////////////////////////////////////////////////////////////////////// // LibFile: edges.scad // Routines to work with edge sets and edge set descriptors. // To use this, add the following line to the top of your file. // ``` // include // ``` ////////////////////////////////////////////////////////////////////// // Section: Sets of Edges // Constants for specifying edges for `cuboid()`, etc. EDGES_NONE = [[0,0,0,0], [0,0,0,0], [0,0,0,0]]; // No edges. EDGES_ALL = [[1,1,1,1], [1,1,1,1], [1,1,1,1]]; // All edges. // Section: Edge Helpers // Function: is_edge_array() // Usage: // is_edge_array(v) // Description: // Returns true if the given value has the form of an edge array. function is_edge_array(v) = is_list(v) && is_vector(v[0]) && len(v)==3 && len(v[0])==4; // Function: edge_set() // Usage: // edge_set(v); // Description: // Takes an edge set descriptor and returns the edges array representing those edges. // This function is useful for modules that take `edges` arguments, like `cuboid()`. // An edge set descriptor can be any of: // - A vector pointing towards an edge, indicating just that edge. // - A vector pointing towards a face, indicating all edges surrounding that face. // - A vector pointing towards a corner, indicating all edges that meet at that corner. // - The string `"X"`, indicating all X axis aligned edges. // - The string `"Y"`, indicating all Y axis aligned edges. // - The string `"Z"`, indicating all Z axis aligned edges. // - The string `"ALL"`, indicating all edges. // - The string `"NONE"`, indicating no edges at all. // - A raw edges array, where each edge is represented by a 1 or a 0. The edge ordering is: // ``` // [ // [Y-Z-, Y+Z-, Y-Z+, Y+Z+], // [X-Z-, X+Z-, X-Z+, X+Z+], // [X-Y-, X+Y-, X-Y+, X+Y+] // ] // ``` function edge_set(v) = is_edge_array(v)? v : [ for (ax=[0:2]) [ for (b=[-1,1], a=[-1,1]) let( v2=[[0,a,b],[a,0,b],[a,b,0]][ax] ) ( is_string(v)? ( v=="X"? (ax==0) : // Return all X axis aligned edges. v=="Y"? (ax==1) : // Return all Y axis aligned edges. v=="Z"? (ax==2) : // Return all Z axis aligned edges. v=="ALL"? true : // Return all edges. v=="NONE"? false : // Return no edges. let(valid_values = ["X", "Y", "Z", "ALL", "NONE"]) assert( in_list(v, valid_values), str(v, " must be a vector, edge array, or one of ", valid_values) ) v ) : let(nonz = sum(vabs(v))) nonz==2? (v==v2) : // Edge: return matching edge. let( matches = count_true([ for (i=[0:2]) v[i] && (v[i]==v2[i]) ]) ) nonz==1? (matches==1) : // Face: return surrounding edges. (matches==2) // Corner: return touching edges. )? 1 : 0 ] ]; // Function: normalize_edges() // Usage: // normalize_edges(v); // Description: // Normalizes all values in an edge array to be `1`, if it was originally greater than `0`, // or `0`, if it was originally less than or equal to `0`. function normalize_edges(v) = [for (ax=v) [for (edge=ax) edge>0? 1 : 0]]; // Function: edges() // Usage: // edges(v) // edges(v, except) // Description: // Takes a list of edge set descriptors, and returns a normalized edges array // that represents all those given edges. If the `except` argument is given // a list of edge set descriptors, then all those edges will be removed // from the returned edges array. If either argument only has a single edge // set descriptor, you do not have to pass it in a list. // Each edge set descriptor can be any of: // - A vector pointing towards an edge. // - A vector pointing towards a face, indicating all edges surrounding that face. // - A vector pointing towards a corner, indicating all edges touching that corner. // - The string `"X"`, indicating all X axis aligned edges. // - The string `"Y"`, indicating all Y axis aligned edges. // - The string `"Z"`, indicating all Z axis aligned edges. // - The string `"ALL"`, indicating all edges. // - The string `"NONE"`, indicating no edges at all. // - A raw edges array, where each edge is represented by a 1 or a 0. The edge ordering is: // ``` // [ // [Y-Z-, Y+Z-, Y-Z+, Y+Z+], // [X-Z-, X+Z-, X-Z+, X+Z+], // [X-Y-, X+Y-, X-Y+, X+Y+] // ] // ``` // Figure(3DBig): Face Vector Edge Sets // module text3d(txt) { // xrot(90) // color("#000") // linear_extrude(height=0.1) { // text(text=txt, size=3, halign="center", valign="center"); // } // } // ydistribute(50) { // ydistribute(10) { // xdistribute(30) { // text3d("LEFT"); // text3d("FRONT"); // text3d("RIGHT"); // } // xdistribute(30) { // cuboid(20,chamfer=3,edges=LEFT); // cuboid(20,chamfer=3,edges=FRONT); // cuboid(20,chamfer=3,edges=RIGHT); // } // } // ydistribute(10) { // xdistribute(30) { // text3d("TOP"); // text3d("BACK"); // text3d("BOTTOM"); // } // xdistribute(30) { // cuboid(20,chamfer=3,edges=TOP); // cuboid(20,chamfer=3,edges=BACK); // cuboid(20,chamfer=3,edges=BOTTOM); // } // } // } // Figure(3DBig): Named Edge Sets // module text3d(txt) { // xrot(90) // color("#000") // linear_extrude(height=0.1) { // text(text=txt, size=3.5, halign="center", valign="center"); // } // } // ydistribute(75) { // ydistribute(10) { // xdistribute(30) { // text3d("\"X\""); // text3d("\"Y\""); // text3d("\"Z\""); // } // xdistribute(30) { // cuboid(20,chamfer=3,edges="X"); // cuboid(20,chamfer=3,edges="Y"); // cuboid(20,chamfer=3,edges="Z"); // } // } // ydistribute(10) { // xdistribute(30) { // text3d("\"ALL\""); // text3d("\"NONE\""); // } // xdistribute(30) { // cuboid(20,chamfer=3,edges="ALL"); // cuboid(20,chamfer=3,edges="NONE"); // } // } // } // Example: Just the front-top edge // edges(FRONT+TOP) // Example: All edges surrounding either the front or top faces // edges([FRONT,TOP]) // Example: All edges around the bottom face, except any that are also on the front // edges(BTM, except=FRONT) // Example: All edges except those around the bottom face. // edges("ALL", except=BOTTOM) // Example: All Z-aligned edges except those around the back face. // edges("Z", except=BACK) // Example: All edges around the bottom or front faces, except the bottom-front edge. // edges([BOTTOM,FRONT], except=BOTTOM+FRONT) // Example: All edges, except Z-aligned edges on the front. // edges("ALL", except=edges("Z", except=BACK)) function edges(v, except=[]) = (is_string(v) || is_vector(v) || is_edge_array(v))? edges([v], except=except) : (is_string(except) || is_vector(except) || is_edge_array(except))? edges(v, except=[except]) : except==[]? normalize_edges(sum([for (x=v) edge_set(x)])) : normalize_edges( normalize_edges(sum([for (x=v) edge_set(x)])) - sum([for (x=except) edge_set(x)]) ); EDGE_OFFSETS = [ // Array of XYZ offsets to the center of each edge. [ [ 0,-1,-1], [ 0, 1,-1], [ 0,-1, 1], [ 0, 1, 1] ], [ [-1, 0,-1], [ 1, 0,-1], [-1, 0, 1], [ 1, 0, 1] ], [ [-1,-1, 0], [ 1,-1, 0], [-1, 1, 0], [ 1, 1, 0] ] ]; // Function: corner_edge_count() // Description: Counts how many given edges intersect at a specific corner. // Arguments: // edges = Standard edges array. // v = Vector pointing to the corner to count edge intersections at. function corner_edge_count(edges, v) = let(u = (v+[1,1,1])/2) edges[0][u.y+u.z*2] + edges[1][u.x+u.z*2] + edges[2][u.x+u.y*2]; // vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap