry or paths. // FileFootnotes: STD=Included in std.scad ////////////////////////////////////////////////////////////////////// use // Section: 2D Primitives // Function&Module: square() // Synopsis: Creates a 2D square or rectangle. // SynTags: Geom, Path, Ext // Topics: Shapes (2D), Path Generators (2D) // See Also: rect() // Usage: As a Module // square(size, [center], ...); // Usage: With Attachments // square(size, [center], ...) [ATTACHMENTS]; // Usage: As a Function // path = square(size, [center], ...); // Description: // When called as the built-in module, creates a 2D square or rectangle of the given size. // When called as a function, returns a 2D path/list of points for a square/rectangle of the given size. // Arguments: // size = The size of the square to create. If given as a scalar, both X and Y will be the same size. // center = If given and true, overrides `anchor` to be `CENTER`. If given and false, overrides `anchor` to be `FRONT+LEFT`. // --- // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // Example(2D): // square(40); // Example(2D): Centered // square([40,30], center=true); // Example(2D): Called as Function // path = square([40,30], anchor=FRONT, spin=30); // stroke(path, closed=true); // move_copies(path) color("blue") circle(d=2,$fn=8); function square(size=1, center, anchor, spin=0) = let( anchor = get_anchor(anchor, center, [-1,-1], [-1,-1]), size = is_num(size)? [size,size] : point2d(size) ) assert(all_positive(size), "All components of size must be positive.") let( path = [ [ size.x,-size.y], [-size.x,-size.y], [-size.x, size.y], [ size.x, size.y], ] / 2 ) reorient(anchor,spin, two_d=true, size=size, p=path); module square(size=1, center, anchor, spin) { anchor = get_anchor(anchor, center, [-1,-1], [-1,-1]); rsize = is_num(size)? [size,size] : point2d(size); size = [for (c = rsize) max(0,c)]; attachable(anchor,spin, two_d=true, size=size) { if (all_positive(size)) _square(size, center=true); children(); } } // Function&Module: rect() // Synopsis: Creates a 2d rectangle with optional corner rounding. // SynTags: Geom, Path // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: square() // Usage: As Module // rect(size, [rounding], [chamfer], ...) [ATTACHMENTS]; // Usage: As Function // path = rect(size, [rounding], [chamfer], ...); // Description: // When called as a module, creates a 2D rectangle of the given size, with optional rounding or chamfering. // When called as a function, returns a 2D path/list of points for a square/rectangle of the given size. // Arguments: // size = The size of the rectangle to create. If given as a scalar, both X and Y will be the same size. // --- // rounding = The rounding radius for the corners. If negative, produces external roundover spikes on the X axis. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no rounding) // chamfer = The chamfer size for the corners. If negative, produces external chamfer spikes on the X axis. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no chamfer) // atype = The type of anchoring to use with `anchor=`. Valid opptions are "box" and "perim". This lets you choose between putting anchors on the rounded or chamfered perimeter, or on the square bounding box of the shape. Default: "box" // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // Anchor Types: // box = Anchor is with respect to the rectangular bounding box of the shape. // perim = Anchors are placed along the rounded or chamfered perimeter of the shape. // Example(2D): // rect(40); // Example(2D): Anchored // rect([40,30], anchor=FRONT); // Example(2D): Spun // rect([40,30], anchor=FRONT, spin=30); // Example(2D): Chamferred Rect // rect([40,30], chamfer=5); // Example(2D): Rounded Rect // rect([40,30], rounding=5); // Example(2D): Negative-Chamferred Rect // rect([40,30], chamfer=-5); // Example(2D): Negative-Rounded Rect // rect([40,30], rounding=-5); // Example(2D): Default "box" Anchors // color("red") rect([40,30]); // rect([40,30], rounding=10) // show_anchors(); // Example(2D): "perim" Anchors // rect([40,30], rounding=10, atype="perim") // show_anchors(); // Example(2D): "perim" Anchors // rect([40,30], rounding=[-10,-8,-3,-7], atype="perim") // show_anchors(); // Example(2D): Mixed Chamferring and Rounding // rect([40,30],rounding=[5,0,10,0],chamfer=[0,8,0,15],$fa=1,$fs=1); // Example(2D): Called as Function // path = rect([40,30], chamfer=5, anchor=FRONT, spin=30); // stroke(path, closed=true); // move_copies(path) color("blue") circle(d=2,$fn=8); module rect(size=1, rounding=0, atype="box", chamfer=0, anchor=CENTER, spin=0) { errchk = assert(in_list(atype, ["box", "perim"])); size = [for (c = force_list(size,2)) max(0,c)]; if (!all_positive(size)) { attachable(anchor,spin, two_d=true, size=size) { union(); children(); } } else if (rounding==0 && chamfer==0) { attachable(anchor, spin, two_d=true, size=size) { square(size, center=true); children(); } } else { pts_over = rect(size=size, rounding=rounding, chamfer=chamfer, atype=atype, _return_override=true); pts = pts_over[0]; override = pts_over[1]; attachable(anchor, spin, two_d=true, size=size,override=override) { polygon(pts); children(); } } } function rect(size=1, rounding=0, chamfer=0, atype="box", anchor=CENTER, spin=0, _return_override) = assert(is_num(size) || is_vector(size,2)) assert(is_num(chamfer) || is_vector(chamfer,4)) assert(is_num(rounding) || is_vector(rounding,4)) assert(in_list(atype, ["box", "perim"])) let( anchor=_force_anchor_2d(anchor), size = [for (c = force_list(size,2)) max(0,c)], chamfer = force_list(chamfer,4), rounding = force_list(rounding,4) ) assert(all_nonnegative(size), "All components of size must be >=0") all_zero(concat(chamfer,rounding),0) ? let( path = [ [ size.x/2, -size.y/2], [-size.x/2, -size.y/2], [-size.x/2, size.y/2], [ size.x/2, size.y/2], ] ) rot(spin, p=move(-v_mul(anchor,size/2), p=path)) : assert(all_zero(v_mul(chamfer,rounding),0), "Cannot specify chamfer and rounding at the same corner") let( quadorder = [3,2,1,0], quadpos = [[1,1],[-1,1],[-1,-1],[1,-1]], eps = 1e-9, insets = [for (i=[0:3]) abs(chamfer[i])>=eps? chamfer[i] : abs(rounding[i])>=eps? rounding[i] : 0], insets_x = max(insets[0]+insets[1],insets[2]+insets[3]), insets_y = max(insets[0]+insets[3],insets[1]+insets[2]) ) assert(insets_x <= size.x, "Requested roundings and/or chamfers exceed the rect width.") assert(insets_y <= size.y, "Requested roundings and/or chamfers exceed the rect height.") let( corners = [ for(i = [0:3]) let( quad = quadorder[i], qinset = insets[quad], qpos = quadpos[quad], qchamf = chamfer[quad], qround = rounding[quad], cverts = quant(segs(abs(qinset)),4)/4, step = 90/cverts, cp = v_mul(size/2-[qinset,abs(qinset)], qpos), qpts = abs(qchamf) >= eps? [[0,abs(qinset)], [qinset,0]] : abs(qround) >= eps? [for (j=[0:1:cverts]) let(a=90-j*step) v_mul(polar_to_xy(abs(qinset),a),[sign(qinset),1])] : [[0,0]], qfpts = [for (p=qpts) v_mul(p,qpos)], qrpts = qpos.x*qpos.y < 0? reverse(qfpts) : qfpts, cornerpt = atype=="box" || (qround==0 && qchamf==0) ? undef : qround<0 || qchamf<0 ? [[0,-qpos.y*min(qround,qchamf)]] : [for(seg=pair(qrpts)) let(isect=line_intersection(seg, [[0,0],qpos],SEGMENT,LINE)) if (is_def(isect) && isect!=seg[0]) isect] ) assert(is_undef(cornerpt) || len(cornerpt)==1,"Cannot find corner point to anchor") [move(cp, p=qrpts), is_undef(cornerpt)? undef : move(cp,p=cornerpt[0])] ], path = deduplicate(flatten(column(corners,0)),closed=true), override = [for(i=[0:3]) let(quad=quadorder[i]) if (is_def(corners[i][1])) [quadpos[quad], [corners[i][1], min(chamfer[quad],rounding[quad])<0 ? [quadpos[quad].x,0] : undef]]] ) _return_override ? [reorient(anchor,spin, two_d=true, size=size, p=path, override=override), override] : reorient(anchor,spin, two_d=true, size=size, p=path, override=override); // Function&Module: circle() // Synopsis: Creates the approximation of a circle. // SynTags: Geom, Path, Ext // Topics: Shapes (2D), Path Generators (2D) // See Also: ellipse(), circle_2tangents(), circle_3points() // Usage: As a Module // circle(r|d=, ...) [ATTACHMENTS]; // circle(points=) [ATTACHMENTS]; // circle(r|d=, corner=) [ATTACHMENTS]; // Usage: As a Function // path = circle(r|d=, ...); // path = circle(points=); // path = circle(r|d=, corner=); // Description: // When called as the built-in module, creates a 2D polygon that approximates a circle of the given size. // When called as a function, returns a 2D list of points (path) for a polygon that approximates a circle of the given size. // If `corner=` is given three 2D points, centers the circle so that it will be tangent to both segments of the path, on the inside corner. // If `points=` is given three 2D points, centers and sizes the circle so that it passes through all three points. // Arguments: // r = The radius of the circle to create. // d = The diameter of the circle to create. // --- // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // Example(2D): By Radius // circle(r=25); // Example(2D): By Diameter // circle(d=50); // Example(2D): Fit to Three Points // pts = [[50,25], [25,-25], [-10,0]]; // circle(points=pts); // color("red") move_copies(pts) circle(); // Example(2D): Fit Tangent to Inside Corner of Two Segments // path = [[50,25], [-10,0], [25,-25]]; // circle(corner=path, r=15); // color("red") stroke(path); // Example(2D): Called as Function // path = circle(d=50, anchor=FRONT, spin=45); // stroke(path); function circle(r, d, points, corner, anchor=CENTER, spin=0) = assert(is_undef(corner) || (is_path(corner,[2]) && len(corner) == 3)) assert(is_undef(points) || is_undef(corner), "Cannot specify both points and corner.") let( data = is_def(points)? assert(is_path(points,[2]) && len(points) == 3) assert(is_undef(corner), "Cannot specify corner= when points= is given.") assert(is_undef(r) && is_undef(d), "Cannot specify r= or d= when points= is given.") let( c = circle_3points(points) ) assert(!is_undef(c[0]), "Points cannot be collinear.") let( cp = c[0], r = c[1] ) [cp, r] : is_def(corner)? assert(is_path(corner,[2]) && len(corner) == 3) assert(is_undef(points), "Cannot specify points= when corner= is given.") let( r = get_radius(r=r, d=d, dflt=1), c = circle_2tangents(r=r, pt1=corner[0], pt2=corner[1], pt3=corner[2]) ) assert(c!=undef, "Corner path cannot be collinear.") let( cp = c[0] ) [cp, r] : let( cp = [0, 0], r = get_radius(r=r, d=d, dflt=1) ) [cp, r], cp = data[0], r = data[1] ) assert(r>0, "Radius/diameter must be positive") let( sides = segs(r), path = [for (i=[0:1:sides-1]) let(a=360-i*360/sides) r*[cos(a),sin(a)]+cp] ) reorient(anchor,spin, two_d=true, r=r, p=path); module circle(r, d, points, corner, anchor=CENTER, spin=0) { if (is_path(points)) { c = circle_3points(points); check = assert(c!=undef && c[0] != undef, "Points must not be collinear."); cp = c[0]; r = c[1]; translate(cp) { attachable(anchor,spin, two_d=true, r=r) { if (r>0) _circle(r=r); children(); } } } else if (is_path(corner)) { r = get_radius(r=r, d=d, dflt=1); c = circle_2tangents(r=r, pt1=corner[0], pt2=corner[1], pt3=corner[2]); check = assert(c != undef && c[0] != undef, "Points must not be collinear."); cp = c[0]; translate(cp) { attachable(anchor,spin, two_d=true, r=r) { if (r>0) _circle(r=r); children(); } } } else { r = get_radius(r=r, d=d, dflt=1); attachable(anchor,spin, two_d=true, r=r) { if (r>0) _circle(r=r); children(); } } } // Function&Module: ellipse() // Synopsis: Creates the approximation of an ellipse or a circle. // SynTags: Geom, Path // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: circle(), circle_2tangents(), circle_3points() // Usage: As a Module // ellipse(r|d=, [realign=], [circum=], [uniform=], ...) [ATTACHMENTS]; // Usage: As a Function // path = ellipse(r|d=, [realign=], [circum=], [uniform=], ...); // Description: // When called as a module, creates a 2D polygon that approximates a circle or ellipse of the given size. // When called as a function, returns a 2D list of points (path) for a polygon that approximates a circle or ellipse of the given size. // By default the point list or shape is the same as the one you would get by scaling the output of {{circle()}}, but with this module your // attachments to the ellipse will retain their dimensions, whereas scaling a circle with attachments will also scale the attachments. // If you set `uniform` to true then you will get a polygon with congruent sides whose vertices lie on the ellipse. The `circum` option // requests a polygon that circumscribes the requested ellipse (so the specified ellipse will fit into the resulting polygon). Note that // you cannot gives `circum=true` and `uniform=true`. // Arguments: // r = Radius of the circle or pair of semiaxes of ellipse // --- // d = Diameter of the circle or a pair giving the full X and Y axis lengths. // realign = If false starts the approximate ellipse with a point on the X+ axis. If true the midpoint of a side is on the X+ axis and the first point of the polygon is below the X+ axis. This can result in a very different polygon when $fn is small. Default: false // uniform = If true, the polygon that approximates the circle will have segments of equal length. Only works if `circum=false`. Default: false // circum = If true, the polygon that approximates the circle will be upsized slightly to circumscribe the theoretical circle. If false, it inscribes the theoretical circle. If this is true then `uniform` must be false. Default: false // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // Example(2D): By Radius // ellipse(r=25); // Example(2D): By Diameter // ellipse(d=50); // Example(2D): Anchoring // ellipse(d=50, anchor=FRONT); // Example(2D): Spin // ellipse(d=50, anchor=FRONT, spin=45); // Example(NORENDER): Called as Function // path = ellipse(d=50, anchor=FRONT, spin=45); // Example(2D,NoAxes): Uniformly sampled hexagon at the top, regular non-uniform one at the bottom // r=[10,3]; // ydistribute(7){ // union(){ // stroke([ellipse(r=r, $fn=100)],width=0.05,color="blue"); // stroke([ellipse(r=r, $fn=6)],width=0.1,color="red"); // } // union(){ // stroke([ellipse(r=r, $fn=100)],width=0.05,color="blue"); // stroke([ellipse(r=r, $fn=6,uniform=true)],width=0.1,color="red"); // } // } // Example(2D): The realigned hexagons are even more different // r=[10,3]; // ydistribute(7){ // union(){ // stroke([ellipse(r=r, $fn=100)],width=0.05,color="blue"); // stroke([ellipse(r=r, $fn=6,realign=true)],width=0.1,color="red"); // } // union(){ // stroke([ellipse(r=r, $fn=100)],width=0.05,color="blue"); // stroke([ellipse(r=r, $fn=6,realign=true,uniform=true)],width=0.1,color="red"); // } // } // Example(2D): For odd $fn the result may not look very elliptical: // r=[10,3]; // ydistribute(7){ // union(){ // stroke([ellipse(r=r, $fn=100)],width=0.05,color="blue"); // stroke([ellipse(r=r, $fn=5,realign=false)],width=0.1,color="red"); // } // union(){ // stroke([ellipse(r=r, $fn=100)],width=0.05,color="blue"); // stroke([ellipse(r=r, $fn=5,realign=false,uniform=true)],width=0.1,color="red"); // } // } // Example(2D): The same ellipse, turned 90 deg, gives a very different result: // r=[3,10]; // xdistribute(7){ // union(){ // stroke([ellipse(r=r, $fn=100)],width=0.1,color="blue"); // stroke([ellipse(r=r, $fn=5,realign=false)],width=0.2,color="red"); // } // union(){ // stroke([ellipse(r=r, $fn=100)],width=0.1,color="blue"); // stroke([ellipse(r=r, $fn=5,realign=false,uniform=true)],width=0.2,color="red"); // } // } module ellipse(r, d, realign=false, circum=false, uniform=false, anchor=CENTER, spin=0) { r = force_list(get_radius(r=r, d=d, dflt=1),2); dummy = assert(is_vector(r,2) && all_positive(r), "Invalid radius or diameter for ellipse"); sides = segs(max(r)); sc = circum? (1 / cos(180/sides)) : 1; rx = r.x * sc; ry = r.y * sc; attachable(anchor,spin, two_d=true, r=[rx,ry]) { if (uniform) { check = assert(!circum, "Circum option not allowed when \"uniform\" is true"); polygon(ellipse(r,realign=realign, circum=circum, uniform=true)); } else if (rx < ry) { xscale(rx/ry) { zrot(realign? 180/sides : 0) { circle(r=ry, $fn=sides); } } } else { yscale(ry/rx) { zrot(realign? 180/sides : 0) { circle(r=rx, $fn=sides); } } } children(); } } // Iterative refinement to produce an inscribed polygon // in an ellipse whose side lengths are all equal function _ellipse_refine(a,b,N, _theta=[]) = len(_theta)==0? _ellipse_refine(a,b,N,lerpn(0,360,N,endpoint=false)) : let( pts = [for(t=_theta) [a*cos(t),b*sin(t)]], lenlist= path_segment_lengths(pts,closed=true), meanlen = mean(lenlist), error = lenlist/meanlen ) all_equal(error,EPSILON) ? pts : let( dtheta = [each deltas(_theta), 360-last(_theta)], newdtheta = [for(i=idx(dtheta)) dtheta[i]/error[i]], adjusted = [0,each cumsum(list_head(newdtheta / sum(newdtheta) * 360))] ) _ellipse_refine(a,b,N,adjusted); function _ellipse_refine_realign(a,b,N, _theta=[],i=0) = len(_theta)==0? _ellipse_refine_realign(a,b,N, count(N-1,180/N,360/N)) : let( pts = [for(t=_theta) [a*cos(t),b*sin(t)], [a*cos(_theta[0]), -b*sin(_theta[0])]], lenlist= path_segment_lengths(pts,closed=true), meanlen = mean(lenlist), error = lenlist/meanlen ) all_equal(error,EPSILON) ? pts : let( dtheta = [each deltas(_theta), 360-last(_theta)-_theta[0], 2*_theta[0]], newdtheta = [for(i=idx(dtheta)) dtheta[i]/error[i]], normdtheta = newdtheta / sum(newdtheta) * 360, adjusted = cumsum([last(normdtheta)/2, each list_head(normdtheta, -3)]) ) _ellipse_refine_realign(a,b,N,adjusted, i+1); function ellipse(r, d, realign=false, circum=false, uniform=false, anchor=CENTER, spin=0) = let( r = force_list(get_radius(r=r, d=d, dflt=1),2), sides = segs(max(r)) ) assert(all_positive(r), "All components of the radius must be positive.") uniform ? assert(!circum, "Circum option not allowed when \"uniform\" is true") reorient(anchor,spin, two_d=true, r=[r.x,r.y], p=realign ? reverse(_ellipse_refine_realign(r.x,r.y,sides)) : reverse_polygon(_ellipse_refine(r.x,r.y,sides)) ) : let( offset = realign? 180/sides : 0, sc = circum? (1 / cos(180/sides)) : 1, rx = r.x * sc, ry = r.y * sc, pts = [ for (i=[0:1:sides-1]) let (a = 360-offset-i*360/sides) [rx*cos(a), ry*sin(a)] ] ) reorient(anchor,spin, two_d=true, r=[rx,ry], p=pts); // Section: Polygons // Function&Module: regular_ngon() // Synopsis: Creates a regular N-sided polygon. // SynTags: Geom, Path // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: debug_polygon(), circle(), pentagon(), hexagon(), octagon(), ellipse(), star() // Usage: // regular_ngon(n, r|d=|or=|od=, [realign=]) [ATTACHMENTS]; // regular_ngon(n, ir=|id=, [realign=]) [ATTACHMENTS]; // regular_ngon(n, side=, [realign=]) [ATTACHMENTS]; // Description: // When called as a function, returns a 2D path for a regular N-sided polygon. // When called as a module, creates a 2D regular N-sided polygon. // Arguments: // n = The number of sides. // r/or = Outside radius, at points. // --- // d/od = Outside diameter, at points. // ir = Inside radius, at center of sides. // id = Inside diameter, at center of sides. // side = Length of each side. // rounding = Radius of rounding for the tips of the polygon. Default: 0 (no rounding) // realign = If false, vertex 0 will lie on the X+ axis. If true then the midpoint of the last edge will lie on the X+ axis, and vertex 0 will be below the X axis. Default: false // align_tip = If given as a 2D vector, rotates the whole shape so that the first vertex points in that direction. This occurs before spin. // align_side = If given as a 2D vector, rotates the whole shape so that the normal of side0 points in that direction. This occurs before spin. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // Extra Anchors: // "tip0", "tip1", etc. = Each tip has an anchor, pointing outwards. // "side0", "side1", etc. = The center of each side has an anchor, pointing outwards. // Example(2D): by Outer Size // regular_ngon(n=5, or=30); // regular_ngon(n=5, od=60); // Example(2D): by Inner Size // regular_ngon(n=5, ir=30); // regular_ngon(n=5, id=60); // Example(2D): by Side Length // regular_ngon(n=8, side=20); // Example(2D): Realigned // regular_ngon(n=8, side=20, realign=true); // Example(2D): Alignment by Tip // regular_ngon(n=5, r=30, align_tip=BACK+RIGHT) // attach("tip0", FWD) color("blue") // stroke([[0,0],[0,7]], endcap2="arrow2"); // Example(2D): Alignment by Side // regular_ngon(n=5, r=30, align_side=BACK+RIGHT) // attach("side0", FWD) color("blue") // stroke([[0,0],[0,7]], endcap2="arrow2"); // Example(2D): Rounded // regular_ngon(n=5, od=100, rounding=20, $fn=20); // Example(2D): Called as Function // stroke(closed=true, regular_ngon(n=6, or=30)); function regular_ngon(n=6, r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0, _mat, _anchs) = assert(is_int(n) && n>=3) assert(is_undef(align_tip) || is_vector(align_tip)) assert(is_undef(align_side) || is_vector(align_side)) assert(is_undef(align_tip) || is_undef(align_side), "Can only specify one of align_tip and align-side") let( sc = 1/cos(180/n), ir = is_finite(ir)? ir*sc : undef, id = is_finite(id)? id*sc : undef, side = is_finite(side)? side/2/sin(180/n) : undef, r = get_radius(r1=ir, r2=or, r=r, d1=id, d2=od, d=d, dflt=side) ) assert(!is_undef(r), "regular_ngon(): need to specify one of r, d, or, od, ir, id, side.") assert(all_positive([r]), "polygon size must be a positive value") let( inset = opp_ang_to_hyp(rounding, (180-360/n)/2), mat = !is_undef(_mat) ? _mat : ( realign? zrot(-180/n) : ident(4)) * ( !is_undef(align_tip)? rot(from=RIGHT, to=point2d(align_tip)) : !is_undef(align_side)? rot(from=RIGHT, to=point2d(align_side)) * zrot(180/n) : 1 ), path4 = rounding==0? ellipse(r=r, $fn=n) : ( let( steps = floor(segs(r)/n), step = 360/n/steps, path2 = [ for (i = [0:1:n-1]) let( a = 360 - i*360/n, p = polar_to_xy(r-inset, a) ) each arc(n=steps, cp=p, r=rounding, start=a+180/n, angle=-360/n) ], maxx_idx = max_index(column(path2,0)), path3 = list_rotate(path2,maxx_idx) ) path3 ), path = apply(mat, path4), anchors = !is_undef(_anchs) ? _anchs : !is_string(anchor)? [] : [ for (i = [0:1:n-1]) let( a1 = 360 - i*360/n, a2 = a1 - 360/n, p1 = apply(mat, polar_to_xy(r,a1)), p2 = apply(mat, polar_to_xy(r,a2)), tipp = apply(mat, polar_to_xy(r-inset+rounding,a1)), pos = (p1+p2)/2 ) each [ named_anchor(str("tip",i), tipp, unit(tipp,BACK), 0), named_anchor(str("side",i), pos, unit(pos,BACK), 0), ] ] ) reorient(anchor,spin, two_d=true, path=path, extent=false, p=path, anchors=anchors); module regular_ngon(n=6, r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0) { sc = 1/cos(180/n); ir = is_finite(ir)? ir*sc : undef; id = is_finite(id)? id*sc : undef; side = is_finite(side)? side/2/sin(180/n) : undef; r = get_radius(r1=ir, r2=or, r=r, d1=id, d2=od, d=d, dflt=side); check = assert(!is_undef(r), "regular_ngon(): need to specify one of r, d, or, od, ir, id, side.") assert(all_positive([r]), "polygon size must be a positive value"); mat = ( realign? zrot(-180/n) : ident(4) ) * ( !is_undef(align_tip)? rot(from=RIGHT, to=point2d(align_tip)) : !is_undef(align_side)? rot(from=RIGHT, to=point2d(align_side)) * zrot(180/n) : 1 ); inset = opp_ang_to_hyp(rounding, (180-360/n)/2); anchors = [ for (i = [0:1:n-1]) let( a1 = 360 - i*360/n, a2 = a1 - 360/n, p1 = apply(mat, polar_to_xy(r,a1)), p2 = apply(mat, polar_to_xy(r,a2)), tipp = apply(mat, polar_to_xy(r-inset+rounding,a1)), pos = (p1+p2)/2 ) each [ named_anchor(str("tip",i), tipp, unit(tipp,BACK), 0), named_anchor(str("side",i), pos, unit(pos,BACK), 0), ] ]; path = regular_ngon(n=n, r=r, rounding=rounding, _mat=mat, _anchs=anchors); attachable(anchor,spin, two_d=true, path=path, extent=false, anchors=anchors) { polygon(path); children(); } } // Function&Module: pentagon() // Synopsis: Creates a regular pentagon. // SynTags: Geom, Path // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: circle(), regular_ngon(), hexagon(), octagon(), ellipse(), star() // Usage: // pentagon(or|od=, [realign=], [align_tip=|align_side=]) [ATTACHMENTS]; // pentagon(ir=|id=, [realign=], [align_tip=|align_side=]) [ATTACHMENTS]; // pentagon(side=, [realign=], [align_tip=|align_side=]) [ATTACHMENTS]; // Usage: as function // path = pentagon(...); // Description: // When called as a function, returns a 2D path for a regular pentagon. // When called as a module, creates a 2D regular pentagon. // Arguments: // r/or = Outside radius, at points. // --- // d/od = Outside diameter, at points. // ir = Inside radius, at center of sides. // id = Inside diameter, at center of sides. // side = Length of each side. // rounding = Radius of rounding for the tips of the polygon. Default: 0 (no rounding) // realign = If false, vertex 0 will lie on the X+ axis. If true then the midpoint of the last edge will lie on the X+ axis, and vertex 0 will be below the X axis. Default: false // align_tip = If given as a 2D vector, rotates the whole shape so that the first vertex points in that direction. This occurs before spin. // align_side = If given as a 2D vector, rotates the whole shape so that the normal of side0 points in that direction. This occurs before spin. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // Extra Anchors: // "tip0" ... "tip4" = Each tip has an anchor, pointing outwards. // "side0" ... "side4" = The center of each side has an anchor, pointing outwards. // Example(2D): by Outer Size // pentagon(or=30); // pentagon(od=60); // Example(2D): by Inner Size // pentagon(ir=30); // pentagon(id=60); // Example(2D): by Side Length // pentagon(side=20); // Example(2D): Realigned // pentagon(side=20, realign=true); // Example(2D): Alignment by Tip // pentagon(r=30, align_tip=BACK+RIGHT) // attach("tip0", FWD) color("blue") // stroke([[0,0],[0,7]], endcap2="arrow2"); // Example(2D): Alignment by Side // pentagon(r=30, align_side=BACK+RIGHT) // attach("side0", FWD) color("blue") // stroke([[0,0],[0,7]], endcap2="arrow2"); // Example(2D): Rounded // pentagon(od=100, rounding=20, $fn=20); // Example(2D): Called as Function // stroke(closed=true, pentagon(or=30)); function pentagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0) = regular_ngon(n=5, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, align_tip=align_tip, align_side=align_side, anchor=anchor, spin=spin); module pentagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0) regular_ngon(n=5, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, align_tip=align_tip, align_side=align_side, anchor=anchor, spin=spin) children(); // Function&Module: hexagon() // Synopsis: Creates a regular hexagon. // SynTags: Geom, Path // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: circle(), regular_ngon(), pentagon(), octagon(), ellipse(), star() // Usage: As Module // hexagon(r/or, [realign=], , [rounding=], ...) [ATTACHMENTS]; // hexagon(d=/od=, ...) [ATTACHMENTS]; // hexagon(ir=/id=, ...) [ATTACHMENTS]; // hexagon(side=, ...) [ATTACHMENTS]; // Usage: As Function // path = hexagon(...); // Description: // When called as a function, returns a 2D path for a regular hexagon. // When called as a module, creates a 2D regular hexagon. // Arguments: // r/or = Outside radius, at points. // --- // d/od = Outside diameter, at points. // ir = Inside radius, at center of sides. // id = Inside diameter, at center of sides. // side = Length of each side. // rounding = Radius of rounding for the tips of the polygon. Default: 0 (no rounding) // realign = If false, vertex 0 will lie on the X+ axis. If true then the midpoint of the last edge will lie on the X+ axis, and vertex 0 will be below the X axis. Default: false // align_tip = If given as a 2D vector, rotates the whole shape so that the first vertex points in that direction. This occurs before spin. // align_side = If given as a 2D vector, rotates the whole shape so that the normal of side0 points in that direction. This occurs before spin. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // Extra Anchors: // "tip0" ... "tip5" = Each tip has an anchor, pointing outwards. // "side0" ... "side5" = The center of each side has an anchor, pointing outwards. // Example(2D): by Outer Size // hexagon(or=30); // hexagon(od=60); // Example(2D): by Inner Size // hexagon(ir=30); // hexagon(id=60); // Example(2D): by Side Length // hexagon(side=20); // Example(2D): Realigned // hexagon(side=20, realign=true); // Example(2D): Alignment by Tip // hexagon(r=30, align_tip=BACK+RIGHT) // attach("tip0", FWD) color("blue") // stroke([[0,0],[0,7]], endcap2="arrow2"); // Example(2D): Alignment by Side // hexagon(r=30, align_side=BACK+RIGHT) // attach("side0", FWD) color("blue") // stroke([[0,0],[0,7]], endcap2="arrow2"); // Example(2D): Rounded // hexagon(od=100, rounding=20, $fn=20); // Example(2D): Called as Function // stroke(closed=true, hexagon(or=30)); function hexagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0) = regular_ngon(n=6, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, align_tip=align_tip, align_side=align_side, anchor=anchor, spin=spin); module hexagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0) regular_ngon(n=6, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, align_tip=align_tip, align_side=align_side, anchor=anchor, spin=spin) children(); // Function&Module: octagon() // Synopsis: Creates a regular octagon. // SynTags: Geom, Path // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: circle(), regular_ngon(), pentagon(), hexagon(), ellipse(), star() // Usage: As Module // octagon(r/or, [realign=], [align_tip=|align_side=], [rounding=], ...) [ATTACHMENTS]; // octagon(d=/od=, ...) [ATTACHMENTS]; // octagon(ir=/id=, ...) [ATTACHMENTS]; // octagon(side=, ...) [ATTACHMENTS]; // Usage: As Function // path = octagon(...); // Description: // When called as a function, returns a 2D path for a regular octagon. // When called as a module, creates a 2D regular octagon. // Arguments: // r/or = Outside radius, at points. // d/od = Outside diameter, at points. // ir = Inside radius, at center of sides. // id = Inside diameter, at center of sides. // side = Length of each side. // rounding = Radius of rounding for the tips of the polygon. Default: 0 (no rounding) // realign = If false, vertex 0 will lie on the X+ axis. If true then the midpoint of the last edge will lie on the X+ axis, and vertex 0 will be below the X axis. Default: false // align_tip = If given as a 2D vector, rotates the whole shape so that the first vertex points in that direction. This occurs before spin. // align_side = If given as a 2D vector, rotates the whole shape so that the normal of side0 points in that direction. This occurs before spin. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // Extra Anchors: // "tip0" ... "tip7" = Each tip has an anchor, pointing outwards. // "side0" ... "side7" = The center of each side has an anchor, pointing outwards. // Example(2D): by Outer Size // octagon(or=30); // octagon(od=60); // Example(2D): by Inner Size // octagon(ir=30); // octagon(id=60); // Example(2D): by Side Length // octagon(side=20); // Example(2D): Realigned // octagon(side=20, realign=true); // Example(2D): Alignment by Tip // octagon(r=30, align_tip=BACK+RIGHT) // attach("tip0", FWD) color("blue") // stroke([[0,0],[0,7]], endcap2="arrow2"); // Example(2D): Alignment by Side // octagon(r=30, align_side=BACK+RIGHT) // attach("side0", FWD) color("blue") // stroke([[0,0],[0,7]], endcap2="arrow2"); // Example(2D): Rounded // octagon(od=100, rounding=20, $fn=20); // Example(2D): Called as Function // stroke(closed=true, octagon(or=30)); function octagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0) = regular_ngon(n=8, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, align_tip=align_tip, align_side=align_side, anchor=anchor, spin=spin); module octagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0) regular_ngon(n=8, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, align_tip=align_tip, align_side=align_side, anchor=anchor, spin=spin) children(); // Function&Module: right_triangle() // Synopsis: Creates a right triangle. // SynTags: Geom, Path // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: square(), rect(), regular_ngon(), pentagon(), hexagon(), octagon(), star() // Usage: As Module // right_triangle(size, [center], ...) [ATTACHMENTS]; // Usage: As Function // path = right_triangle(size, [center], ...); // Description: // When called as a module, creates a right triangle with the Hypotenuse in the X+Y+ quadrant. // When called as a function, returns a 2D path for a right triangle with the Hypotenuse in the X+Y+ quadrant. // Arguments: // size = The width and length of the right triangle, given as a scalar or an XY vector. // center = If true, forces `anchor=CENTER`. If false, forces `anchor=[-1,-1]`. Default: undef (use `anchor=`) // --- // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // Extra Anchors: // hypot = Center of angled side, perpendicular to that side. // Example(2D): // right_triangle([40,30]); // Example(2D): With `center=true` // right_triangle([40,30], center=true); // Example(2D): Standard Anchors // right_triangle([80,30], center=true) // show_anchors(custom=false); // color([0.5,0.5,0.5,0.1]) // square([80,30], center=true); // Example(2D): Named Anchors // right_triangle([80,30], center=true) // show_anchors(std=false); function right_triangle(size=[1,1], center, anchor, spin=0) = let( size = is_num(size)? [size,size] : size, anchor = get_anchor(anchor, center, [-1,-1], [-1,-1]) ) assert(is_vector(size,2)) assert(min(size)>0, "Must give positive size") let( path = [ [size.x/2,-size.y/2], [-size.x/2,-size.y/2], [-size.x/2,size.y/2] ], anchors = [ named_anchor("hypot", CTR, unit([size.y,size.x])), ] ) reorient(anchor,spin, two_d=true, size=[size.x,size.y], anchors=anchors, p=path); module right_triangle(size=[1,1], center, anchor, spin=0) { size = is_num(size)? [size,size] : size; anchor = get_anchor(anchor, center, [-1,-1], [-1,-1]); check = assert(is_vector(size,2)); path = right_triangle(size, anchor="origin"); anchors = [ named_anchor("hypot", CTR, unit([size.y,size.x])), ]; attachable(anchor,spin, two_d=true, size=[size.x,size.y], anchors=anchors) { polygon(path); children(); } } // Function&Module: trapezoid() // Synopsis: Creates a trapezoid with parallel top and bottom sides. // SynTags: Geom, Path // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: rect(), square() // Usage: As Module // trapezoid(h, w1, w2, [shift=], [rounding=], [chamfer=], [flip=], ...) [ATTACHMENTS]; // trapezoid(h, w1, ang=, [rounding=], [chamfer=], [flip=], ...) [ATTACHMENTS]; // trapezoid(h, w2=, ang=, [rounding=], [chamfer=], [flip=], ...) [ATTACHMENTS]; // trapezoid(w1=, w2=, ang=, [rounding=], [chamfer=], [flip=], ...) [ATTACHMENTS]; // Usage: As Function // path = trapezoid(...); // Description: // When called as a function, returns a 2D path for a trapezoid with parallel front and back (top and bottom) sides. // When called as a module, creates a 2D trapezoid. You can specify the trapezoid by giving its height and the lengths // of its two bases. Alternatively, you can omit one of those parameters and specify the lower angle(s). // The shift parameter, which cannot be combined with ang, shifts the back (top) of the trapezoid to the right. // Arguments: // h = The Y axis height of the trapezoid. // w1 = The X axis width of the front end of the trapezoid. // w2 = The X axis width of the back end of the trapezoid. // --- // ang = Specify the bottom angle(s) of the trapezoid. Can give a scalar for an isosceles trapezoid or a list of two angles, the left angle and right angle. You must omit one of `h`, `w1`, or `w2` to allow the freedom to control the angles. // shift = Scalar value to shift the back of the trapezoid along the X axis by. Cannot be combined with ang. Default: 0 // rounding = The rounding radius for the corners. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no rounding) // chamfer = The Length of the chamfer faces at the corners. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no chamfer) // flip = If true, negative roundings and chamfers will point forward and back instead of left and right. Default: `false`. // atype = The type of anchoring to use with `anchor=`. Valid opptions are "box" and "perim". This lets you choose between putting anchors on the rounded or chamfered perimeter, or on the square bounding box of the shape. Default: "box" // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // Anchor Types: // box = Anchor is with respect to the rectangular bounding box of the shape. // perim = Anchors are placed along the rounded or chamfered perimeter of the shape. // Examples(2D): // trapezoid(h=30, w1=40, w2=20); // trapezoid(h=25, w1=20, w2=35); // trapezoid(h=20, w1=40, w2=0); // trapezoid(h=20, w1=30, ang=60); // trapezoid(h=20, w1=20, ang=120); // trapezoid(h=20, w2=10, ang=60); // trapezoid(h=20, w1=50, ang=[40,60]); // trapezoid(w1=30, w2=10, ang=[30,90]); // Example(2D): Chamfered Trapezoid // trapezoid(h=30, w1=60, w2=40, chamfer=5); // Example(2D): Negative Chamfered Trapezoid // trapezoid(h=30, w1=60, w2=40, chamfer=-5); // Example(2D): Flipped Negative Chamfered Trapezoid // trapezoid(h=30, w1=60, w2=40, chamfer=-5, flip=true); // Example(2D): Rounded Trapezoid // trapezoid(h=30, w1=60, w2=40, rounding=5); // Example(2D): Negative Rounded Trapezoid // trapezoid(h=30, w1=60, w2=40, rounding=-5); // Example(2D): Flipped Negative Rounded Trapezoid // trapezoid(h=30, w1=60, w2=40, rounding=-5, flip=true); // Example(2D): Mixed Chamfering and Rounding // trapezoid(h=30, w1=60, w2=40, rounding=[5,0,-10,0],chamfer=[0,8,0,-15],$fa=1,$fs=1); // Example(2D): default anchors for roundings // trapezoid(h=30, w1=100, ang=[66,44],rounding=5) show_anchors(); // Example(2D): default anchors for negative roundings are still at the trapezoid corners // trapezoid(h=30, w1=100, ang=[66,44],rounding=-5) show_anchors(); // Example(2D): "perim" anchors are at the tips of negative roundings // trapezoid(h=30, w1=100, ang=[66,44],rounding=-5, atype="perim") show_anchors(); // Example(2D): They point the other direction if you flip them // trapezoid(h=30, w1=100, ang=[66,44],rounding=-5, atype="perim",flip=true) show_anchors(); // Example(2D): Called as Function // stroke(closed=true, trapezoid(h=30, w1=40, w2=20)); function _trapezoid_dims(h,w1,w2,shift,ang) = let( h = is_def(h)? h : num_defined([w1,w2,each ang])==4 ? (w1-w2) * sin(ang[0]) * sin(ang[1]) / sin(ang[0]+ang[1]) : undef ) is_undef(h) ? [h] : let( x1 = is_undef(ang[0]) || ang[0]==90 ? 0 : h/tan(ang[0]), x2 = is_undef(ang[1]) || ang[1]==90 ? 0 : h/tan(ang[1]), w1 = is_def(w1)? w1 : is_def(w2) && is_def(ang[0]) ? w2 + x1 + x2 : undef, w2 = is_def(w2)? w2 : is_def(w1) && is_def(ang[0]) ? w1 - x1 - x2 : undef, shift = first_defined([shift,(x1-x2)/2]) ) [h,w1,w2,shift]; function trapezoid(h, w1, w2, ang, shift, chamfer=0, rounding=0, flip=false, anchor=CENTER, spin=0,atype="box", _return_override, angle) = assert(is_undef(angle), "The angle parameter has been replaced by ang, which specifies trapezoid interior angle") assert(is_undef(h) || is_finite(h)) assert(is_undef(w1) || is_finite(w1)) assert(is_undef(w2) || is_finite(w2)) assert(is_undef(ang) || is_finite(ang) || is_vector(ang,2)) assert(num_defined([h, w1, w2, ang]) == 3, "Must give exactly 3 of the arguments h, w1, w2, and angle.") assert(is_undef(shift) || is_finite(shift)) assert(num_defined([shift,ang])<2, "Cannot specify shift and ang together") assert(is_finite(chamfer) || is_vector(chamfer,4)) assert(is_finite(rounding) || is_vector(rounding,4)) let( ang = force_list(ang,2), angOK = len(ang)==2 && (ang==[undef,undef] || (all_positive(ang) && ang[0]<180 && ang[1]<180)) ) assert(angOK, "trapezoid angles must be scalar or 2-vector, strictly between 0 and 180") let( h_w1_w2_shift = _trapezoid_dims(h,w1,w2,shift,ang), h = h_w1_w2_shift[0], w1 = h_w1_w2_shift[1], w2 = h_w1_w2_shift[2], shift = h_w1_w2_shift[3], chamfer = force_list(chamfer,4), rounding = force_list(rounding,4) ) assert(all_zero(v_mul(chamfer,rounding),0), "Cannot specify chamfer and rounding at the same corner") let( srads = chamfer+rounding, rads = v_abs(srads) ) assert(w1>=0 && w2>=0 && h>0, "Degenerate trapezoid geometry.") assert(w1+w2>0, "Degenerate trapezoid geometry.") let( base = [ [ w2/2+shift, h/2], [-w2/2+shift, h/2], [-w1/2,-h/2], [ w1/2,-h/2], ], ang1 = v_theta(base[0]-base[3])-90, ang2 = v_theta(base[1]-base[2])-90, angs = [ang1, ang2, ang2, ang1], qdirs = [[1,1], [-1,1], [-1,-1], [1,-1]], hyps = [for (i=[0:3]) adj_ang_to_hyp(rads[i],angs[i])], offs = [ for (i=[0:3]) let( xoff = adj_ang_to_opp(rads[i],angs[i]), a = [xoff, -rads[i]] * qdirs[i].y * (srads[i]<0 && flip? -1 : 1), b = a + [hyps[i] * qdirs[i].x * (srads[i]<0 && !flip? 1 : -1), 0] ) b ], corners = [ ( let(i = 0) rads[i] == 0? [base[i]] : srads[i] > 0? arc(n=rounding[i]?undef:2, cp=base[i]+offs[i], angle=[angs[i], 90], r=rads[i]) : flip? arc(n=rounding[i]?undef:2, cp=base[i]+offs[i], angle=[angs[i],-90], r=rads[i]) : arc(n=rounding[i]?undef:2, cp=base[i]+offs[i], angle=[180+angs[i],90], r=rads[i]) ), ( let(i = 1) rads[i] == 0? [base[i]] : srads[i] > 0? arc(n=rounding[i]?undef:2, cp=base[i]+offs[i], angle=[90,180+angs[i]], r=rads[i]) : flip? arc(n=rounding[i]?undef:2, cp=base[i]+offs[i], angle=[270,180+angs[i]], r=rads[i]) : arc(n=rounding[i]?undef:2, cp=base[i]+offs[i], angle=[90,angs[i]], r=rads[i]) ), ( let(i = 2) rads[i] == 0? [base[i]] : srads[i] > 0? arc(n=rounding[i]?undef:2, cp=base[i]+offs[i], angle=[180+angs[i],270], r=rads[i]) : flip? arc(n=rounding[i]?undef:2, cp=base[i]+offs[i], angle=[180+angs[i],90], r=rads[i]) : arc(n=rounding[i]?undef:2, cp=base[i]+offs[i], angle=[angs[i],-90], r=rads[i]) ), ( let(i = 3) rads[i] == 0? [base[i]] : srads[i] > 0? arc(n=rounding[i]?undef:2, cp=base[i]+offs[i], angle=[-90,angs[i]], r=rads[i]) : flip? arc(n=rounding[i]?undef:2, cp=base[i]+offs[i], angle=[90,angs[i]], r=rads[i]) : arc(n=rounding[i]?undef:2, cp=base[i]+offs[i], angle=[270,180+angs[i]], r=rads[i]) ), ], path = reverse(flatten(corners)), override = [for(i=[0:3]) if (atype!="box" && srads[i]!=0) srads[i]>0? let(dir = unit(base[i]-select(base,i-1)) + unit(base[i]-select(base,i+1)), pt=[for(seg=pair(corners[i])) let(isect=line_intersection(seg, [base[i],base[i]+dir],SEGMENT,LINE)) if (is_def(isect) && isect!=seg[0]) isect] ) [qdirs[i], [pt[0], undef]] : flip? let( dir=unit(base[i] - select(base,i+(i%2==0?-1:1)))) [qdirs[i], [select(corners[i],i%2==0?0:-1), dir]] : let( dir = [qdirs[i].x,0]) [qdirs[i], [select(corners[i],i%2==0?-1:0), dir]]] ) _return_override ? [reorient(anchor,spin, two_d=true, size=[w1,h], size2=w2, shift=shift, p=path, override=override),override] : reorient(anchor,spin, two_d=true, size=[w1,h], size2=w2, shift=shift, p=path, override=override); module trapezoid(h, w1, w2, ang, shift, chamfer=0, rounding=0, flip=false, anchor=CENTER, spin=0, atype="box", angle) { path_over = trapezoid(h=h, w1=w1, w2=w2, ang=ang, shift=shift, chamfer=chamfer, rounding=rounding, flip=flip, angle=angle,atype=atype,anchor="origin",_return_override=true); path=path_over[0]; override = path_over[1]; ang = force_list(ang,2); h_w1_w2_shift = _trapezoid_dims(h,w1,w2,shift,ang); h = h_w1_w2_shift[0]; w1 = h_w1_w2_shift[1]; w2 = h_w1_w2_shift[2]; shift = h_w1_w2_shift[3]; attachable(anchor,spin, two_d=true, size=[w1,h], size2=w2, shift=shift, override=override) { polygon(path); children(); } } // Function&Module: star() // Synopsis: Creates a star-shaped polygon or returns a star-shaped region. // SynTags: Geom, Path // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: circle(), ellipse(), regular_ngon() // Usage: As Module // star(n, r/or, ir, [realign=], [align_tip=], [align_pit=], ...) [ATTACHMENTS]; // star(n, r/or, step=, ...) [ATTACHMENTS]; // Usage: As Function // path = star(n, r/or, ir, [realign=], [align_tip=], [align_pit=], ...); // path = star(n, r/or, step=, ...); // Description: // When called as a function, returns the path needed to create a star polygon with N points. // When called as a module, creates a star polygon with N points. // Arguments: // n = The number of stellate tips on the star. // r/or = The radius to the tips of the star. // ir = The radius to the inner corners of the star. // --- // d/od = The diameter to the tips of the star. // id = The diameter to the inner corners of the star. // step = Calculates the radius of the inner star corners by virtually drawing a straight line `step` tips around the star. 2 <= step < n/2 // realign = If false, vertex 0 will lie on the X+ axis. If true then the midpoint of the last edge will lie on the X+ axis, and vertex 0 will be below the X axis. Default: false // align_tip = If given as a 2D vector, rotates the whole shape so that the first star tip points in that direction. This occurs before spin. // align_pit = If given as a 2D vector, rotates the whole shape so that the first inner corner is pointed towards that direction. This occurs before spin. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // atype = Choose "hull" or "intersect" anchor methods. Default: "hull" // Extra Anchors: // "tip0" ... "tip4" = Each tip has an anchor, pointing outwards. // "pit0" ... "pit4" = The inside corner between each tip has an anchor, pointing outwards. // "midpt0" ... "midpt4" = The center-point between each pair of tips has an anchor, pointing outwards. // Examples(2D): // star(n=5, r=50, ir=25); // star(n=5, r=50, step=2); // star(n=7, r=50, step=2); // star(n=7, r=50, step=3); // Example(2D): Realigned // star(n=7, r=50, step=3, realign=true); // Example(2D): Alignment by Tip // star(n=5, ir=15, or=30, align_tip=BACK+RIGHT) // attach("tip0", FWD) color("blue") // stroke([[0,0],[0,7]], endcap2="arrow2"); // Example(2D): Alignment by Pit // star(n=5, ir=15, or=30, align_pit=BACK+RIGHT) // attach("pit0", FWD) color("blue") // stroke([[0,0],[0,7]], endcap2="arrow2"); // Example(2D): Called as Function // stroke(closed=true, star(n=5, r=50, ir=25)); function star(n, r, ir, d, or, od, id, step, realign=false, align_tip, align_pit, anchor=CENTER, spin=0, atype="hull", _mat, _anchs) = assert(in_list(atype, _ANCHOR_TYPES), "Anchor type must be \"hull\" or \"intersect\"") assert(is_undef(align_tip) || is_vector(align_tip)) assert(is_undef(align_pit) || is_vector(align_pit)) assert(is_undef(align_tip) || is_undef(align_pit), "Can only specify one of align_tip and align_pit") assert(is_def(n), "Must specify number of points, n") let( r = get_radius(r1=or, d1=od, r=r, d=d), count = num_defined([ir,id,step]), stepOK = is_undef(step) || (step>1 && step=maxheight ) assert(is_undef(cap_h) || cap_h>=minheight, str("cap_h cannot be less than ",minheight," but it is ",cap_h)) let( cap = [ pointycap? [0,maxheight] : [(maxheight-cap_h)*tan(ang), cap_h], r*[cos(ang),sin(ang)] ], fullcircle = ellipse(r=r, realign=realign, circum=circum,spin=90), // Chose the point on the circle that is lower than the cap but also creates a segment bigger than // seglen/skipfactor so we don't have a teeny tiny segment at the end of the cap, except for the hexagoin // case which is treated specially skipfactor = len(fullcircle)==6 ? 15 : 3, path = !circum ? let(seglen = norm(fullcircle[0]-fullcircle[1])) [ each cap, for (p=fullcircle) if ( p.yseglen/skipfactor ) p, xflip(cap[1]), if (_extrapt || !pointycap) xflip(cap[0]) ] : let( isect = [for(i=[0:1:len(fullcircle)/4]) let(p = line_intersection(cap, select(fullcircle,[i,i+1]), bounded1=RAY, bounded2=SEGMENT)) if (p) [i,p] ], i = last(isect)[0], p = last(isect)[1] ) [ cap[0], p, each select(fullcircle,i+1,-i-1-(realign?1:0)), xflip(p), if(_extrapt || !pointycap) xflip(cap[0]) ] ) reorient(anchor,spin, two_d=true, path=path, p=path, extent=false); // Function&Module: egg() // Synopsis: Creates an egg-shaped 2d object. // SynTags: Geom, Path // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: circle(), ellipse(), glued_circles() // Usage: As Module // egg(length, r1|d1=, r2|d2=, R|D=) [ATTACHMENTS]; // Usage: As Function // path = egg(length, r1|d1=, r2|d2=, R|D=); // Description: // When called as a module, constructs an egg-shaped object by connecting two circles with convex arcs that are tangent to the circles. // You specify the length of the egg, the radii of the two circles, and the desired arc radius. // Note that because the side radius, R, is often much larger than the end radii, you may get better // results using `$fs` and `$fa` to control the number of semgments rather than using `$fn`. // This shape may be useful for creating a cam. // When called as a function, returns a 2D path for an egg-shaped object. // Arguments: // length = length of the egg // r1 = radius of the left-hand circle // r2 = radius of the right-hand circle // R = radius of the joining arcs // --- // d1 = diameter of the left-hand circle // d2 = diameter of the right-hand circle // D = diameter of the joining arcs // Extra Anchors: // "left" = center of the left circle // "right" = center of the right circle // Example(2D,NoAxes): This first example shows how the egg is constructed from two circles and two joining arcs. // $fn=100; // color("red") stroke(egg(78,25,12, 60),closed=true); // stroke([left(14,circle(25)), // right(27,circle(12))]); // Example(2D,Anim,VPD=250,VPR=[0,0,0]): Varying length between circles // r1 = 25; r2 = 12; R = 65; // length = floor(lookup($t, [[0,55], [0.5,90], [1,55]])); // egg(length,r1,r2,R,$fn=180); // color("black") text(str("length=",length), size=8, halign="center", valign="center"); // Example(2D,Anim,VPD=250,VPR=[0,0,0]): Varying tangent arc radius R // length = 78; r1 = 25; r2 = 12; // R = floor(lookup($t, [[0,45], [0.5,150], [1,45]])); // egg(length,r1,r2,R,$fn=180); // color("black") text(str("R=",R), size=8, halign="center", valign="center"); // Example(2D,Anim,VPD=250,VPR=[0,0,0]): Varying circle radius r2 // length = 78; r1 = 25; R = 65; // r2 = floor(lookup($t, [[0,5], [0.5,30], [1,5]])); // egg(length,r1,r2,R,$fn=180); // color("black") text(str("r2=",r2), size=8, halign="center", valign="center"); function egg(length, r1, r2, R, d1, d2, D, anchor=CENTER, spin=0) = let( r1 = get_radius(r1=r1,d1=d1), r2 = get_radius(r1=r2,d1=d2), D = get_radius(r1=R, d1=D) ) assert(length>0) assert(R>length/2, "Side radius R must be larger than length/2") assert(length>r1+r2, "Length must be longer than 2*(r1+r2)") assert(length>2*r2, "Length must be longer than 2*r2") assert(length>2*r1, "Length must be longer than 2*r1") let( c1 = [-length/2+r1,0], c2 = [length/2-r2,0], Rmin = (r1+r2+norm(c1-c2))/2, Mlist = circle_circle_intersection(R-r1, c1, R-r2, c2), arcparms = reverse([for(M=Mlist) [M, c1+r1*unit(c1-M), c2+r2*unit(c2-M)]]), path = concat( arc(r=r2, cp=c2, points=[[length/2,0],arcparms[0][2]],endpoint=false), arc(r=R, cp=arcparms[0][0], points=select(arcparms[0],[2,1]),endpoint=false), arc(r=r1, points=[arcparms[0][1], [-length/2,0], arcparms[1][1]],endpoint=false), arc(r=R, cp=arcparms[1][0], points=select(arcparms[1],[1,2]),endpoint=false), arc(r=r2, cp=c2, points=[arcparms[1][2], [length/2,0]],endpoint=false) ), anchors = [named_anchor("left", c1, BACK, 0), named_anchor("right", c2, BACK, 0)] ) reorient(anchor, spin, two_d=true, path=path, extent=true, p=path, anchors=anchors); module egg(length,r1,r2,R,d1,d2,D,anchor=CENTER, spin=0) { path = egg(length,r1,r2,R,d1,d2,D); anchors = [named_anchor("left", [-length/2+r1,0], BACK, 0), named_anchor("right", [length/2-r2,0], BACK, 0)]; attachable(anchor, spin, two_d=true, path=path, extent=true, anchors=anchors){ polygon(path); children(); } } // Function&Module: ring() // Synopsis: Draws a 2D ring or partial ring or returns a region or path // SynTags: Geom, Region, Path // Topics: Shapes (2D), Paths (2D), Path Generators, Regions, Attachable // See Also: arc(), circle() // // Usage: ring or partial ring from radii/diameters // region=ring(n, r1=|d1=, r2=|d2=, [full=], [angle=], [start=]); // Usage: ring or partial ring from radius and ring width // region=ring(n, ring_width, r=|d=, [full=], [angle=], [start=]); // Usage: ring or partial ring passing through three points // region=ring(n, [ring_width], [r=,d=], points=[P0,P1,P2], [full=]); // Usage: ring or partial ring from tangent point on segment `[P0,P1]` to the tangent point on segment `[P1,P2]`. // region=ring(n, [ring_width], corner=[P0,P1,P2], [r=,d=], [r1|d1=], [r2=|d2=], [full=]); // Usage: ring or partial ring based on setting a width at the X axis and height above the X axis // region=ring(n, [ring_width], [r=|d=], width=, thickness=, [full=]); // Usage: as a module // ring(...) [ATTACHMENTS]; // Description: // If called as a function returns a region or path for a ring or part of a ring. If called as a module, creates the corresponding 2D ring or partial ring shape. // The geometry of the ring can be specified using any of the methods supported by {{arc()}}. If `full` is true (the default) the ring will be complete and the // returned value a region. If `full` is false then the return is a path describing a partial ring. The returned path is always clockwise with the larger radius arc first. // A ring has two radii, the inner and outer. When specifying geometry you must somehow specify one radius, which can be directly with `r=` or `r1=` or by giving a point list with // or without a center point. You specify the second radius by giving `r=` directly, or `r2=` if you used `r1=` for the first radius, or by giving `ring_width`. If `ring_width` // the second radius will be larger than the first; if `ring_width` is negative the second radius will be smaller. // Arguments: // n = Number of vertices to use for the inner and outer portions of the ring // ring_width = width of the ring. Can be positive or negative // --- // r1/d1 = inner radius or diameter of the ring // r2/d2 = outer radius or diameter of the ring // r/d = second radius or diameter of ring when r1 or d1 are not given // full = if true create a full ring, if false create a partial ring. Default: true unless `angle` is given // cp = Centerpoint of ring. // points = Points on the ring boundary. // corner = A path of two segments to fit the ring tangent to. // long = if given with cp and points takes the long arc instead of the default short arc. Default: false // cw = if given with cp and 2 points takes the arc in the clockwise direction. Default: false // ccw = if given with cp and 2 points takes the arc in the counter-clockwise direction. Default: false // width = If given with `thickness`, ring is defined based on an arc with ends on X axis. // thickness = If given with `width`, ring is defined based on an arc with ends on X axis, and this height above the X axis. // start = Start angle of ring. Default: 0 // angle = If scalar, the end angle in degrees relative to start parameter. If a vector specifies start and end angles of ring. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). (Module only) Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). (Module only) Default: `0` // Examples(2D): // ring(r1=5,r2=7, n=32); // ring(r=5,ring_width=-1, n=32); // ring(r=7, n=5, ring_width=-4); // ring(points=[[0,0],[3,3],[5,2]], ring_width=2, n=32); // ring(points=[[0,0],[3,3],[5,2]], r=1, n=32); // ring(cp=[3,3], points=[[4,4],[1,3]], ring_width=1); // ring(corner=[[0,0],[4,4],[7,3]], r2=2, r1=1.5,n=22,full=false); // ring(r1=5,r2=7, angle=[33,110], n=32); // ring(r1=5,r2=7, angle=[0,360], n=32); // full circle // ring(r=5, points=[[0,0],[3,3],[5,2]], full=false, n=32); // ring(32,-2, cp=[1,1], points=[[4,4],[-3,6]], full=false); // ring(r=5,ring_width=-1, n=32); // ring(points=[[0,0],[3,3],[5,2]], ring_width=2, n=32); // ring(points=[[0,0],[3,3],[5,2]], r=1, n=32); // ring(cp=[3,3], points=[[4,4],[1,3]], ring_width=1); // Example(2D): Using corner, the outer radius is the one tangent to the corner // corner = [[0,0],[4,4],[7,3]]; // ring(corner=corner, r2=3, r1=2,n=22); // stroke(corner, width=.1,color="red"); // Example(2D): For inner radius tangent to a corner, specify `r=` and `ring_width`. // corner = [[0,0],[4,4],[7,3]]; // ring(corner=corner, r=3, ring_width=1,n=22,full=false); // stroke(corner, width=.1,color="red"); // Example(2D): // $fn=128; // region = ring(width=5,thickness=1.5,ring_width=2); // path = ring(width=5,thickness=1.5,ring_width=2,full=false); // stroke(region,width=.25); // color("red") dashed_stroke(path,dashpat=[1.5,1.5],closed=true,width=.25); module ring(n,ring_width,r,r1,r2,angle,d,d1,d2,cp,points,corner, width,thickness,start, long=false, full=true, cw=false,ccw=false, anchor=CENTER, spin=0) { R = ring(n=n,r=r,ring_width=ring_width,r1=r1,r2=r2,angle=angle,d=d,d1=d1,d2=d2,cp=cp,points=points,corner=corner, width=width,thickness=thickness,start=start, long=long, full=full, cw=cw, ccw=ccw); attachable(anchor,spin,two_d=true,region=is_region(R)?R:undef,path=is_region(R)?undef:R,extent=false) { region(R); children(); } } function ring(n,ring_width,r,r1,r2,angle,d,d1,d2,cp,points,corner, width,thickness,start, long=false, full=true, cw=false,ccw=false) = let( r1 = is_def(r1) ? assert(is_undef(d),"Cannot define r1 and d1")r1 : is_def(d1) ? d1/2 : undef, r2 = is_def(r2) ? assert(is_undef(d),"Cannot define r2 and d2")r2 : is_def(d2) ? d2/2 : undef, r = is_def(r) ? assert(is_undef(d),"Cannot define r and d")r : is_def(d) ? d/2 : undef, full = is_def(angle) ? false : full ) assert(is_undef(start) || is_def(angle), "start requires angle") assert(is_undef(angle) || !any_defined([thickness,width,points,corner]), "Cannot give angle with points, corner, width or thickness") assert(!is_vector(angle,2) || abs(angle[1]-angle[0]) <= 360, "angle gives more than 360 degrees") assert(is_undef(points) || is_path(points,2), str("Points must be a 2d vector",points)) assert(!any_defined([points,thickness,width]) || num_defined([r1,r2])==0, "Cannot give r1, r2, d1, or d2 with points, width or thickness") is_def(width) && is_def(thickness)? assert(!any_defined([r,cp,points,angle,start]), "Conflicting or invalid parameters to ring") assert(all_positive([width,thickness]), "Width and thickness must be positive") ring(n=n,r=r,ring_width=ring_width,points=[[width/2,0], [0,thickness], [-width/2,0]],full=full) : full && is_undef(cp) && is_def(points) ? assert(is_def(points) && len(points)==3, "Without cp given, must provide exactly three points") assert(num_defined([r,ring_width]), "Must give r or ring_width with point list") let( ctr_rad = circle_3points(points), dummy=assert(is_def(ctr_rad[0]), "Collinear points given to ring()"), part1 = move(ctr_rad[0],circle(r=ctr_rad[1], $fn=is_def(n) ? n : $fn)), first_r = norm(part1[0]-ctr_rad[0]), r = is_def(r) ? r : first_r+ring_width, part2 = move(ctr_rad[0],circle(r=r, $fn=is_def(n) ? n : $fn)) ) assert(first_r!=r, "Ring has zero width") (first_r>r ? [part1, reverse(part2)] : [part2, reverse(part1)]) : full && is_def(corner) ? assert(is_path(corner,2) && len(corner)==3, "corner must be a list of 3 points") assert(!any_defined([thickness,width,points,cp,angle.start]), "Conflicting or invalid parameters to ring") let(parmok = (all_positive([r1,r2]) && num_defined([r,ring_width])==0) || (num_defined([r1,r2])==0 && all_positive([r]) && is_finite(ring_width))) assert(parmok, "With corner must give (r1 and r2) or (r and ring_width), but you gave some other combination") let( newr1 = is_def(r1) ? min(r1,r2) : min(r,r+ring_width), newr2 = is_def(r2) ? max(r2,r1) : max(r,r+ring_width), data = circle_2tangents(newr2,corner[0],corner[1],corner[2]), cp=data[0] ) [move(cp,circle($fn=is_def(n) ? n : $fn, r=newr2)),move(cp, circle( $fn=is_def(n) ? n : $fn, r=newr1))] : full && is_def(cp) && is_def(points) ? assert(in_list(len(points),[1,2]), "With cp must give a list of one or two points.") assert(num_defined([r,ring_width]), "Must give r or ring_width with point list") let( first_r=norm(points[0]-cp), part1 = move(cp,circle(r=first_r, $fn=is_def(n) ? n : $fn)), r = is_def(r) ? r : first_r+ring_width, part2 = move(cp,circle(r=r, $fn=is_def(n) ? n : $fn)) ) assert(first_r!=r, "Ring has zero width") first_r>r ? [part1, reverse(part2)] : [part2, reverse(part1)] : full || angle==360 || (is_vector(angle,2) && abs(angle[1]-angle[0])==360) ? let(parmok = (all_positive([r1,r2]) && num_defined([r,ring_width])==0) || (num_defined([r1,r2])==0 && all_positive([r]) && is_finite(ring_width))) assert(parmok, "Must give (r1 and r2) or (r and ring_width), but you gave some other combination") let( newr1 = is_def(r1) ? min(r1,r2) : min(r,r+ring_width), newr2 = is_def(r2) ? max(r2,r1) : max(r,r+ring_width), cp = default(cp,[0,0]) ) [move(cp,circle($fn=is_def(n) ? n : $fn, r=newr2)),move(cp, circle( $fn=is_def(n) ? n : $fn, r=newr1))] : let( parmRok = (all_positive([r1,r2]) && num_defined([r,ring_width])==0) || (num_defined([r1,r2])==0 && all_positive([r]) && is_finite(ring_width)), pass_r = any_defined([points,thickness]) ? assert(!any_defined([r1,r2]),"Cannot give r1, d1, r2, or d2 with a point list or width & thickness") assert(num_defined([ring_width,r])==1, "Must defined exactly one of r and ring_width when using a pointlist or width & thickness") undef : assert(num_defined([r,r2])==1,"Cannot give r or d and r1 or d1") first_defined([r,r2]), base_arc = clockwise_polygon(arc(r=pass_r,n=n,angle=angle,cp=cp,points=points, corner=corner, width=width, thickness=thickness,start=start, long=long, cw=cw,ccw=ccw,wedge=true)), center = base_arc[0], arc1 = list_tail(base_arc,1), r_actual = norm(center-arc1[0]), new_r = is_def(ring_width) ? r_actual+ring_width : first_defined([r,r1]), pts = [center+new_r*unit(arc1[0]-center), center+new_r*unit(arc1[floor(len(arc1)/2)]-center), center+new_r*unit(last(arc1)-center)], second=arc(n=n,points=pts), arc2 = is_polygon_clockwise(second) ? second : reverse(second) ) new_r>r_actual ? concat(arc2, reverse(arc1)) : concat(arc1,reverse(arc2)); // Function&Module: glued_circles() // Synopsis: Creates a shape of two circles joined by a curved waist. // SynTags: Geom, Path // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: circle(), ellipse(), egg() // Usage: As Module // glued_circles(r/d=, [spread], [tangent], ...) [ATTACHMENTS]; // Usage: As Function // path = glued_circles(r/d=, [spread], [tangent], ...); // Description: // When called as a function, returns a 2D path forming a shape of two circles joined by curved waist. // When called as a module, creates a 2D shape of two circles joined by curved waist. Uses "hull" style anchoring. // Arguments: // r = The radius of the end circles. // spread = The distance between the centers of the end circles. Default: 10 // tangent = The angle in degrees of the tangent point for the joining arcs, measured away from the Y axis. Default: 30 // --- // d = The diameter of the end circles. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // Examples(2D): // glued_circles(r=15, spread=40, tangent=45); // glued_circles(d=30, spread=30, tangent=30); // glued_circles(d=30, spread=30, tangent=15); // glued_circles(d=30, spread=30, tangent=-30); // Example(2D): Called as Function // stroke(closed=true, glued_circles(r=15, spread=40, tangent=45)); function glued_circles(r, spread=10, tangent=30, d, anchor=CENTER, spin=0) = let( r = get_radius(r=r, d=d, dflt=10), r2 = (spread/2 / sin(tangent)) - r, cp1 = [spread/2, 0], cp2 = [0, (r+r2)*cos(tangent)], sa1 = 90-tangent, ea1 = 270+tangent, lobearc = ea1-sa1, lobesegs = ceil(segs(r)*lobearc/360), sa2 = 270-tangent, ea2 = 270+tangent, subarc = ea2-sa2, arcsegs = ceil(segs(r2)*abs(subarc)/360), // In the tangent zero case the inner curves are missing so we need to complete the two // outer curves. In the other case the inner curves are present and endpoint=false // prevents point duplication. path = tangent==0 ? concat(arc(n=lobesegs+1, r=r, cp=-cp1, angle=[sa1,ea1]), arc(n=lobesegs+1, r=r, cp=cp1, angle=[sa1+180,ea1+180])) : concat(arc(n=lobesegs, r=r, cp=-cp1, angle=[sa1,ea1], endpoint=false), [for(theta=lerpn(ea2+180,ea2-subarc+180,arcsegs,endpoint=false)) r2*[cos(theta),sin(theta)] - cp2], arc(n=lobesegs, r=r, cp=cp1, angle=[sa1+180,ea1+180], endpoint=false), [for(theta=lerpn(ea2,ea2-subarc,arcsegs,endpoint=false)) r2*[cos(theta),sin(theta)] + cp2]), maxx_idx = max_index(column(path,0)), path2 = reverse_polygon(list_rotate(path,maxx_idx)) ) reorient(anchor,spin, two_d=true, path=path2, extent=true, p=path2); module glued_circles(r, spread=10, tangent=30, d, anchor=CENTER, spin=0) { path = glued_circles(r=r, d=d, spread=spread, tangent=tangent); attachable(anchor,spin, two_d=true, path=path, extent=true) { polygon(path); children(); } } function _superformula(theta,m1,m2,n1,n2=1,n3=1,a=1,b=1) = pow(pow(abs(cos(m1*theta/4)/a),n2)+pow(abs(sin(m2*theta/4)/b),n3),-1/n1); // Function&Module: supershape() // Synopsis: Creates a 2D [Superformula](https://en.wikipedia.org/wiki/Superformula) shape. // SynTags: Geom, Path // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: circle(), ellipse() // Usage: As Module // supershape([step],[n=], [m1=], [m2=], [n1=], [n2=], [n3=], [a=], [b=], [r=/d=]) [ATTACHMENTS]; // Usage: As Function // path = supershape([step], [n=], [m1=], [m2=], [n1=], [n2=], [n3=], [a=], [b=], [r=/d=]); // Description: // When called as a function, returns a 2D path for the outline of the [Superformula](https://en.wikipedia.org/wiki/Superformula) shape. // When called as a module, creates a 2D [Superformula](https://en.wikipedia.org/wiki/Superformula) shape. // Note that the "hull" type anchoring (the default) is more intuitive for concave star-like shapes, but the anchor points do not // necesarily lie on the line of the anchor vector, which can be confusing, especially for simpler, ellipse-like shapes. // Note that the default step angle of 0.5 is very fine and can be slow, but due to the complex curves of the supershape, // many points are often required to give a good result. // Arguments: // step = The angle step size for sampling the superformula shape. Smaller steps are slower but more accurate. Default: 0.5 // --- // n = Produce n points as output. Alternative to step. Not to be confused with shape parameters n1 and n2. // m1 = The m1 argument for the superformula. Default: 4. // m2 = The m2 argument for the superformula. Default: m1. // n1 = The n1 argument for the superformula. Default: 1. // n2 = The n2 argument for the superformula. Default: n1. // n3 = The n3 argument for the superformula. Default: n2. // a = The a argument for the superformula. Default: 1. // b = The b argument for the superformula. Default: a. // r = Radius of the shape. Scale shape to fit in a circle of radius r. // d = Diameter of the shape. Scale shape to fit in a circle of diameter d. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // atype = Select "hull" or "intersect" style anchoring. Default: "hull". // Example(2D): // supershape(step=0.5,m1=16,m2=16,n1=0.5,n2=0.5,n3=16,r=50); // Example(2D): Called as Function // stroke(closed=true, supershape(step=0.5,m1=16,m2=16,n1=0.5,n2=0.5,n3=16,d=100)); // Examples(2D,Med): // for(n=[2:5]) right(2.5*(n-2)) supershape(m1=4,m2=4,n1=n,a=1,b=2); // Superellipses // m=[2,3,5,7]; for(i=[0:3]) right(2.5*i) supershape(.5,m1=m[i],n1=1); // m=[6,8,10,12]; for(i=[0:3]) right(2.7*i) supershape(.5,m1=m[i],n1=1,b=1.5); // m should be even // m=[1,2,3,5]; for(i=[0:3]) fwd(1.5*i) supershape(m1=m[i],n1=0.4); // supershape(m1=5, n1=4, n2=1); right(2.5) supershape(m1=5, n1=40, n2=10); // m=[2,3,5,7]; for(i=[0:3]) right(2.5*i) supershape(m1=m[i], n1=60, n2=55, n3=30); // n=[0.5,0.2,0.1,0.02]; for(i=[0:3]) right(2.5*i) supershape(m1=5,n1=n[i], n2=1.7); // supershape(m1=2, n1=1, n2=4, n3=8); // supershape(m1=7, n1=2, n2=8, n3=4); // supershape(m1=7, n1=3, n2=4, n3=17); // supershape(m1=4, n1=1/2, n2=1/2, n3=4); // supershape(m1=4, n1=4.0,n2=16, n3=1.5, a=0.9, b=9); // for(i=[1:4]) right(3*i) supershape(m1=i, m2=3*i, n1=2); // m=[4,6,10]; for(i=[0:2]) right(i*5) supershape(m1=m[i], n1=12, n2=8, n3=5, a=2.7); // for(i=[-1.5:3:1.5]) right(i*1.5) supershape(m1=2,m2=10,n1=i,n2=1); // for(i=[1:3],j=[-1,1]) translate([3.5*i,1.5*j])supershape(m1=4,m2=6,n1=i*j,n2=1); // for(i=[1:3]) right(2.5*i)supershape(step=.5,m1=88, m2=64, n1=-i*i,n2=1,r=1); // Examples: // linear_extrude(height=0.3, scale=0) supershape(step=1, m1=6, n1=0.4, n2=0, n3=6); // linear_extrude(height=5, scale=0) supershape(step=1, b=3, m1=6, n1=3.8, n2=16, n3=10); function supershape(step=0.5, n, m1=4, m2, n1=1, n2, n3, a=1, b, r, d,anchor=CENTER, spin=0, atype="hull") = assert(in_list(atype, _ANCHOR_TYPES), "Anchor type must be \"hull\" or \"intersect\"") let( n = first_defined([n, ceil(360/step)]), angs = lerpn(360,0,n,endpoint=false), r = get_radius(r=r, d=d, dflt=undef), m2 = is_def(m2) ? m2 : m1, n2 = is_def(n2) ? n2 : n1, n3 = is_def(n3) ? n3 : n2, b = is_def(b) ? b : a, // superformula returns r(theta), the point in polar coordinates rvals = [for (theta = angs) _superformula(theta=theta,m1=m1,m2=m2,n1=n1,n2=n2,n3=n3,a=a,b=b)], scale = is_def(r) ? r/max(rvals) : 1, path = [for (i=idx(angs)) scale*rvals[i]*[cos(angs[i]), sin(angs[i])]] ) reorient(anchor,spin, two_d=true, path=path, p=path, extent=atype=="hull"); module supershape(step=0.5,n,m1=4,m2=undef,n1,n2=undef,n3=undef,a=1,b=undef, r=undef, d=undef, anchor=CENTER, spin=0, atype="hull") { check = assert(in_list(atype, _ANCHOR_TYPES), "Anchor type must be \"hull\" or \"intersect\""); path = supershape(step=step,n=n,m1=m1,m2=m2,n1=n1,n2=n2,n3=n3,a=a,b=b,r=r,d=d); attachable(anchor,spin,extent=atype=="hull", two_d=true, path=path) { polygon(path); children(); } } // Function&Module: reuleaux_polygon() // Synopsis: Creates a constant-width shape that is not circular. // SynTags: Geom, Path // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: regular_ngon(), pentagon(), hexagon(), octagon() // Usage: As Module // reuleaux_polygon(n, r|d=, ...) [ATTACHMENTS]; // Usage: As Function // path = reuleaux_polygon(n, r|d=, ...); // Description: // When called as a module, reates a 2D Reuleaux Polygon; a constant width shape that is not circular. Uses "intersect" type anchoring. // When called as a function, returns a 2D path for a Reulaux Polygon. // Arguments: // n = Number of "sides" to the Reuleaux Polygon. Must be an odd positive number. Default: 3 // r = Radius of the shape. Scale shape to fit in a circle of radius r. // --- // d = Diameter of the shape. Scale shape to fit in a circle of diameter d. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // Extra Anchors: // "tip0", "tip1", etc. = Each tip has an anchor, pointing outwards. // Examples(2D): // reuleaux_polygon(n=3, r=50); // reuleaux_polygon(n=5, d=100); // Examples(2D): Standard vector anchors are based on extents // reuleaux_polygon(n=3, d=50) show_anchors(custom=false); // Examples(2D): Named anchors exist for the tips // reuleaux_polygon(n=3, d=50) show_anchors(std=false); module reuleaux_polygon(n=3, r, d, anchor=CENTER, spin=0) { check = assert(n>=3 && (n%2)==1); r = get_radius(r=r, d=d, dflt=1); path = reuleaux_polygon(n=n, r=r); anchors = [ for (i = [0:1:n-1]) let( ca = 360 - i * 360/n, cp = polar_to_xy(r, ca) ) named_anchor(str("tip",i), cp, unit(cp,BACK), 0), ]; attachable(anchor,spin, two_d=true, path=path, extent=false, anchors=anchors) { polygon(path); children(); } } function reuleaux_polygon(n=3, r, d, anchor=CENTER, spin=0) = assert(n>=3 && (n%2)==1) let( r = get_radius(r=r, d=d, dflt=1), ssegs = max(3,ceil(segs(r)/n)), slen = norm(polar_to_xy(r,0)-polar_to_xy(r,180-180/n)), path = [ for (i = [0:1:n-1]) let( ca = 180 - (i+0.5) * 360/n, sa = ca + 180 + (90/n), ea = ca + 180 - (90/n), cp = polar_to_xy(r, ca) ) each arc(n=ssegs-1, r=slen, cp=cp, angle=[sa,ea], endpoint=false) ], anchors = [ for (i = [0:1:n-1]) let( ca = 360 - i * 360/n, cp = polar_to_xy(r, ca) ) named_anchor(str("tip",i), cp, unit(cp,BACK), 0), ] ) reorient(anchor,spin, two_d=true, path=path, extent=false, anchors=anchors, p=path); // Section: Text // Module: text() // Synopsis: Creates an attachable block of text. // SynTags: Geom // Topics: Attachments, Text // See Also: text3d(), attachable() // Usage: // text(text, [size], [font], ...); // Description: // Creates a 3D text block that can be attached to other attachable objects. // You cannot attach children to text. // . // Historically fonts were specified by their "body size", the height of the metal body // on which the glyphs were cast. This means the size was an upper bound on the size // of the font glyphs, not a direct measurement of their size. In digital typesetting, // the metal body is replaced by an invisible box, the em square, whose side length is // defined to be the font's size. The glyphs can be contained in that square, or they // can extend beyond it, depending on the choices made by the font designer. As a // result, the meaning of font size varies between fonts: two fonts at the "same" size // can differ significantly in the actual size of their characters. Typographers // customarily specify the size in the units of "points". A point is 1/72 inch. In // OpenSCAD, you specify the size in OpenSCAD units (often treated as millimeters for 3d // printing), so if you want points you will need to perform a suitable unit conversion. // In addition, the OpenSCAD font system has a bug: if you specify size=s you will // instead get a font whose size is s/0.72. For many fonts this means the size of // capital letters will be approximately equal to s, because it is common for fonts to // use about 70% of their height for the ascenders in the font. To get the customary // font size, you should multiply your desired size by 0.72. // . // To find the fonts that you have available in your OpenSCAD installation, // go to the Help menu and select "Font List". // Arguments: // text = Text to create. // size = The font will be created at this size divided by 0.72. Default: 10 // font = Font to use. Default: "Liberation Sans" // --- // halign = If given, specifies the horizontal alignment of the text. `"left"`, `"center"`, or `"right"`. Overrides `anchor=`. // valign = If given, specifies the vertical alignment of the text. `"top"`, `"center"`, `"baseline"` or `"bottom"`. Overrides `anchor=`. // spacing = The relative spacing multiplier between characters. Default: `1.0` // direction = The text direction. `"ltr"` for left to right. `"rtl"` for right to left. `"ttb"` for top to bottom. `"btt"` for bottom to top. Default: `"ltr"` // language = The language the text is in. Default: `"en"` // script = The script the text is in. Default: `"latin"` // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `"baseline"` // spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0` // Extra Anchors: // "baseline" = Anchors at the baseline of the text, at the start of the string. // str("baseline",VECTOR) = Anchors at the baseline of the text, modified by the X and Z components of the appended vector. // Examples(2D): // text("Foobar", size=10); // text("Foobar", size=12, font="Helvetica"); // text("Foobar", anchor=CENTER); // text("Foobar", anchor=str("baseline",CENTER)); // Example: Using line_copies() distributor // txt = "This is the string."; // line_copies(spacing=[10,-5],n=len(txt)) // text(txt[$idx], size=10, anchor=CENTER); // Example: Using arc_copies() distributor // txt = "This is the string"; // arc_copies(r=50, n=len(txt), sa=0, ea=180) // text(select(txt,-1-$idx), size=10, anchor=str("baseline",CENTER), spin=-90); module text(text, size=10, font="Helvetica", halign, valign, spacing=1.0, direction="ltr", language="en", script="latin", anchor="baseline", spin=0) { no_children($children); dummy1 = assert(is_undef(anchor) || is_vector(anchor) || is_string(anchor), str("Got: ",anchor)) assert(is_undef(spin) || is_vector(spin,3) || is_num(spin), str("Got: ",spin)); anchor = default(anchor, CENTER); spin = default(spin, 0); geom = attach_geom(size=[size,size],two_d=true); anch = !any([for (c=anchor) c=="["])? anchor : let( parts = str_split(str_split(str_split(anchor,"]")[0],"[")[1],","), vec = [for (p=parts) parse_float(str_strip(p," ",start=true))] ) vec; ha = halign!=undef? halign : anchor=="baseline"? "left" : anchor==anch && is_string(anchor)? "center" : anch.x<0? "left" : anch.x>0? "right" : "center"; va = valign != undef? valign : starts_with(anchor,"baseline")? "baseline" : anchor==anch && is_string(anchor)? "center" : anch.y<0? "bottom" : anch.y>0? "top" : "center"; base = anchor=="baseline"? CENTER : anchor==anch && is_string(anchor)? CENTER : anch.z<0? BOTTOM : anch.z>0? TOP : CENTER; m = _attach_transform(base,spin,undef,geom); multmatrix(m) { $parent_anchor = anchor; $parent_spin = spin; $parent_orient = undef; $parent_geom = geom; $parent_size = _attach_geom_size(geom); $attach_to = undef; if (_is_shown()){ _color($color) { _text( text=text, size=size, font=font, halign=ha, valign=va, spacing=spacing, direction=direction, language=language, script=script ); } } } } // Section: Rounding 2D shapes // Module: round2d() // Synopsis: Rounds the corners of 2d objects. // SynTags: Geom // Topics: Rounding // See Also: shell2d(), round3d(), minkowski_difference() // Usage: // round2d(r) [ATTACHMENTS]; // round2d(or=) [ATTACHMENTS]; // round2d(ir=) [ATTACHMENTS]; // round2d(or=, ir=) [ATTACHMENTS]; // Description: // Rounds arbitrary 2D objects. Giving `r` rounds all concave and convex corners. Giving just `ir` // rounds just concave corners. Giving just `or` rounds convex corners. Giving both `ir` and `or` // can let you round to different radii for concave and convex corners. The 2D object must not have // any parts narrower than twice the `or` radius. Such parts will disappear. // Arguments: // r = Radius to round all concave and convex corners to. // --- // or = Radius to round only outside (convex) corners to. Use instead of `r`. // ir = Radius to round only inside (concave) corners to. Use instead of `r`. // Examples(2D): // round2d(r=10) {square([40,100], center=true); square([100,40], center=true);} // round2d(or=10) {square([40,100], center=true); square([100,40], center=true);} // round2d(ir=10) {square([40,100], center=true); square([100,40], center=true);} // round2d(or=16,ir=8) {square([40,100], center=true); square([100,40], center=true);} module round2d(r, or, ir) { or = get_radius(r1=or, r=r, dflt=0); ir = get_radius(r1=ir, r=r, dflt=0); offset(or) offset(-ir-or) offset(delta=ir,chamfer=true) children(); } // Module: shell2d() // Synopsis: Creates a shell from 2D children. // SynTags: Geom // Topics: Shell // See Also: round2d(), round3d(), minkowski_difference() // Usage: // shell2d(thickness, [or], [ir]) // Description: // Creates a hollow shell from 2D children, with optional rounding. // Arguments: // thickness = Thickness of the shell. Positive to expand outward, negative to shrink inward, or a two-element list to do both. // or = Radius to round corners on the outside of the shell. If given a list of 2 radii, [CONVEX,CONCAVE], specifies the radii for convex and concave corners separately. Default: 0 (no outside rounding) // ir = Radius to round corners on the inside of the shell. If given a list of 2 radii, [CONVEX,CONCAVE], specifies the radii for convex and concave corners separately. Default: 0 (no inside rounding) // Examples(2D): // shell2d(10) {square([40,100], center=true); square([100,40], center=true);} // shell2d(-10) {square([40,100], center=true); square([100,40], center=true);} // shell2d([-10,10]) {square([40,100], center=true); square([100,40], center=true);} // shell2d(10,or=10) {square([40,100], center=true); square([100,40], center=true);} // shell2d(10,ir=10) {square([40,100], center=true); square([100,40], center=true);} // shell2d(10,or=[10,0]) {square([40,100], center=true); square([100,40], center=true);} // shell2d(10,or=[0,10]) {square([40,100], center=true); square([100,40], center=true);} // shell2d(10,ir=[10,0]) {square([40,100], center=true); square([100,40], center=true);} // shell2d(10,ir=[0,10]) {square([40,100], center=true); square([100,40], center=true);} // shell2d(8,or=[16,8],ir=[16,8]) {square([40,100], center=true); square([100,40], center=true);} module shell2d(thickness, or=0, ir=0) { thickness = is_num(thickness)? ( thickness<0? [thickness,0] : [0,thickness] ) : (thickness[0]>thickness[1])? ( [thickness[1],thickness[0]] ) : thickness; orad = is_finite(or)? [or,or] : or; irad = is_finite(ir)? [ir,ir] : ir; difference() { round2d(or=orad[0],ir=orad[1]) offset(delta=thickness[1]) children(); round2d(or=irad[1],ir=irad[0]) offset(delta=thickness[0]) children(); } } // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap