////////////////////////////////////////////////////////////////////// // LibFile: joiners.scad // Snap-together joiners. // To use, add the following lines to the beginning of your file: // ``` // include // include // ``` ////////////////////////////////////////////////////////////////////// include include // Section: Half Joiners // Module: half_joiner_clear() // Description: // Creates a mask to clear an area so that a half_joiner can be placed there. // Usage: // half_joiner_clear(h, w, [a], [clearance], [overlap]) // Arguments: // h = Height of the joiner to clear space for. // w = Width of the joiner to clear space for. // a = Overhang angle of the joiner. // clearance = Extra width to clear. // overlap = Extra depth to clear. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // Example: // half_joiner_clear(spin=-90); module half_joiner_clear(h=20, w=10, a=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP) { dmnd_height = h*1.0; dmnd_width = dmnd_height*tan(a); guide_size = w/3; guide_width = 2*(dmnd_height/2-guide_size)*tan(a); attachable(anchor,spin,orient, size=[w, guide_width, h]) { union() { ycopies(overlap, n=overlap>0? 2 : 1) { difference() { // Diamonds. scale([w+clearance, dmnd_width/2, dmnd_height/2]) { xrot(45) cube(size=[1,sqrt(2),sqrt(2)], center=true); } // Blunt point of tab. ycopies(guide_width+4) { cube(size=[(w+clearance)*1.05, 4, h*0.99], center=true); } } } if (overlap>0) cube([w+clearance, overlap+0.001, h], center=true); } children(); } } // Module: half_joiner() // Usage: // half_joiner(h, w, l, [a], [screwsize], [guides], [$slop]) // Description: // Creates a half_joiner object that can be attached to half_joiner2 object. // Arguments: // h = Height of the half_joiner. // w = Width of the half_joiner. // l = Length of the backing to the half_joiner. // a = Overhang angle of the half_joiner. // screwsize = Diameter of screwhole. // guides = If true, create sliding alignment guides. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // $slop = Printer specific slop value to make parts fit more closely. // Example: // half_joiner(screwsize=3, spin=-90); module half_joiner(h=20, w=10, l=10, a=30, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP) { dmnd_height = h*1.0; dmnd_width = dmnd_height*tan(a); guide_size = w/3; guide_width = 2*(dmnd_height/2-guide_size)*tan(a); render(convexity=12) attachable(anchor,spin,orient, size=[w, 2*l, h]) { difference() { union() { // Make base. difference() { // Solid backing base. fwd(l/2) cube(size=[w, l, h], center=true); // Clear diamond for tab xcopies(2*w*2/3) { half_joiner_clear(h=h+0.01, w=w, clearance=$slop*2, a=a); } } difference() { // Make tab scale([w/3-$slop*2, dmnd_width/2, dmnd_height/2]) xrot(45) cube(size=[1,sqrt(2),sqrt(2)], center=true); // Blunt point of tab. back(guide_width/2+2) cube(size=[w*0.99,4,guide_size*2], center=true); } // Guide ridges. if (guides == true) { xcopies(w/3-$slop*2) { // Guide ridge. fwd(0.05/2) { scale([0.75, 1, 2]) yrot(45) cube(size=[guide_size/sqrt(2), guide_width+0.05, guide_size/sqrt(2)], center=true); } // Snap ridge. scale([0.25, 0.5, 1]) zrot(45) cube(size=[guide_size/sqrt(2), guide_size/sqrt(2), dmnd_width], center=true); } } } // Make screwholes, if needed. if (screwsize != undef) { yrot(90) cylinder(r=screwsize*1.1/2, h=w+1, center=true, $fn=12); } } children(); } } //half_joiner(screwsize=3); // Module: half_joiner2() // Usage: // half_joiner2(h, w, l, [a], [screwsize], [guides]) // Description: // Creates a half_joiner2 object that can be attached to half_joiner object. // Arguments: // h = Height of the half_joiner. // w = Width of the half_joiner. // l = Length of the backing to the half_joiner. // a = Overhang angle of the half_joiner. // screwsize = Diameter of screwhole. // guides = If true, create sliding alignment guides. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // Example: // half_joiner2(screwsize=3, spin=-90); module half_joiner2(h=20, w=10, l=10, a=30, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP) { dmnd_height = h*1.0; dmnd_width = dmnd_height*tan(a); guide_size = w/3; guide_width = 2*(dmnd_height/2-guide_size)*tan(a); render(convexity=12) attachable(anchor,spin,orient, size=[w, 2*l, h]) { difference() { union () { fwd(l/2) cube(size=[w, l, h], center=true); cube([w, guide_width, h], center=true); } // Subtract mated half_joiner. zrot(180) half_joiner(h=h+0.01, w=w+0.01, l=guide_width+0.01, a=a, screwsize=undef, guides=guides, $slop=0.0); // Make screwholes, if needed. if (screwsize != undef) { xcyl(r=screwsize*1.1/2, l=w+1, $fn=12); } } children(); } } // Section: Full Joiners // Module: joiner_clear() // Description: // Creates a mask to clear an area so that a joiner can be placed there. // Usage: // joiner_clear(h, w, [a], [clearance], [overlap]) // Arguments: // h = Height of the joiner to clear space for. // w = Width of the joiner to clear space for. // a = Overhang angle of the joiner. // clearance = Extra width to clear. // overlap = Extra depth to clear. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // Example: // joiner_clear(spin=-90); module joiner_clear(h=40, w=10, a=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP) { dmnd_height = h*0.5; dmnd_width = dmnd_height*tan(a); guide_size = w/3; guide_width = 2*(dmnd_height/2-guide_size)*tan(a); attachable(anchor,spin,orient, size=[w, guide_width, h]) { union() { up(h/4) half_joiner_clear(h=h/2.0-0.01, w=w, a=a, overlap=overlap, clearance=clearance); down(h/4) half_joiner_clear(h=h/2.0-0.01, w=w, a=a, overlap=overlap, clearance=-0.01); } children(); } } // Module: joiner() // Usage: // joiner(h, w, l, [a], [screwsize], [guides], [$slop]) // Description: // Creates a joiner object that can be attached to another joiner object. // Arguments: // h = Height of the joiner. // w = Width of the joiner. // l = Length of the backing to the joiner. // a = Overhang angle of the joiner. // screwsize = Diameter of screwhole. // guides = If true, create sliding alignment guides. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // $slop = Printer specific slop value to make parts fit more closely. // Examples: // joiner(screwsize=3, spin=-90); // joiner(w=10, l=10, h=40, spin=-90) cuboid([10, 10*2, 40], anchor=RIGHT); module joiner(h=40, w=10, l=10, a=30, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP) { attachable(anchor,spin,orient, size=[w, 2*l, h]) { union() { up(h/4) half_joiner(h=h/2, w=w, l=l, a=a, screwsize=screwsize, guides=guides); down(h/4) half_joiner2(h=h/2, w=w, l=l, a=a, screwsize=screwsize, guides=guides); } children(); } } // Section: Full Joiners Pairs/Sets // Module: joiner_pair_clear() // Description: // Creates a mask to clear an area so that a pair of joiners can be placed there. // Usage: // joiner_pair_clear(spacing, [n], [h], [w], [a], [clearance], [overlap]) // Arguments: // spacing = Spacing between joiner centers. // h = Height of the joiner to clear space for. // w = Width of the joiner to clear space for. // a = Overhang angle of the joiner. // n = Number of joiners (2 by default) to clear for. // clearance = Extra width to clear. // overlap = Extra depth to clear. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // Examples: // joiner_pair_clear(spacing=50, n=2); // joiner_pair_clear(spacing=50, n=3); module joiner_pair_clear(spacing=100, h=40, w=10, a=30, n=2, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP) { dmnd_height = h*0.5; dmnd_width = dmnd_height*tan(a); guide_size = w/3; guide_width = 2*(dmnd_height/2-guide_size)*tan(a); attachable(anchor,spin,orient, size=[spacing+w, guide_width, h]) { xcopies(spacing, n=n) { joiner_clear(h=h, w=w, a=a, clearance=clearance, overlap=overlap); } children(); } } // Module: joiner_pair() // Usage: // joiner_pair(h, w, l, [a], [screwsize], [guides], [$slop]) // Description: // Creates a joiner_pair object that can be attached to other joiner_pairs . // Arguments: // spacing = Spacing between joiner centers. // h = Height of the joiners. // w = Width of the joiners. // l = Length of the backing to the joiners. // a = Overhang angle of the joiners. // n = Number of joiners in a row. Default: 2 // alternate = If true (default), each joiner alternates it's orientation. If alternate is "alt", do opposite alternating orientations. // screwsize = Diameter of screwhole. // guides = If true, create sliding alignment guides. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // $slop = Printer specific slop value to make parts fit more closely. // Examples: // joiner_pair(spacing=50, l=10, spin=-90) cuboid([10, 50+10-0.1, 40], anchor=RIGHT); // joiner_pair(spacing=50, l=10, n=2, spin=-90); // joiner_pair(spacing=50, l=10, n=3, alternate=false, spin=-90); // joiner_pair(spacing=50, l=10, n=3, alternate=true, spin=-90); // joiner_pair(spacing=50, l=10, n=3, alternate="alt", spin=-90); module joiner_pair(spacing=100, h=40, w=10, l=10, a=30, n=2, alternate=true, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP) { attachable(anchor,spin,orient, size=[spacing+w, 2*l, h]) { left((n-1)*spacing/2) { for (i=[0:1:n-1]) { right(i*spacing) { yrot(180 + (alternate? (i*180+(alternate=="alt"?180:0))%360 : 0)) { joiner(h=h, w=w, l=l, a=a, screwsize=screwsize, guides=guides); } } } } children(); } } // Section: Full Joiners Quads/Sets // Module: joiner_quad_clear() // Description: // Creates a mask to clear an area so that a pair of joiners can be placed there. // Usage: // joiner_quad_clear(spacing, [n], [h], [w], [a], [clearance], [overlap]) // Arguments: // spacing1 = Spacing between joiner centers. // spacing2 = Spacing between back-to-back pairs/sets of joiners. // h = Height of the joiner to clear space for. // w = Width of the joiner to clear space for. // a = Overhang angle of the joiner. // n = Number of joiners in a row. Default: 2 // clearance = Extra width to clear. // overlap = Extra depth to clear. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // Examples: // joiner_quad_clear(spacing1=50, spacing2=50, n=2); // joiner_quad_clear(spacing1=50, spacing2=50, n=3); module joiner_quad_clear(xspacing=undef, yspacing=undef, spacing1=undef, spacing2=undef, n=2, h=40, w=10, a=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP) { spacing1 = first_defined([spacing1, xspacing, 100]); spacing2 = first_defined([spacing2, yspacing, 50]); attachable(anchor,spin,orient, size=[w+spacing1, spacing2, h]) { zrot_copies(n=2) { back(spacing2/2) { joiner_pair_clear(spacing=spacing1, n=n, h=h, w=w, a=a, clearance=clearance, overlap=overlap); } } children(); } } // Module: joiner_quad() // Usage: // joiner_quad(h, w, l, [a], [screwsize], [guides], [$slop]) // Description: // Creates a joiner_quad object that can be attached to other joiner_pairs . // Arguments: // spacing = Spacing between joiner centers. // h = Height of the joiners. // w = Width of the joiners. // l = Length of the backing to the joiners. // a = Overhang angle of the joiners. // n = Number of joiners in a row. Default: 2 // alternate = If true (default), each joiner alternates it's orientation. If alternate is "alt", do opposite alternating orientations. // screwsize = Diameter of screwhole. // guides = If true, create sliding alignment guides. // $slop = Printer specific slop value to make parts fit more closely. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // Examples: // joiner_quad(spacing1=50, spacing2=50, l=10, spin=-90) cuboid([50, 50+10-0.1, 40]); // joiner_quad(spacing1=50, spacing2=50, l=10, n=2, spin=-90); // joiner_quad(spacing1=50, spacing2=50, l=10, n=3, alternate=false, spin=-90); // joiner_quad(spacing1=50, spacing2=50, l=10, n=3, alternate=true, spin=-90); // joiner_quad(spacing1=50, spacing2=50, l=10, n=3, alternate="alt", spin=-90); module joiner_quad(spacing1=undef, spacing2=undef, xspacing=undef, yspacing=undef, h=40, w=10, l=10, a=30, n=2, alternate=true, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP) { spacing1 = first_defined([spacing1, xspacing, 100]); spacing2 = first_defined([spacing2, yspacing, 50]); attachable(anchor,spin,orient, size=[w+spacing1, spacing2, h]) { zrot_copies(n=2) { back(spacing2/2) { joiner_pair(spacing=spacing1, n=n, h=h, w=w, l=l, a=a, screwsize=screwsize, guides=guides); } } children(); } } // Section: Dovetails // Module: dovetail() // // Usage: // dovetail(l|length, h|height, w|width, slope|angle, taper|back_width, [chamfer], [r|radius], [round], [$slop]) // // Description: // Produces a possibly tapered dovetail joint shape to attach to or subtract from two parts you wish to join together. // The tapered dovetail is particularly advantageous for long joints because the joint assembles without binding until // it is fully closed, and then wedges tightly. You can chamfer or round the corners of the dovetail shape for better // printing and assembly, or choose a fully rounded joint that looks more like a puzzle piece. The dovetail appears // parallel to the Y axis and projecting upwards, so in its default orientation it will slide together with a translation // in the positive Y direction. The default anchor for dovetails is BOTTOM; the default orientation depends on the gender, // with male dovetails oriented UP and female ones DOWN. // // Arguments: // l / length = Length of the dovetail (amount the joint slides during assembly) // h / height = Height of the dovetail // w / width = Width (at the wider, top end) of the dovetail before tapering // slope = slope of the dovetail. Standard woodworking slopes are 4, 6, or 8. Default: 6. // angle = angle (in degrees) of the dovetail. Specify only one of slope and angle. // taper = taper angle (in degrees). Dovetail gets narrower by this angle. Default: no taper // back_width = width of right hand end of the dovetail. This alternate method of specifying the taper may be easier to manage. Specify only one of `taper` and `back_width`. Note that `back_width` should be smaller than `width` to taper in the customary direction, with the smaller end at the back. // chamfer = amount to chamfer the corners of the joint (Default: no chamfer) // r / radius = amount to round over the corners of the joint (Default: no rounding) // round = true to round both corners of the dovetail and give it a puzzle piece look. Default: false. // extra = amount of extra length and base extension added to dovetails for unions and differences. Default: 0.01 // Example: Ordinary straight dovetail, male version (sticking up) and female version (below the xy plane) // dovetail("male", length=30, width=15, height=8); // right(20) dovetail("female", length=30, width=15, height=8); // Example: Adding a 6 degree taper (Such a big taper is usually not necessary, but easier to see for the example.) // dovetail("male", length=30, width=15, height=8, taper=6); // right(20) dovetail("female", length=30, width=15, height=8, taper=6); // Example: A block that can link to itself // diff("remove") // cuboid([50,30,10]){ // attach(BACK) dovetail("male", length=10, width=15, height=8); // attach(FRONT) dovetail("female", length=10, width=15, height=8,$tags="remove"); // } // Example: Setting the dovetail angle. This is too extreme to be useful. // diff("remove") // cuboid([50,30,10]){ // attach(BACK) dovetail("male", length=10, width=15, height=8,angle=30); // attach(FRONT) dovetail("female", length=10, width=15, height=8,angle=30,$tags="remove"); // } // Example: Adding a chamfer helps printed parts fit together without problems at the corners // diff("remove") // cuboid([50,30,10]){ // attach(BACK) dovetail("male", length=10, width=15, height=8,chamfer=1); // attach(FRONT) dovetail("female", length=10, width=15, height=8,chamfer=1,$tags="remove"); // } // Example: Rounding the outside corners is another option // diff("remove") // cuboid([50,30,10]){ // attach(BACK) dovetail("male", length=10, width=15, height=8,radius=1,$fn=32); // attach(FRONT) dovetail("female", length=10, width=15, height=8,radius=1,$tags="remove",$fn=32); // } // Example: Or you can make a fully rounded joint // $fn=32; // diff("remove") // cuboid([50,30,10]){ // attach(BACK) dovetail("male", length=10, width=15, height=8,radius=1.5, round=true); // attach(FRONT) dovetail("female", length=10, width=15, height=8,radius=1.5, round=true, $tags="remove"); // } // Example: With a long joint like this, a taper makes the joint easy to assemble. It will go together easily and wedge tightly if you get the tolerances right. Specifying the taper with `back_width` may be easier than using a taper angle. // cuboid([50,30,10]) // attach(TOP) dovetail("male", length=50, width=18, height=4, back_width=15, spin=90); // fwd(35) // diff("remove") // cuboid([50,30,10]) // attach(TOP) dovetail("female", length=50, width=18, height=4, back_width=15, spin=90,$tags="remove"); // Example: A series of dovtails // cuboid([50,30,10]) // attach(BACK) xcopies(10,5) dovetail("male", length=10, width=7, height=4); // Example: Mating pin board for a right angle joint. Note that the anchor method and use of `spin` ensures that the joint works even with a taper. // diff("remove") // cuboid([50,30,10]) // position(TOP+BACK) xcopies(10,5) dovetail("female", length=10, width=7, taper=4, height=4, $tags="remove",anchor=BOTTOM+FRONT,spin=180); module dovetail(gender, length, l, width, w, height, h, angle, slope, taper, back_width, chamfer, extra=0.01, r, radius, round=false, anchor=BOTTOM, spin=0, orient) { radius = get_radius(r1=radius,r2=r); lcount = num_defined([l,length]); hcount = num_defined([h,height]); wcount = num_defined([w,width]); assert(lcount==1, "Must define exactly one of l and length"); assert(wcount==1, "Must define exactly one of w and width"); assert(hcount==1, "Must define exactly one of h and height"); h = first_defined([h,height]); w = first_defined([w,width]); length = first_defined([l,length]); orient = is_def(orient) ? orient : gender == "female" ? DOWN : UP; count = num_defined([angle,slope]); assert(count<=1, "Do not specify both angle and slope"); count2 = num_defined([taper,back_width]); assert(count2<=1, "Do not specify both taper and back_width"); count3 = num_defined([chamfer, radius]); assert(count3<=1 || (radius==0 && chamfer==0), "Do not specify both chamfer and radius"); slope = is_def(slope) ? slope : is_def(angle) ? 1/tan(angle) : 6; width = gender == "male" ? w : w + 2*$slop; height = h + (gender == "female" ? 2*$slop : 0); front_offset = is_def(taper) ? -extra * tan(taper) : is_def(back_width) ? extra * (back_width-width)/length/2 : 0; size = is_def(chamfer) && chamfer>0 ? chamfer : is_def(radius) && radius>0 ? radius : 0; type = is_def(chamfer) && chamfer>0 ? "chamfer" : "circle"; fullsize = round ? [size,size] : gender == "male" ? [size,0] : [0,size]; smallend_half = round_corners( move( [0,-length/2-extra,0], p=[ [0 , 0, height], [width/2-front_offset , 0, height], [width/2 - height/slope - front_offset, 0, 0 ], [width/2 - front_offset + height, 0, 0] ] ), method=type, cut = fullsize, closed=false ); smallend_points = concat(select(smallend_half, 1, -2), [down(extra,p=select(smallend_half, -2))]); offset = is_def(taper) ? -(length+extra) * tan(taper) : is_def(back_width) ? (back_width-width) / 2 : 0; bigend_points = move([offset,length+2*extra,0], p=smallend_points); adjustment = gender == "male" ? -0.01 : 0.01; // Adjustment for default overlap in attach() attachable(anchor,spin,orient, size=[width+2*offset, length, height]) { down(height/2+adjustment) { skin( [ reverse(concat(smallend_points, xflip(p=reverse(smallend_points)))), reverse(concat(bigend_points, xflip(p=reverse(bigend_points)))) ], slices=0, convexity=4 ); } children(); } } // h is total height above 0 of the nub // nub extends below xy plane by distance nub/2 module _pin_nub(r, nub, h) { L = h / 4; rotate_extrude(){ polygon( [[ 0,-nub/2], [-r,-nub/2], [-r-nub, nub/2], [-r-nub, nub/2+L], [-r, h], [0, h]]); } } module _pin_slot(l, r, t, d, nub, depth, stretch) { yscale(4) intersection() { translate([t, 0, d + t / 4]) _pin_nub(r = r + t, nub = nub, h = l - (d + t / 4)); translate([-t, 0, d + t / 4]) _pin_nub(r = r + t, nub = nub, h = l - (d + t / 4)); } cube([2 * r, depth, 2 * l], center = true); up(l) zscale(stretch) ycyl(r = r, h = depth); } module _pin_shaft(r, lStraight, nub, nubscale, stretch, d, pointed) { extra = 0.02; rPoint = r / sqrt(2); down(extra) cylinder(r = r, h = lStraight + extra); up(lStraight) { zscale(stretch) { sphere(r = r); if (pointed) up(rPoint) cylinder(r1 = rPoint, r2 = 0, h = rPoint); } } up(d) yscale(nubscale) _pin_nub(r = r, nub = nub, h = lStraight - d); } function _pin_size(size) = is_undef(size) ? [] : let(sizeok = in_list(size,["tiny", "small","medium", "large", "standard"])) assert(sizeok,"Pin size must be one of \"tiny\", \"small\", or \"standard\"") size=="standard" || size=="large" ? struct_set([], ["length", 10.8, "diameter", 7, "snap", 0.5, "nub_depth", 1.8, "thickness", 1.8, "preload", 0.2]): size=="medium" ? struct_set([], ["length", 8, "diameter", 4.6, "snap", 0.45, "nub_depth", 1.5, "thickness", 1.4, "preload", 0.2]) : size=="small" ? struct_set([], ["length", 6, "diameter", 3.2, "snap", 0.4, "nub_depth", 1.2, "thickness", 1.0, "preload", 0.16]) : size=="tiny" ? struct_set([], ["length", 4, "diameter", 2.5, "snap", 0.25, "nub_depth", 0.9, "thickness", 0.8, "preload", 0.1]): undef; // Module: snap_pin() // Usage: // snap_pin(size, [pointed], [anchor], [spin], [orient]) // snap_pin(r|radius|d|diameter, l|length, nub_depth, snap, thickness, [clearance], [preload], [pointed], [anchor], [spin], [orient]) // Description: // Creates a snap pin that can be inserted into an appropriate socket to connect two objects together. You can choose from some standard // pin dimensions by giving a size, or you can specify all the pin geometry parameters yourself. If you use a standard size you can // override the standard parameters by specifying other ones. The pins have flat sides so they can // be printed. When oriented UP the shaft of the pin runs in the Z direction and the flat sides are the front and back. The default // orientation (FRONT) and anchor (FRONT) places the pin in a printable configuration, flat side down on the xy plane. // The tightness of fit is determined by `preload` and `clearance`. To make pins tighter increase `preload` and/or decrease `clearance`. // // The "large" or "standard" size pin has a length of 10.8 and diameter of 7. The "medium" pin has a length of 8 and diameter of 4.6. The "small" pin // has a length of 6 and diameter of 3.2. The "tiny" pin has a length of 4 and a diameter of 2.5. // // This pin is based on https://www.thingiverse.com/thing:213310 by Emmett Lalishe // and a modified version at https://www.thingiverse.com/thing:3218332 by acwest // and distributed under the Creative Commons - Attribution - Share Alike License // Arguments: // size = text string to select from a list of predefined sizes, one of "standard", "small", or "tiny". // pointed = set to true to get a pointed pin, false to get one with a rounded end. Default: true // r|radius = radius of the pin // d|diameter = diameter of the pin // l|length = length of the pin // nub_depth = the distance of the nub from the base of the pin // snap = how much snap the pin provides (the nub projection) // thickness = thickness of the pin walls // pointed = if true the pin is pointed, otherwise it has a rounded tip. Default: true // clearance = how far to shrink the pin away from the socket walls. Default: 0.2 // preload = amount to move the nub towards the pin base, which can create tension from the misalignment with the socket. Default: 0.2 // Example: Pin in native orientation // snap_pin("standard", anchor=CENTER, orient=UP, thickness = 1, $fn=40); // Example: Pins oriented for printing // xcopies(spacing=10, n=4) snap_pin("standard", $fn=40); module snap_pin(size,r,radius,d,diameter, l,length, nub_depth, snap, thickness, clearance=0.2, preload, pointed=true, anchor=FRONT, spin=0, orient=FRONT, center) { preload_default = 0.2; sizedat = _pin_size(size); radius = get_radius(r1=r,r2=radius,d1=d,d2=diameter,dflt=struct_val(sizedat,"diameter")/2); length = first_defined([l,length,struct_val(sizedat,"length")]); snap = first_defined([snap, struct_val(sizedat,"snap")]); thickness = first_defined([thickness, struct_val(sizedat,"thickness")]); nub_depth = first_defined([nub_depth, struct_val(sizedat,"nub_depth")]); preload = first_defined([first_defined([preload, struct_val(sizedat, "preload")]),preload_default]); nubscale = 0.9; // Mysterious arbitrary parameter // The basic pin assumes a rounded cap of length sqrt(2)*r, which defines lStraight. // If the point is enabled the cap length is instead 2*r // preload shrinks the length, bringing the nubs closer together rInner = radius - clearance; stretch = sqrt(2)*radius/rInner; // extra stretch factor to make cap have proper length even though r is reduced. lStraight = length - sqrt(2) * radius - clearance; lPin = lStraight + (pointed ? 2*radius : sqrt(2)*radius); attachable(anchor=anchor,spin=spin, orient=orient, size=[nubscale*(2*rInner+2*snap + clearance),radius*sqrt(2)-2*clearance,2*lPin]){ zflip_copy() difference() { intersection() { cube([3 * (radius + snap), radius * sqrt(2) - 2 * clearance, 2 * length + 3 * radius], center = true); _pin_shaft(rInner, lStraight, snap+clearance/2, nubscale, stretch, nub_depth-preload, pointed); } _pin_slot(l = lStraight, r = rInner - thickness, t = thickness, d = nub_depth - preload, nub = snap, depth = 2 * radius + 0.02, stretch = stretch); } children(); } } // Module: snap_pin_socket() // Usage: // snap_pin_socket(size, [fixed], [fins], [pointed], [anchor], [spin], [orient]); // snap_pin_socket(r|radius|d|diameter, l|length, nub_depth, snap, [fixed], [pointed], [fins], [anchor], [spin], [orient]) // Description: // Constructs a socket suitable for a snap_pin with the same parameters. If `fixed` is true then the socket has flat walls and the // pin will not rotate in the socket. If `fixed` is false then the socket is round and the pin will rotate, particularly well // if you add a lubricant. If `pointed` is true the socket is pointed to receive a pointed pin, otherwise it has a rounded and and // will be shorter. If `fins` is set to true then two fins are included inside the socket to act as supports (which may help when printing tip up, // especially when `pointed=false`). The default orientation is DOWN with anchor BOTTOM so that you can difference() the socket away from an object. // // The "large" or "standard" size pin has a length of 10.8 and diameter of 7. The "medium" pin has a length of 8 and diameter of 4.6. The "small" pin // has a length of 6 and diameter of 3.2. The "tiny" pin has a length of 4 and a diameter of 2.5. // Arguments: // size = text string to select from a list of predefined sizes, one of "standard", "small", or "tiny". // pointed = set to true to get a pointed pin, false to get one with a rounded end. Default: true // r|radius = radius of the pin // d|diameter = diameter of the pin // l|length = length of the pin // nub_depth = the distance of the nub from the base of the pin // snap = how much snap the pin provides (the nub projection) // fixed = if true the pin cannot rotate, if false it can. Default: true // pointed = if true the socket has a pointed tip. Default: true // fins = if true supporting fins are included. Default: false // Example: The socket shape itself in native orientation. // snap_pin_socket("standard", anchor=CENTER, orient=UP, fins=true, $fn=40); // Example: A spinning socket with fins: // snap_pin_socket("standard", anchor=CENTER, orient=UP, fins=true, fixed=false, $fn=40); // Example: A cube with a socket in the middle and one half-way off the front edge so you can see inside: // $fn=40; // diff("socket") cuboid([20,20,20]) { // attach(TOP) snap_pin_socket("standard", $tags="socket"); // position(TOP+FRONT)snap_pin_socket("standard", $tags="socket"); // } module snap_pin_socket(size, r, radius, l,length, d,diameter,nub_depth, snap, fixed=true, pointed=true, fins=false, anchor=BOTTOM, spin=0, orient=DOWN) { sizedat = _pin_size(size); radius = get_radius(r1=r,r2=radius,d1=d,d2=diameter,dflt=struct_val(sizedat,"diameter")/2); length = first_defined([l,length,struct_val(sizedat,"length")]); snap = first_defined([snap, struct_val(sizedat,"snap")]); nub_depth = first_defined([nub_depth, struct_val(sizedat,"nub_depth")]); tip = pointed ? sqrt(2) * radius : radius; lPin = length + (pointed?(2-sqrt(2))*radius:0); lStraight = lPin - (pointed?sqrt(2)*radius:radius); attachable(anchor=anchor,spin=spin,orient=orient, size=[2*(radius+snap),radius*sqrt(2),lPin]) { down(lPin/2) intersection() { if (fixed) cube([3 * (radius + snap), radius * sqrt(2), 3 * lPin + 3 * radius], center = true); union() { _pin_shaft(radius,lStraight,snap,1,1,nub_depth,pointed); if (fins) up(lStraight){ cube([2 * radius, 0.01, 2 * tip], center = true); cube([0.01, 2 * radius, 2 * tip], center = true); } } } children(); } } // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap