////////////////////////////////////////////////////////////////////// // LibFile: paths.scad // Polylines, polygons and paths. // To use, add the following lines to the beginning of your file: // ``` // include // ``` ////////////////////////////////////////////////////////////////////// include // Section: Functions // Function: simplify2d_path() // Description: // Takes a 2D polyline and removes unnecessary collinear points. // Usage: // simplify2d_path(path, [eps]) // Arguments: // path = A list of 2D path points. // eps = Largest angle delta between segments to count as colinear. Default: 1e-6 function simplify2d_path(path, eps=1e-6) = simplify_path(path, eps=eps); // Function: simplify3d_path() // Description: // Takes a 3D polyline and removes unnecessary collinear points. // Usage: // simplify3d_path(path, [eps]) // Arguments: // path = A list of 3D path points. // eps = Largest angle delta between segments to count as colinear. Default: 1e-6 function simplify3d_path(path, eps=1e-6) = simplify_path(path, eps=eps); // Function: path_length() // Usage: // path3d_length(path) // Description: // Returns the length of the path. // Arguments: // path = The list of points of the path to measure. // Example: // path = [[0,0], [5,35], [60,-25], [80,0]]; // echo(path_length(path)); function path_length(path) = len(path)<2? 0 : sum([for (i = [0:len(path)-2]) norm(path[i+1]-path[i])]); // Function: path2d_regular_ngon() // Description: // Returns a 2D open counter-clockwise path of the vertices of a regular polygon of `n` sides. // Usage: // path2d_regular_ngon(n, r|d, [cp], [scale]); // Arguments: // n = Number of polygon sides. // r = Radius of regular polygon. // d = Radius of regular polygon. // cp = Centerpoint of regular polygon. Default: `[0,0]` // scale = [X,Y] scaling factors for each axis. Default: `[1,1]` // Example(2D): // trace_polyline(path2d_regular_ngon(n=12, r=50), N=1, showpts=true); function path2d_regular_ngon(n=6, r=undef, d=undef, cp=[0,0], scale=[1,1]) = let( rr=get_radius(r=r, d=d, dflt=100) ) [ for (i=[0:n-1]) rr * [cos(i*360/n)*scale.x, sin(i*360/n)*scale.y] + cp ]; // Function: path3d_spiral() // Description: // Returns a 3D spiral path. // Usage: // path3d_spiral(turns, h, n, r|d, [cp], [scale]); // Arguments: // h = Height of spiral. // turns = Number of turns in spiral. // n = Number of spiral sides. // r = Radius of spiral. // d = Radius of spiral. // cp = Centerpoint of spiral. Default: `[0,0]` // scale = [X,Y] scaling factors for each axis. Default: `[1,1]` // Example(3D): // trace_polyline(path3d_spiral(turns=2.5, h=100, n=24, r=50), N=1, showpts=true); function path3d_spiral(turns=3, h=100, n=12, r=undef, d=undef, cp=[0,0], scale=[1,1]) = let( rr=get_radius(r=r, d=d, dflt=100), cnt=floor(turns*n), dz=h/cnt ) [ for (i=[0:cnt]) [ rr * cos(i*360/n) * scale.x + cp.x, rr * sin(i*360/n) * scale.y + cp.y, i*dz ] ]; // Function: points_along_path3d() // Usage: // points_along_path3d(polyline, path); // Description: // Calculates the vertices needed to create a `polyhedron()` of the // extrusion of `polyline` along `path`. The closed 2D path shold be // centered on the XY plane. The 2D path is extruded perpendicularly // along the 3D path. Produces a list of 3D vertices. Vertex count // is `len(polyline)*len(path)`. Gives all the reoriented vertices // for `polyline` at the first point in `path`, then for the second, // and so on. // Arguments: // polyline = A closed list of 2D path points. // path = A list of 3D path points. function points_along_path3d( polyline, // The 2D polyline to drag along the 3D path. path, // The 3D polyline path to follow. q=Q_Ident(), // Used in recursion n=0 // Used in recursion ) = let( end = len(path)-1, v1 = (n == 0)? [0, 0, 1] : normalize(path[n]-path[n-1]), v2 = (n == end)? normalize(path[n]-path[n-1]) : normalize(path[n+1]-path[n]), crs = cross(v1, v2), axis = norm(crs) <= 0.001? [0, 0, 1] : crs, ang = vector_angle(v1, v2), hang = ang * (n==0? 1.0 : 0.5), hrot = Quat(axis, hang), arot = Quat(axis, ang), roth = Q_Mul(hrot, q), rotm = Q_Mul(arot, q) ) concat( [for (i = [0:len(polyline)-1]) Q_Rot_Vector(point3d(polyline[i]),roth) + path[n]], (n == end)? [] : points_along_path3d(polyline, path, rotm, n+1) ); // Section: 2D Modules // Module: modulated_circle() // Description: // Creates a 2D polygon circle, modulated by one or more superimposed sine waves. // Arguments: // r = radius of the base circle. // sines = array of [amplitude, frequency] pairs, where the frequency is the number of times the cycle repeats around the circle. // Example(2D): // modulated_circle(r=40, sines=[[3, 11], [1, 31]], $fn=6); module modulated_circle(r=40, sines=[10]) { freqs = len(sines)>0? [for (i=sines) i[1]] : [5]; points = [ for (a = [0 : (360/segs(r)/max(freqs)) : 360]) let(nr=r+sum_of_sines(a,sines)) [nr*cos(a), nr*sin(a)] ]; polygon(points); } // Section: 3D Modules // Module: extrude_from_to() // Description: // Extrudes a 2D shape between the points pt1 and pt2. Takes as children a set of 2D shapes to extrude. // Arguments: // pt1 = starting point of extrusion. // pt2 = ending point of extrusion. // convexity = max number of times a line could intersect a wall of the 2D shape being extruded. // twist = number of degrees to twist the 2D shape over the entire extrusion length. // scale = scale multiplier for end of extrusion compared the start. // slices = Number of slices along the extrusion to break the extrusion into. Useful for refining `twist` extrusions. // Example(FlatSpin): // extrude_from_to([0,0,0], [10,20,30], convexity=4, twist=360, scale=3.0, slices=40) { // xspread(3) circle(3, $fn=32); // } module extrude_from_to(pt1, pt2, convexity=undef, twist=undef, scale=undef, slices=undef) { rtp = xyz_to_spherical(pt2-pt1); translate(pt1) { rotate([0, rtp[2], rtp[1]]) { linear_extrude(height=rtp[0], convexity=convexity, center=false, slices=slices, twist=twist, scale=scale) { children(); } } } } // Module: extrude_2d_hollow() // Description: // Similar to linear_extrude(), except the result is a hollow shell. // Arguments: // wall = thickness of shell wall. // height = height of extrusion. // twist = degrees of twist, from bottom to top. // slices = how many slices to use when making extrusion. // orient = Orientation of the spiral. Use the `ORIENT_` constants from `constants.scad`. Default: `ORIENT_Z`. // anchor = Alignment of the spiral. Use the constants from `constants.scad`. Default: `BOTTOM`. // center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=BOTTOM`. // Example: // extrude_2d_hollow(wall=2, height=100, twist=90, slices=50) // circle(r=40, $fn=6); module extrude_2d_hollow(wall=2, height=50, twist=90, slices=60, center=undef, orient=ORIENT_Z, anchor=BOTTOM) { linear_extrude(height=height, twist=twist, slices=slices, center=true) { difference() { children(); offset(r=-wall) { children(); } } } } // Module: extrude_2dpath_along_spiral() // Description: // Takes a closed 2D polyline path, centered on the XY plane, and // extrudes it along a 3D spiral path of a given radius, height and twist. // Arguments: // polyline = Array of points of a polyline path, to be extruded. // h = height of the spiral to extrude along. // r = radius of the spiral to extrude along. // twist = number of degrees of rotation to spiral up along height. // orient = Orientation of the spiral. Use the `ORIENT_` constants from `constants.scad`. Default: `ORIENT_Z`. // anchor = Alignment of the spiral. Use the constants from `constants.scad`. Default: `BOTTOM`. // center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=BOTTOM`. // Example: // poly = [[-10,0], [-3,-5], [3,-5], [10,0], [0,-30]]; // extrude_2dpath_along_spiral(poly, h=200, r=50, twist=1080, $fn=36); module extrude_2dpath_along_spiral(polyline, h, r, twist=360, center=undef, orient=ORIENT_Z, anchor=BOTTOM) { pline_count = len(polyline); steps = ceil(segs(r)*(twist/360)); poly_points = [ for ( p = [0:steps] ) let ( a = twist * (p/steps), dx = r*cos(a), dy = r*sin(a), dz = h * (p/steps), pts = affine3d_apply( polyline, [ affine3d_xrot(90), affine3d_zrot(a), affine3d_translate([dx, dy, dz-h/2]) ] ) ) for (pt = pts) pt ]; poly_faces = concat( [[for (b = [0:pline_count-1]) b]], [ for ( p = [0:steps-1], b = [0:pline_count-1], i = [0:1] ) let ( b2 = (b == pline_count-1)? 0 : b+1, p0 = p * pline_count + b, p1 = p * pline_count + b2, p2 = (p+1) * pline_count + b2, p3 = (p+1) * pline_count + b, pt = (i==0)? [p0, p2, p1] : [p0, p3, p2] ) pt ], [[for (b = [pline_count-1:-1:0]) b+(steps)*pline_count]] ); tri_faces = triangulate_faces(poly_points, poly_faces); orient_and_anchor([r,r,h], orient, anchor, center, chain=true) { polyhedron(points=poly_points, faces=tri_faces, convexity=10); children(); } } // Module: extrude_2dpath_along_3dpath() // Description: // Takes a closed 2D path `polyline`, centered on the XY plane, and extrudes it perpendicularly along a 3D path `path`, forming a solid. // Arguments: // polyline = Array of points of a polyline path, to be extruded. // path = Array of points of a polyline path, to extrude along. // ang = Angle in degrees to rotate 2D polyline before extrusion. // convexity = max number of surfaces any single ray could pass through. // Example(FlatSpin): // shape = [[0,-10], [5,-3], [5,3], [0,10], [30,0]]; // path = concat( // [for (a=[30:30:180]) [50*cos(a)+50, 50*sin(a), 20*sin(a)]], // [for (a=[330:-30:180]) [50*cos(a)-50, 50*sin(a), 20*sin(a)]] // ); // extrude_2dpath_along_3dpath(shape, path, ang=140); module extrude_2dpath_along_3dpath(polyline, path, ang=0, convexity=10) { pline_count = len(polyline); path_count = len(path); polyline = rotate_points2d(path2d(polyline), ang); poly_points = points_along_path3d(polyline, path); poly_faces = concat( [[for (b = [0:pline_count-1]) b]], [ for ( p = [0:path_count-2], b = [0:pline_count-1], i = [0:1] ) let ( b2 = (b == pline_count-1)? 0 : b+1, p0 = p * pline_count + b, p1 = p * pline_count + b2, p2 = (p+1) * pline_count + b2, p3 = (p+1) * pline_count + b, pt = (i==0)? [p0, p2, p1] : [p0, p3, p2] ) pt ], [[for (b = [pline_count-1:-1:0]) b+(path_count-1)*pline_count]] ); tri_faces = triangulate_faces(poly_points, poly_faces); polyhedron(points=poly_points, faces=tri_faces, convexity=convexity); } // Module: extrude_2d_shapes_along_3dpath() // Description: // Extrudes 2D children along a 3D polyline path. This may be slow. // Arguments: // path = array of points for the bezier path to extrude along. // convexity = maximum number of walls a ran can pass through. // clipsize = increase if artifacts are left. Default: 1000 // Example(FlatSpin): // path = [ [0, 0, 0], [33, 33, 33], [66, 33, 40], [100, 0, 0], [150,0,0] ]; // extrude_2d_shapes_along_3dpath(path) circle(r=10, $fn=6); module extrude_2d_shapes_along_3dpath(path, convexity=10, clipsize=100) { function polyquats(path, q=Q_Ident(), v=[0,0,1], i=0) = let( v2 = path[i+1] - path[i], ang = vector_angle(v,v2), axis = ang>0.001? normalize(cross(v,v2)) : [0,0,1], newq = Q_Mul(Quat(axis, ang), q), dist = norm(v2) ) i < (len(path)-2)? concat([[dist, newq, ang]], polyquats(path, newq, v2, i+1)) : [[dist, newq, ang]]; epsilon = 0.0001; // Make segments ever so slightly too long so they overlap. ptcount = len(path); pquats = polyquats(path); for (i = [0 : ptcount-2]) { pt1 = path[i]; pt2 = path[i+1]; dist = pquats[i][0]; q = pquats[i][1]; difference() { translate(pt1) { Qrot(q) { down(clipsize/2/2) { linear_extrude(height=dist+clipsize/2, convexity=convexity) { children(); } } } } translate(pt1) { hq = (i > 0)? Q_Slerp(q, pquats[i-1][1], 0.5) : q; Qrot(hq) down(clipsize/2+epsilon) cube(clipsize, center=true); } translate(pt2) { hq = (i < ptcount-2)? Q_Slerp(q, pquats[i+1][1], 0.5) : q; Qrot(hq) up(clipsize/2+epsilon) cube(clipsize, center=true); } } } } // Module: trace_polyline() // Description: // Renders lines between each point of a polyline path. // Can also optionally show the individual vertex points. // Arguments: // pline = The array of points in the polyline. // showpts = If true, draw vertices and control points. // N = Mark the first and every Nth vertex after in a different color and shape. // size = Diameter of the lines drawn. // color = Color to draw the lines (but not vertices) in. // Example(FlatSpin): // polyline = [for (a=[0:30:210]) 10*[cos(a), sin(a), sin(a)]]; // trace_polyline(polyline, showpts=true, size=0.5, color="lightgreen"); module trace_polyline(pline, N=1, showpts=false, size=1, color="yellow") { if (showpts) { for (i = [0:len(pline)-1]) { translate(pline[i]) { if (i%N == 0) { color("blue") sphere(d=size*2.5, $fn=8); } else { color("red") { cylinder(d=size/2, h=size*3, center=true, $fn=8); xrot(90) cylinder(d=size/2, h=size*3, center=true, $fn=8); yrot(90) cylinder(d=size/2, h=size*3, center=true, $fn=8); } } } } } for (i = [0:len(pline)-2]) { if (N!=3 || (i%N) != 1) { color(color) extrude_from_to(pline[i], pline[i+1]) circle(d=size/2); } } } // Module: debug_polygon() // Description: A drop-in replacement for `polygon()` that renders and labels the path points. // Arguments: // points = The array of 2D polygon vertices. // paths = The path connections between the vertices. // convexity = The max number of walls a ray can pass through the given polygon paths. // Example(Big2D): // debug_polygon( // points=concat( // path2d_regular_ngon(r=10, n=8), // path2d_regular_ngon(r=8, n=8) // ), // paths=[ // [for (i=[0:7]) i], // [for (i=[15:-1:8]) i] // ] // ); module debug_polygon(points, paths=undef, convexity=2, size=1) { pths = is_undef(paths)? [for (i=[0:len(points)-1]) i] : is_num(paths[0])? [paths] : paths; echo(points=points); echo(paths=paths); linear_extrude(height=0.01, convexity=convexity, center=true) { polygon(points=points, paths=paths, convexity=convexity); } for (i = [0:len(points)-1]) { color("red") { up(0.2) { translate(points[i]) { linear_extrude(height=0.1, convexity=10, center=true) { text(text=str(i), size=size, halign="center", valign="center"); } } } } } for (j = [0:len(paths)-1]) { path = paths[j]; translate(points[path[0]]) { color("cyan") up(0.1) cylinder(d=size*1.5, h=0.01, center=false, $fn=12); } translate(points[path[len(path)-1]]) { color("pink") up(0.11) cylinder(d=size*1.5, h=0.01, center=false, $fn=4); } for (i = [0:len(path)-1]) { midpt = (points[path[i]] + points[path[(i+1)%len(path)]])/2; color("blue") { up(0.2) { translate(midpt) { linear_extrude(height=0.1, convexity=10, center=true) { text(text=str(chr(65+j),i), size=size/2, halign="center", valign="center"); } } } } } } } // vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap