////////////////////////////////////////////////////////////////////// // LibFile: distributors.scad // Functions and modules to distribute children or copies of children onto // a line, a grid, or an arbitrary path. The $idx mechanism means that // the "copies" of children can vary. Also includes shortcuts for mirroring. // Includes: // include // FileGroup: Basic Modeling // FileSummary: Copy or distribute objects onto a line, grid, or path. Mirror shortcuts. // FileFootnotes: STD=Included in std.scad ////////////////////////////////////////////////////////////////////// // Section: Adaptive Children Using `$` Variables // The distributor methods create multiple copies of their children and place them in various ways. While many models // require multiple identical copies of an object, this framework is more powerful than // might be immediately obvious because of `$` variables. The distributors set `$` variables that the children can use to change their // behavior from one child to the next within a single distributor invocation. This means the copies need not be identical. // The {{xcopies()}} module sets `$idx` to the index number of the copy, and in the examples below we use `$idx`, but the various // distributors offer a variety of `$` variables that you can use in your children. Check the "Side Effects" section for each module // to learn what variables that module provides. // . // Two gotchas may lead to models that don't behave as expected. While `if` statements work to control modules, you cannot // use them to make variable assignments in your child object. If you write a statement like // ``` // if (condition) { c="red";} // else {c="green";} // ``` // then the `c` variable is set only in the scope of the `if` and `else` clauses and is not available later on when you actually // try to use it. Instead you must use the ternary operator and write: // ``` // c = condition ? "red" : "green"; // ``` // The second complication is // that in OpenSCAD version 2021.01 and earlier, assignments in children were executed before their parent. This means // that `$` variables like `$idx` are not available in assignments because the parent hasn't run to set them, so if you use them // you will get a warning about an unknown variable. // Two workarounds exist, neither of which are needed in newer versions of OpenSCAD. The workarounds solve the problem because // **modules** execute after their parent, so the `$` variables **are** available in modules. You can put your assignments // in a `let()` module, or you can wrap your child in a `union()`. Both methods appear below. // Figure(2D,NoScales): This example shows how we can use `$idx` to produce **different** geometry at each index. // xcopies(n=10, spacing=10) // text(str($idx)); // Continues: // ``` // xcopies(n=10, spacing=10) // text(str($idx)); // ``` // Figure(2D,NoScales): Here the children are sometimes squares and sometimes circles as determined by the conditional `if` module. This use of `if` is OK because no variables are assigned. // xcopies(n=4, spacing=10) // if($idx%2==0) circle(r=3,$fn=16); // else rect(6); // Continues: // ``` // xcopies(n=4, spacing=10) // if($idx%2==0) circle(r=3,$fn=16); // else rect(6); // ``` // Figure(2D,NoScales): Suppose we would like to color odd and even index copies differently. In this example we compute the color for a given child from `$idx` using the ternary operator. The `let()` module is a module that sets variables and makes them available to its children. Note that multiple assignments in `let()` are separated by commas, not semicolons. // xcopies(n=6, spacing=10){ // let(c = $idx % 2 == 0 ? "red" : "green") // color(c) rect(6); // } // Continues: // ``` // xcopies(n=6, spacing=10){ // let(c = $idx % 2 == 0 ? "red" : "green") // color(c) rect(6); // } // ``` // Figure(2D,NoScales): This example shows how you can change the position of children adaptively. If you want to avoid repeating your code for each case, this requires storing a transformation matrix in a variable and then applying it using `multmatrix()`. We wrap our code in `union()` to ensure that it works in OpenSCAD 2021.01. // xcopies(n=5,spacing=10) // union() // { // shiftback = $idx%2==0 ? back(10) : IDENT; // spin = zrot(180*$idx/4); // multmatrix(shiftback*spin) stroke([[-4,0],[4,0]],endcap2="arrow2",width=3/4, color="red"); // } // Continues: // ``` // xcopies(n=5,spacing=10) // union() // { // shiftback = $idx%2==0 ? back(10) : IDENT; // spin = zrot(180*$idx/4); // multmatrix(shiftback*spin) stroke([[-4,0],[4,0]],endcap2="arrow2",width=3/4,color="red"); // } // ``` ////////////////////////////////////////////////////////////////////// // Section: Translating copies of all the children ////////////////////////////////////////////////////////////////////// // Function&Module: move_copies() // // Usage: // move_copies(a) CHILDREN; // Usage: As a function to translate points, VNF, or Bezier patches // copies = move_copies(a, p=); // Usage: Get Translation Matrices // mats = move_copies(a); // // Topics: Transformations, Distributors, Copiers // // Description: // When called as a module, translates copies of all children to each given translation offset. // When called as a function, with no `p=` argument, returns a list of transformation matrices, one for each copy. // When called as a function, *with* a `p=` argument, returns a list of transformed copies of `p=`. // // Arguments: // a = Array of XYZ offset vectors. Default `[[0,0,0]]` // --- // p = Either a point, pointlist, VNF or Bezier patch to be translated when used as a function. // // Side Effects: // `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually. // `$idx` is set to the index number of each child being copied. // // See Also: move_copies(), xcopies(), ycopies(), zcopies(), line_copies(), rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies() // // Example: // #sphere(r=10); // move_copies([[-25,-25,0], [25,-25,0], [0,0,50], [0,25,0]]) sphere(r=10); module move_copies(a=[[0,0,0]]) { req_children($children); assert(is_list(a)); for ($idx = idx(a)) { $pos = a[$idx]; assert(is_vector($pos),"move_copies offsets should be a 2d or 3d vector."); translate($pos) children(); } } function move_copies(a=[[0,0,0]],p=_NO_ARG) = assert(is_list(a)) let( mats = [ for (pos = a) assert(is_vector(pos),"move_copies offsets should be a 2d or 3d vector.") translate(pos) ] ) p==_NO_ARG? mats : [for (m = mats) apply(m, p)]; // Function&Module: xcopies() // // Usage: // xcopies(spacing, [n], [sp]) CHILDREN; // xcopies(l, [n], [sp]) CHILDREN; // xcopies(LIST) CHILDREN; // Usage: As a function to translate points, VNF, or Bezier patches // copies = xcopies(spacing, [n], [sp], p=); // copies = xcopies(l, [n], [sp], p=); // copies = xcopies(LIST, p=); // Usage: Get Translation Matrices // mats = xcopies(spacing, [n], [sp]); // mats = xcopies(l, [n], [sp]); // mats = xcopies(LIST); // // Topics: Transformations, Distributors, Copiers // // Description: // When called as a module, places `n` copies of the children along a line on the X axis. // When called as a function, *without* a `p=` argument, returns a list of transformation matrices, one for each copy. // When called as a function, *with* a `p=` argument, returns a list of transformed copies of `p=`. // // Arguments: // --- // spacing = Given a scalar, specifies a uniform spacing between copies. Given a list of scalars, each one gives a specific position along the line. (Default: 1.0) // n = Number of copies to place. (Default: 2) // l = Length to place copies over. // sp = If given as a point, copies will be placed on a line to the right of starting position `sp`. If given as a scalar, copies will be placed on a line segment to the right of starting position `[sp,0,0]`. If not given, copies will be placed along a line segment that is centered at [0,0,0]. // p = Either a point, pointlist, VNF or Bezier patch to be translated when used as a function. // // Side Effects: // `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually. // `$idx` is set to the index number of each child being copied. // // See Also: move_copies(), xcopies(), ycopies(), zcopies(), line_copies(), rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies() // // Examples: // xcopies(20) sphere(3); // xcopies(20, n=3) sphere(3); // xcopies(spacing=15, l=50) sphere(3); // xcopies(n=4, l=30, sp=[0,10,0]) sphere(3); // Example: // xcopies(10, n=3) { // cube(size=[1,3,1],center=true); // cube(size=[3,1,1],center=true); // } // Example: // xcopies([1,2,3,5,7]) sphere(d=1); module xcopies(spacing, n, l, sp) { assert(is_undef(n) || num_defined([l,spacing])==1, "When n is given must give exactly one of spacing or l") assert(is_def(n) || num_defined([l,spacing])>=1, "When n is not given must give at least one of spacing or l") req_children($children); dir = RIGHT; sp = is_finite(sp)? (sp*dir) : sp; if (is_vector(spacing)) { translate(default(sp,[0,0,0])) { for (i = idx(spacing)) { $idx = i; $pos = spacing[i]*dir; translate($pos) children(); } } } else { line_copies( l=u_mul(l,dir), spacing=u_mul(spacing,dir), n=n, p1=sp ) children(); } } function xcopies(spacing, n, l, sp, p=_NO_ARG) = assert(is_undef(n) || num_defined([l,spacing])==1, "When n is given must give exactly one of spacing or l") assert(is_def(n) || num_defined([l,spacing])>=1, "When n is not given must give at least one of spacing or l") let( dir = RIGHT, sp = is_finite(sp)? (sp*dir) : sp, mats = is_vector(spacing) ? let(sp = default(sp,[0,0,0])) [for (n = spacing) translate(sp + n*dir)] : line_copies(l=u_mul(l,dir), spacing=u_mul(spacing,dir), n=n, p1=sp) ) p==_NO_ARG? mats : [for (m = mats) apply(m, p)]; // Function&Module: ycopies() // // Usage: // ycopies(spacing, [n], [sp]) CHILDREN; // ycopies(l, [n], [sp]) CHILDREN; // ycopies(LIST) CHILDREN; // Usage: As a function to translate points, VNF, or Bezier patches // copies = ycopies(spacing, [n], [sp], p=); // copies = ycopies(l, [n], [sp], p=); // copies = ycopies(LIST, p=); // Usage: Get Translation Matrices // mats = ycopies(spacing, [n], [sp]); // mats = ycopies(l, [n], [sp]); // mats = ycopies(LIST); // // Topics: Transformations, Distributors, Copiers // // Description: // When called as a module, places `n` copies of the children along a line on the Y axis. // When called as a function, *without* a `p=` argument, returns a list of transformation matrices, one for each copy. // When called as a function, *with* a `p=` argument, returns a list of transformed copies of `p=`. // // Arguments: // --- // spacing = Given a scalar, specifies a uniform spacing between copies. Given a list of scalars, each one gives a specific position along the line. (Default: 1.0) // n = Number of copies to place on the line. (Default: 2) // l = Length to place copies over. // sp = If given as a point, copies will be place on a line back from starting position `sp`. If given as a scalar, copies will be placed on a line back from starting position `[0,sp,0]`. If not given, copies will be placed along a line that is centered at [0,0,0]. // p = Either a point, pointlist, VNF or Bezier patch to be translated when used as a function. // // Side Effects: // `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually. // `$idx` is set to the index number of each child being copied. // // See Also: move_copies(), xcopies(), ycopies(), zcopies(), line_copies(), rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies() // // Examples: // ycopies(20) sphere(3); // ycopies(20, n=3) sphere(3); // ycopies(spacing=15, l=50) sphere(3); // ycopies(n=4, l=30, sp=[10,0,0]) sphere(3); // Example: // ycopies(10, n=3) { // cube(size=[1,3,1],center=true); // cube(size=[3,1,1],center=true); // } // Example: // ycopies([1,2,3,5,7]) sphere(d=1); module ycopies(spacing, n, l, sp) { assert(is_undef(n) || num_defined([l,spacing])==1, "When n is given must give exactly one of spacing or l") assert(is_def(n) || num_defined([l,spacing])>=1, "When n is not given must give at least one of spacing or l") req_children($children); dir = BACK; sp = is_finite(sp)? (sp*dir) : sp; if (is_vector(spacing)) { translate(default(sp,[0,0,0])) { for (i = idx(spacing)) { $idx = i; $pos = spacing[i]*dir; translate($pos) children(); } } } else { line_copies( l=u_mul(l,dir), spacing=u_mul(spacing,dir), n=n, p1=sp ) children(); } } function ycopies(spacing, n, l, sp, p=_NO_ARG) = assert(is_undef(n) || num_defined([l,spacing])==1, "When n is given must give exactly one of spacing or l") assert(is_def(n) || num_defined([l,spacing])>=1, "When n is not given must give at least one of spacing or l") let( dir = BACK, sp = is_finite(sp)? (sp*dir) : sp, mats = is_vector(spacing) ? let(sp = default(sp,[0,0,0])) [for (n = spacing) translate(sp + n*dir)] : line_copies(l=u_mul(l,dir), spacing=u_mul(spacing,dir), n=n, p1=sp) ) p==_NO_ARG? mats : [for (m = mats) apply(m, p)]; // Function&Module: zcopies() // // Usage: // zcopies(spacing, [n], [sp]) CHILDREN; // zcopies(l, [n], [sp]) CHILDREN; // zcopies(LIST) CHILDREN; // Usage: As a function to translate points, VNF, or Bezier patches // copies = zcopies(spacing, [n], [sp], p=); // copies = zcopies(l, [n], [sp], p=); // copies = zcopies(LIST, p=); // Usage: Get Translation Matrices // mats = zcopies(spacing, [n], [sp]); // mats = zcopies(l, [n], [sp]); // mats = zcopies(LIST); // // Topics: Transformations, Distributors, Copiers // // Description: // When called as a module, places `n` copies of the children along a line on the Z axis. // When called as a function, *without* a `p=` argument, returns a list of transformation matrices, one for each copy. // When called as a function, *with* a `p=` argument, returns a list of transformed copies of `p=`. // // Arguments: // --- // spacing = Given a scalar, specifies a uniform spacing between copies. Given a list of scalars, each one gives a specific position along the line. (Default: 1.0) // n = Number of copies to place. (Default: 2) // l = Length to place copies over. // sp = If given as a point, copies will be placed on a line up from starting position `sp`. If given as a scalar, copies will be placed on a line up from starting position `[0,0,sp]`. If not given, copies will be placed on a line that is centered at [0,0,0]. // p = Either a point, pointlist, VNF or Bezier patch to be translated when used as a function. // // Side Effects: // `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually. // `$idx` is set to the index number of each child being copied. // // See Also: move_copies(), xcopies(), ycopies(), zcopies(), line_copies(), rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies() // // Examples: // zcopies(20) sphere(3); // zcopies(20, n=3) sphere(3); // zcopies(spacing=15, l=50) sphere(3); // zcopies(n=4, l=30, sp=[10,0,0]) sphere(3); // Example: // zcopies(10, n=3) { // cube(size=[1,3,1],center=true); // cube(size=[3,1,1],center=true); // } // Example: Cubic sphere packing // s = 20; // s2 = s * sin(45); // zcopies(s2,n=8) // grid_copies([s2,s2],n=8,stagger=($idx%2)? true : "alt") // sphere(d=s); // Example: Hexagonal sphere packing // s = 20; // xyr = adj_ang_to_hyp(s/2,30); // h = hyp_adj_to_opp(s,xyr); // zcopies(h,n=8) // back(($idx%2)*xyr*cos(60)) // grid_copies(s,n=[12,7],stagger=($idx%2)? "alt" : true) // sphere(d=s); // Example: // zcopies([1,2,3,5,7]) sphere(d=1); module zcopies(spacing, n, l, sp) { assert(is_undef(n) || num_defined([l,spacing])==1, "When n is given must give exactly one of spacing or l") assert(is_def(n) || num_defined([l,spacing])>=1, "When n is not given must give at least one of spacing or l") req_children($children); dir = UP; sp = is_finite(sp)? (sp*dir) : sp; if (is_vector(spacing)) { translate(default(sp,[0,0,0])) { for (i = idx(spacing)) { $idx = i; $pos = spacing[i]*dir; translate($pos) children(); } } } else { line_copies( l=u_mul(l,dir), spacing=u_mul(spacing,dir), n=n, p1=sp ) children(); } } function zcopies(spacing, n, l, sp, p=_NO_ARG) = assert(is_undef(n) || num_defined([l,spacing])==1, "When n is given must give exactly one of spacing or l") assert(is_def(n) || num_defined([l,spacing])>=1, "When n is not given must give at least one of spacing or l") let( dir = UP, sp = is_finite(sp)? (sp*dir) : sp, mats = is_vector(spacing) ? let(sp = default(sp,[0,0,0])) [for (n = spacing) translate(sp + n*dir)] : line_copies(l=u_mul(l,dir), spacing=u_mul(spacing,dir), n=n, p1=sp) ) p==_NO_ARG? mats : [for (m = mats) apply(m, p)]; // Function&Module: line_copies() // // Usage: Place `n` copies at a given spacing along the line // line_copies(spacing, [n], [p1=]) CHILDREN; // Usage: Place as many copies as will fit at a given spacing // line_copies(spacing, [l=], [p1=]) CHILDREN; // Usage: Place `n` copies along the length of the line // line_copies([n=], [l=], [p1=]) CHILDREN; // Usage: Place `n` copies along the line from `p1` to `p2` // line_copies([n=], [p1=], [p2=]) CHILDREN; // Usage: Place copies at the given spacing, centered along the line from `p1` to `p2` // line_copies([spacing], [p1=], [p2=]) CHILDREN; // Usage: As a function to translate points, VNF, or Bezier patches // copies = line_copies([spacing], [n], [p1=], p=); // copies = line_copies([spacing], [l=], [p1=], p=); // copies = line_copies([n=], [l=], [p1=], p=); // copies = line_copies([n=], [p1=], [p2=], p=); // copies = line_copies([spacing], [p1=], [p2=], p=); // Usage: Get Translation Matrices // mats = line_copies([spacing], [n], [p1=]); // mats = line_copies([spacing], [l=], [p1=]); // mats = line_copies([n=], [l=], [p1=]); // mats = line_copies([n=], [p1=], [p2=]); // mats = line_copies([spacing], [p1=], [p2=]); // // Topics: Transformations, Distributors, Copiers // // Description: // When called as a function, *without* a `p=` argument, returns a list of transformation matrices, one for each copy. // When called as a function, *with* a `p=` argument, returns a list of transformed copies of `p=`. // When called as a module, copies `children()` at one or more evenly spaced positions along a line. // By default, the line will be centered at the origin, unless the starting point `p1` is given. // The line will be pointed towards `RIGHT` (X+) unless otherwise given as a vector in `l`, // `spacing`, or `p1`/`p2`. The psotion of the copies is specified in one of several ways: // . // If You Know... | Then Use Something Like... // -------------------------------- | -------------------------------- // Spacing distance, Count | `line_copies(spacing=10, n=5) ...` or `line_copies(10, n=5) ...` // Spacing vector, Count | `line_copies(spacing=[10,5], n=5) ...` or `line_copies([10,5], n=5) ...` // Spacing distance, Line length | `line_copies(spacing=10, l=50) ...` or `line_copies(10, l=50) ...` // Spacing distance, Line vector | `line_copies(spacing=10, l=[50,30]) ...` or `line_copies(10, l=[50,30]) ...` // Spacing vector, Line length | `line_copies(spacing=[10,5], l=50) ...` or `line_copies([10,5], l=50) ...` // Line length, Count | `line_copies(l=50, n=5) ...` // Line vector, Count | `line_copies(l=[50,40], n=5) ...` // Line endpoints, Count | `line_copies(p1=[10,10], p2=[60,-10], n=5) ...` // Line endpoints, Spacing distance | `line_copies(p1=[10,10], p2=[60,-10], spacing=10) ...` // // Arguments: // spacing = Either the scalar spacing distance along the X+ direction, or the vector giving both the direction and spacing distance between each set of copies. // n = Number of copies to distribute along the line. (Default: 2) // --- // l = Either the scalar length of the line, or a vector giving both the direction and length of the line. // p1 = If given, specifies the starting point of the line. // p2 = If given with `p1`, specifies the ending point of line, and indirectly calculates the line length. // p = Either a point, pointlist, VNF or Bezier patch to be translated when used as a function. // // Side Effects: // `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually. // `$idx` is set to the index number of each child being copied. // // See Also: move_copies(), xcopies(), ycopies(), zcopies(), line_copies(), rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies() // // Examples: // line_copies(10) sphere(d=1.5); // line_copies(10, n=5) sphere(d=3); // line_copies([10,5], n=5) sphere(d=3); // line_copies(spacing=10, n=6) sphere(d=3); // line_copies(spacing=[10,5], n=6) sphere(d=3); // line_copies(spacing=10, l=50) sphere(d=3); // line_copies(spacing=10, l=[50,30]) sphere(d=3); // line_copies(spacing=[10,5], l=50) sphere(d=3); // line_copies(l=50, n=4) sphere(d=3); // line_copies(l=[50,-30], n=4) sphere(d=3); // Example(FlatSpin,VPD=133): // line_copies(p1=[0,0,0], p2=[5,5,20], n=6) cuboid([3,2,1]); // Example(FlatSpin,VPD=133): // line_copies(p1=[0,0,0], p2=[5,5,20], spacing=6) cuboid([3,2,1]); // Example: All children are copied to each position // line_copies(l=20, n=3) { // cube(size=[1,3,1],center=true); // cube(size=[3,1,1],center=true); // } // Example(2D): The functional form of line_copies() returns a list of transform matrices. // mats = line_copies([10,5],n=5); // for (m = mats) multmatrix(m) circle(d=3); // Example(2D): The functional form of line_copies() returns a list of points if given a point. // pts = line_copies([10,5],n=5,p=[0,0,0]); // move_copies(pts) circle(d=3); module line_of(spacing, n, l, p1, p2) { deprecate("line_copies"); line_copies(spacing, n, l, p1, p2) children(); } module line_copies(spacing, n, l, p1, p2) { req_children($children); pts = line_copies(spacing=spacing, n=n, l=l, p1=p1, p2=p2, p=[0,0,0]); for (i=idx(pts)) { $idx = i; $pos = pts[i]; translate($pos) children(); } } function line_copies(spacing, n, l, p1, p2, p=_NO_ARG) = assert(is_undef(spacing) || is_finite(spacing) || is_vector(spacing)) assert(is_undef(n) || is_finite(n)) assert(is_undef(l) || is_finite(l) || is_vector(l)) assert(is_undef(p1) || is_vector(p1)) assert(is_undef(p2) || is_vector(p2)) assert(is_undef(p2) || is_def(p1), "If p2 is given must also give p1") assert(is_undef(p2) || is_undef(l), "Cannot give both p2 and l") assert(is_undef(n) || num_defined([l,spacing,p2])==1,"If n is given then must give exactly one of 'l', 'spacing', or the 'p1'/'p2' pair") assert(is_def(n) || num_defined([l,spacing,p2])>=1,"If n is given then must give at least one of 'l', 'spacing', or the 'p1'/'p2' pair") let( ll = is_def(l)? scalar_vec3(l, 0) : is_def(spacing) && is_def(n)? (n-1) * scalar_vec3(spacing, 0) : is_def(p1) && is_def(p2)? point3d(p2-p1) : undef, cnt = is_def(n)? n : is_def(spacing) && is_def(ll) ? floor(norm(ll) / norm(scalar_vec3(spacing, 0)) + 1.000001) : 2, spc = cnt<=1? [0,0,0] : is_undef(spacing) && is_def(ll)? ll/(cnt-1) : is_num(spacing) && is_def(ll)? (ll/(cnt-1)) : scalar_vec3(spacing, 0) ) assert(!is_undef(cnt), "Need two of `spacing`, 'l', 'n', or `p1`/`p2` arguments in `line_copies()`.") let( spos = !is_undef(p1)? point3d(p1) : -(cnt-1)/2 * spc ) [for (i=[0:1:cnt-1]) translate(i * spc + spos, p=p)]; // Function&Module: grid_copies() // // Usage: // grid_copies(spacing, size=, [stagger=], [scale=], [inside=]) CHILDREN; // grid_copies(n=, size=, [stagger=], [scale=], [inside=]) CHILDREN; // grid_copies(spacing, [n], [stagger=], [scale=], [inside=]) CHILDREN; // grid_copies(n=, inside=, [stagger], [scale]) CHILDREN; // Usage: As a function to translate points, VNF, or Bezier patches // copies = grid_copies(spacing, size=, [stagger=], [scale=], [inside=], p=); // copies = grid_copies(n=, size=, [stagger=], [scale=], [inside=], p=); // copies = grid_copies(spacing, [n], [stagger=], [scale=], [inside=], p=); // copies = grid_copies(n=, inside=, [stagger], [scale], p=); // Usage: Get Translation Matrices // mats = grid_copies(spacing, size=, [stagger=], [scale=], [inside=]); // mats = grid_copies(n=, size=, [stagger=], [scale=], [inside=]); // mats = grid_copies(spacing, [n], [stagger=], [scale=], [inside=]); // mats = grid_copies(n=, inside=, [stagger], [scale]); // // Topics: Transformations, Distributors, Copiers // // Description: // When called as a module, makes a square or hexagonal grid of copies of children, with an optional masking polygon or region. // When called as a function, *without* a `p=` argument, returns a list of transformation matrices, one for each copy. // When called as a function, *with* a `p=` argument, returns a list of transformed copies of `p=`. // // Arguments: // spacing = Distance between copies in [X,Y] or scalar distance. // n = How many columns and rows of copies to make. Can be given as `[COLS,ROWS]`, or just as a scalar that specifies both. If staggered, count both staggered and unstaggered columns and rows. Default: 2 (3 if staggered) // size = The [X,Y] size to spread the copies over. // --- // stagger = If true, make a staggered (hexagonal) grid. If false, make square grid. If `"alt"`, makes alternate staggered pattern. Default: false // inside = If given a list of polygon points, or a region, only creates copies whose center would be inside the polygon or region. Polygon can be concave and/or self crossing. // nonzero = If inside is set to a polygon with self-crossings then use the nonzero method for deciding if points are in the polygon. Default: false // p = Either a point, pointlist, VNF or Bezier patch to be translated when used as a function. // // Side Effects: // `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually. // `$col` is set to the integer column number for each child. // `$row` is set to the integer row number for each child. // // See Also: move_copies(), xcopies(), ycopies(), zcopies(), line_copies(), rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies() // // Examples: // grid_copies(size=50, spacing=10) cylinder(d=10, h=1); // grid_copies(size=50, spacing=[10,15]) cylinder(d=10, h=1); // grid_copies(spacing=10, n=[13,7], stagger=true) cylinder(d=6, h=5); // grid_copies(spacing=10, n=[13,7], stagger="alt") cylinder(d=6, h=5); // grid_copies(size=50, n=11, stagger=true) cylinder(d=5, h=1); // // Example: // poly = [[-25,-25], [25,25], [-25,25], [25,-25]]; // grid_copies(spacing=5, stagger=true, inside=poly) // zrot(180/6) cylinder(d=5, h=1, $fn=6); // %polygon(poly); // // Example: Using `$row` and `$col` // grid_copies(spacing=8, n=8) // color(($row+$col)%2?"black":"red") // cube([8,8,0.01], center=false); // // Example: Makes a grid of hexagon pillars whose tops are all angled to reflect light at [0,0,50], if they were shiny. // hexregion = circle(r=50.01,$fn=6); // grid_copies(spacing=10, stagger=true, inside=hexregion) // union() { // Needed for OpenSCAD 2021.01 as noted above // ref_v = (unit([0,0,50]-point3d($pos)) + UP)/2; // half_of(v=-ref_v, cp=[0,0,5]) // zrot(180/6) // cylinder(h=20, d=10/cos(180/6)+0.01, $fn=6); // } module grid2d(spacing, n, size, stagger=false, inside=undef, nonzero) { deprecate("grid_copies"); grid_copies(spacing, n, size, stagger, inside, nonzero) children(); } module grid_copies(spacing, n, size, stagger=false, inside=undef, nonzero) { req_children($children); dummy = assert(in_list(stagger, [false, true, "alt"])); bounds = is_undef(inside)? undef : is_path(inside)? pointlist_bounds(inside) : assert(is_region(inside)) pointlist_bounds(flatten(inside)); nonzero = is_path(inside) ? default(nonzero,false) : assert(is_undef(nonzero), "nonzero only allowed if inside is a polygon") false; size = is_num(size)? [size, size] : is_vector(size)? assert(len(size)==2) size : bounds!=undef? [ for (i=[0:1]) 2*max(abs(bounds[0][i]),bounds[1][i]) ] : undef; spacing = is_num(spacing)? ( stagger!=false? polar_to_xy(spacing,60) : [spacing,spacing] ) : is_vector(spacing)? assert(len(spacing)==2) spacing : size!=undef? ( is_num(n)? v_div(size,(n-1)*[1,1]) : is_vector(n)? assert(len(n)==2) v_div(size,n-[1,1]) : v_div(size,(stagger==false? [1,1] : [2,2])) ) : undef; n = is_num(n)? [n,n] : is_vector(n)? assert(len(n)==2) n : size!=undef && spacing!=undef? v_floor(v_div(size,spacing))+[1,1] : [2,2]; offset = v_mul(spacing, n-[1,1])/2; if (stagger == false) { for (row = [0:1:n.y-1]) { for (col = [0:1:n.x-1]) { pos = v_mul([col,row],spacing) - offset; if ( is_undef(inside) || (is_path(inside) && point_in_polygon(pos, inside, nonzero=nonzero)>=0) || (is_region(inside) && point_in_region(pos, inside)>=0) ) { $col = col; $row = row; $pos = pos; translate(pos) children(); } } } } else { // stagger == true or stagger == "alt" staggermod = (stagger == "alt")? 1 : 0; cols1 = ceil(n.x/2); cols2 = n.x - cols1; for (row = [0:1:n.y-1]) { rowcols = ((row%2) == staggermod)? cols1 : cols2; if (rowcols > 0) { for (col = [0:1:rowcols-1]) { rowdx = (row%2 != staggermod)? spacing.x : 0; pos = v_mul([2*col,row],spacing) + [rowdx,0] - offset; if ( is_undef(inside) || (is_path(inside) && point_in_polygon(pos, inside, nonzero=nonzero)>=0) || (is_region(inside) && point_in_region(pos, inside)>=0) ) { $col = col * 2 + ((row%2!=staggermod)? 1 : 0); $row = row; $pos = pos; translate(pos) children(); } } } } } } function grid_copies(spacing, n, size, stagger=false, inside=undef, nonzero, p=_NO_ARG) = let( dummy = assert(in_list(stagger, [false, true, "alt"])), bounds = is_undef(inside)? undef : is_path(inside)? pointlist_bounds(inside) : assert(is_region(inside)) pointlist_bounds(flatten(inside)), nonzero = is_path(inside) ? default(nonzero,false) : assert(is_undef(nonzero), "nonzero only allowed if inside is a polygon") false, size = is_num(size)? [size, size] : is_vector(size)? assert(len(size)==2) size : bounds!=undef? [ for (i=[0:1]) 2*max(abs(bounds[0][i]),bounds[1][i]) ] : undef, spacing = is_num(spacing)? ( stagger!=false? polar_to_xy(spacing,60) : [spacing,spacing] ) : is_vector(spacing)? assert(len(spacing)==2) spacing : size!=undef? ( is_num(n)? v_div(size,(n-1)*[1,1]) : is_vector(n)? assert(len(n)==2) v_div(size,n-[1,1]) : v_div(size,(stagger==false? [1,1] : [2,2])) ) : undef, n = is_num(n)? [n,n] : is_vector(n)? assert(len(n)==2) n : size!=undef && spacing!=undef? v_floor(v_div(size,spacing))+[1,1] : [2,2], offset = v_mul(spacing, n-[1,1])/2, mats = stagger == false ? [ for (row = [0:1:n.y-1], col = [0:1:n.x-1]) let( pos = v_mul([col,row],spacing) - offset ) if ( is_undef(inside) || (is_path(inside) && point_in_polygon(pos, inside, nonzero=nonzero)>=0) || (is_region(inside) && point_in_region(pos, inside)>=0) ) translate(pos) ] : // stagger == true or stagger == "alt" let( staggermod = (stagger == "alt")? 1 : 0, cols1 = ceil(n.x/2), cols2 = n.x - cols1 ) [ for (row = [0:1:n.y-1]) let( rowcols = ((row%2) == staggermod)? cols1 : cols2 ) if (rowcols > 0) for (col = [0:1:rowcols-1]) let( rowdx = (row%2 != staggermod)? spacing.x : 0, pos = v_mul([2*col,row],spacing) + [rowdx,0] - offset ) if ( is_undef(inside) || (is_path(inside) && point_in_polygon(pos, inside, nonzero=nonzero)>=0) || (is_region(inside) && point_in_region(pos, inside)>=0) ) translate(pos) ] ) p==_NO_ARG? mats : [for (m = mats) apply(m, p)]; ////////////////////////////////////////////////////////////////////// // Section: Rotating copies of all children ////////////////////////////////////////////////////////////////////// // Function&Module: rot_copies() // // Usage: // rot_copies(rots, [cp=], [sa=], [delta=], [subrot=]) CHILDREN; // rot_copies(rots, v, [cp=], [sa=], [delta=], [subrot=]) CHILDREN; // rot_copies(n=, [v=], [cp=], [sa=], [delta=], [subrot=]) CHILDREN; // Usage: As a function to translate points, VNF, or Bezier patches // copies = rot_copies(rots, [cp=], [sa=], [delta=], [subrot=], p=); // copies = rot_copies(rots, v, [cp=], [sa=], [delta=], [subrot=], p=); // copies = rot_copies(n=, [v=], [cp=], [sa=], [delta=], [subrot=], p=); // Usage: Get Translation Matrices // mats = rot_copies(rots, [cp=], [sa=], [delta=], [subrot=]); // mats = rot_copies(rots, v, [cp=], [sa=], [delta=], [subrot=]); // mats = rot_copies(n=, [v=], [cp=], [sa=], [delta=], [subrot=]); // // Topics: Transformations, Distributors, Copiers // // Description: // When called as a module: // - Given a list of [X,Y,Z] rotation angles in `rots`, rotates copies of the children to each of those angles, regardless of axis of rotation. // - Given a list of scalar angles in `rots`, rotates copies of the children to each of those angles around the axis of rotation. // - If given a vector `v`, that becomes the axis of rotation. Default axis of rotation is UP. // - If given a count `n`, makes that many copies, rotated evenly around the axis. // - If given an offset `delta`, translates each child by that amount before rotating them into place. This makes rings. // - If given a centerpoint `cp`, centers the ring around that centerpoint. // - If `subrot` is true, each child will be rotated in place to keep the same size towards the center when making rings. // - The first (unrotated) copy will be placed at the relative starting angle `sa`. // When called as a function, *without* a `p=` argument, returns a list of transformation matrices, one for each copy. // When called as a function, *with* a `p=` argument, returns a list of transformed copies of `p=`. // // Arguments: // rots = A list of [X,Y,Z] rotation angles in degrees. If `v` is given, this will be a list of scalar angles in degrees to rotate around `v`. // v = If given, this is the vector of the axis to rotate around. // cp = Centerpoint to rotate around. Default: `[0,0,0]` // --- // n = Optional number of evenly distributed copies, rotated around the axis. // sa = Starting angle, in degrees. For use with `n`. Angle is in degrees counter-clockwise. Default: 0 // delta = [X,Y,Z] amount to move away from cp before rotating. Makes rings of copies. Default: `[0,0,0]` // subrot = If false, don't sub-rotate children as they are copied around the ring. Only makes sense when used with `delta`. Default: `true` // p = Either a point, pointlist, VNF or Bezier patch to be translated when used as a function. // // Side Effects: // `$ang` is set to the rotation angle (or XYZ rotation triplet) of each child copy, and can be used to modify each child individually. // `$idx` is set to the index value of each child copy. // `$axis` is set to the axis to rotate around, if `rots` was given as a list of angles instead of a list of [X,Y,Z] rotation angles. // // See Also: move_copies(), xcopies(), ycopies(), zcopies(), line_copies(), rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies() // // Example: // #cylinder(h=20, r1=5, r2=0); // rot_copies([[45,0,0],[0,45,90],[90,-45,270]]) cylinder(h=20, r1=5, r2=0); // // Example: // rot_copies([45, 90, 135], v=DOWN+BACK) // yrot(90) cylinder(h=20, r1=5, r2=0); // color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0); // // Example: // rot_copies(n=6, v=DOWN+BACK) // yrot(90) cylinder(h=20, r1=5, r2=0); // color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0); // // Example: // rot_copies(n=6, v=DOWN+BACK, delta=[10,0,0]) // yrot(90) cylinder(h=20, r1=5, r2=0); // color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0); // // Example: // rot_copies(n=6, v=UP+FWD, delta=[10,0,0], sa=45) // yrot(90) cylinder(h=20, r1=5, r2=0); // color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0); // // Example: // rot_copies(n=6, v=DOWN+BACK, delta=[20,0,0], subrot=false) // yrot(90) cylinder(h=20, r1=5, r2=0); // color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0); module rot_copies(rots=[], v=undef, cp=[0,0,0], n, sa=0, offset=0, delta=[0,0,0], subrot=true) { req_children($children); sang = sa + offset; angs = !is_undef(n)? (n<=0? [] : [for (i=[0:1:n-1]) i/n*360+sang]) : rots==[]? [] : assert(!is_string(rots), "Argument rots must be an angle, a list of angles, or a range of angles.") assert(!is_undef(rots[0]), "Argument rots must be an angle, a list of angles, or a range of angles.") [for (a=rots) a]; for ($idx = idx(angs)) { $ang = angs[$idx]; $axis = v; translate(cp) { rotate(a=$ang, v=v) { translate(delta) { rot(a=(subrot? sang : $ang), v=v, reverse=true) { translate(-cp) { children(); } } } } } } } function rot_copies(rots=[], v, cp=[0,0,0], n, sa=0, offset=0, delta=[0,0,0], subrot=true, p=_NO_ARG) = let( sang = sa + offset, angs = !is_undef(n)? (n<=0? [] : [for (i=[0:1:n-1]) i/n*360+sang]) : rots==[]? [] : assert(!is_string(rots), "Argument rots must be an angle, a list of angles, or a range of angles.") assert(!is_undef(rots[0]), "Argument rots must be an angle, a list of angles, or a range of angles.") [for (a=rots) a], mats = [ for (ang = angs) translate(cp) * rot(a=ang, v=v) * translate(delta) * rot(a=(subrot? sang : ang), v=v, reverse=true) * translate(-cp) ] ) p==_NO_ARG? mats : [for (m = mats) apply(m, p)]; // Function&Module: xrot_copies() // // Usage: // xrot_copies(rots, [cp], [r=|d=], [sa=], [subrot=]) CHILDREN; // xrot_copies(n=, [cp=], [r=|d=], [sa=], [subrot=]) CHILDREN; // Usage: As a function to translate points, VNF, or Bezier patches // copies = xrot_copies(rots, [cp], [r=|d=], [sa=], [subrot=], p=); // copies = xrot_copies(n=, [cp=], [r=|d=], [sa=], [subrot=], p=); // Usage: Get Translation Matrices // mats = xrot_copies(rots, [cp], [r=|d=], [sa=], [subrot=]); // mats = xrot_copies(n=, [cp=], [r=|d=], [sa=], [subrot=]); // // Topics: Transformations, Distributors, Copiers // // Description: // When called as a module: // - Given an array of angles, rotates copies of the children to each of those angles around the X axis. // - If given a count `n`, makes that many copies, rotated evenly around the X axis. // - If given a radius `r` (or diameter `d`), distributes children around a ring of that size around the X axis. // - If given a centerpoint `cp`, centers the rotation around that centerpoint. // - If `subrot` is true, each child will be rotated in place to keep the same size towards the center when making rings. // - The first (unrotated) copy will be placed at the relative starting angle `sa`. // When called as a function, *without* a `p=` argument, returns a list of transformation matrices, one for each copy. // When called as a function, *with* a `p=` argument, returns a list of transformed copies of `p=`. // // Arguments: // rots = Optional array of rotation angles, in degrees, to make copies at. // cp = Centerpoint to rotate around. // --- // n = Optional number of evenly distributed copies to be rotated around the ring. // sa = Starting angle, in degrees. For use with `n`. Angle is in degrees counter-clockwise from Y+, when facing the origin from X+. First unrotated copy is placed at that angle. // r = If given, makes a ring of child copies around the X axis, at the given radius. Default: 0 // d = If given, makes a ring of child copies around the X axis, at the given diameter. // subrot = If false, don't sub-rotate children as they are copied around the ring. // p = Either a point, pointlist, VNF or Bezier patch to be translated when used as a function. // // Side Effects: // `$idx` is set to the index value of each child copy. // `$ang` is set to the rotation angle of each child copy, and can be used to modify each child individually. // `$axis` is set to the axis vector rotated around. // // See Also: move_copies(), xcopies(), ycopies(), zcopies(), line_copies(), rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies() // // Example: // xrot_copies([180, 270, 315]) // cylinder(h=20, r1=5, r2=0); // color("red",0.333) cylinder(h=20, r1=5, r2=0); // // Example: // xrot_copies(n=6) // cylinder(h=20, r1=5, r2=0); // color("red",0.333) cylinder(h=20, r1=5, r2=0); // // Example: // xrot_copies(n=6, r=10) // xrot(-90) cylinder(h=20, r1=5, r2=0); // color("red",0.333) xrot(-90) cylinder(h=20, r1=5, r2=0); // // Example: // xrot_copies(n=6, r=10, sa=45) // xrot(-90) cylinder(h=20, r1=5, r2=0); // color("red",0.333) xrot(-90) cylinder(h=20, r1=5, r2=0); // // Example: // xrot_copies(n=6, r=20, subrot=false) // xrot(-90) cylinder(h=20, r1=5, r2=0, center=true); // color("red",0.333) xrot(-90) cylinder(h=20, r1=5, r2=0, center=true); module xrot_copies(rots=[], cp=[0,0,0], n, sa=0, r, d, subrot=true) { req_children($children); r = get_radius(r=r, d=d, dflt=0); rot_copies(rots=rots, v=RIGHT, cp=cp, n=n, sa=sa, delta=[0, r, 0], subrot=subrot) children(); } function xrot_copies(rots=[], cp=[0,0,0], n, sa=0, r, d, subrot=true, p=_NO_ARG) = let( r = get_radius(r=r, d=d, dflt=0) ) rot_copies(rots=rots, v=RIGHT, cp=cp, n=n, sa=sa, delta=[0, r, 0], subrot=subrot, p=p); // Function&Module: yrot_copies() // // Usage: // yrot_copies(rots, [cp], [r=|d=], [sa=], [subrot=]) CHILDREN; // yrot_copies(n=, [cp=], [r=|d=], [sa=], [subrot=]) CHILDREN; // Usage: As a function to translate points, VNF, or Bezier patches // copies = yrot_copies(rots, [cp], [r=|d=], [sa=], [subrot=], p=); // copies = yrot_copies(n=, [cp=], [r=|d=], [sa=], [subrot=], p=); // Usage: Get Translation Matrices // mats = yrot_copies(rots, [cp], [r=|d=], [sa=], [subrot=]); // mats = yrot_copies(n=, [cp=], [r=|d=], [sa=], [subrot=]); // // Topics: Transformations, Distributors, Copiers // // Description: // When called as a module: // - Given an array of angles, rotates copies of the children to each of those angles around the Y axis. // - If given a count `n`, makes that many copies, rotated evenly around the Y axis. // - If given a radius `r` (or diameter `d`), distributes children around a ring of that size around the Y axis. // - If given a centerpoint `cp`, centers the rotation around that centerpoint. // - If `subrot` is true, each child will be rotated in place to keep the same size towards the center when making rings. // - The first (unrotated) copy will be placed at the relative starting angle `sa`. // When called as a function, *without* a `p=` argument, returns a list of transformation matrices, one for each copy. // When called as a function, *with* a `p=` argument, returns a list of transformed copies of `p=`. // // Arguments: // rots = Optional array of rotation angles, in degrees, to make copies at. // cp = Centerpoint to rotate around. // --- // n = Optional number of evenly distributed copies to be rotated around the ring. // sa = Starting angle, in degrees. For use with `n`. Angle is in degrees counter-clockwise from X-, when facing the origin from Y+. // r = If given, makes a ring of child copies around the Y axis, at the given radius. Default: 0 // d = If given, makes a ring of child copies around the Y axis, at the given diameter. // subrot = If false, don't sub-rotate children as they are copied around the ring. // p = Either a point, pointlist, VNF or Bezier patch to be translated when used as a function. // // Side Effects: // `$idx` is set to the index value of each child copy. // `$ang` is set to the rotation angle of each child copy, and can be used to modify each child individually. // `$axis` is set to the axis vector rotated around. // // See Also: move_copies(), xcopies(), ycopies(), zcopies(), line_copies(), rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies() // // Example: // yrot_copies([180, 270, 315]) // cylinder(h=20, r1=5, r2=0); // color("red",0.333) cylinder(h=20, r1=5, r2=0); // // Example: // yrot_copies(n=6) // cylinder(h=20, r1=5, r2=0); // color("red",0.333) cylinder(h=20, r1=5, r2=0); // // Example: // yrot_copies(n=6, r=10) // yrot(-90) cylinder(h=20, r1=5, r2=0); // color("red",0.333) yrot(-90) cylinder(h=20, r1=5, r2=0); // // Example: // yrot_copies(n=6, r=10, sa=45) // yrot(-90) cylinder(h=20, r1=5, r2=0); // color("red",0.333) yrot(-90) cylinder(h=20, r1=5, r2=0); // // Example: // yrot_copies(n=6, r=20, subrot=false) // yrot(-90) cylinder(h=20, r1=5, r2=0, center=true); // color("red",0.333) yrot(-90) cylinder(h=20, r1=5, r2=0, center=true); module yrot_copies(rots=[], cp=[0,0,0], n, sa=0, r, d, subrot=true) { req_children($children); r = get_radius(r=r, d=d, dflt=0); rot_copies(rots=rots, v=BACK, cp=cp, n=n, sa=sa, delta=[-r, 0, 0], subrot=subrot) children(); } function yrot_copies(rots=[], cp=[0,0,0], n, sa=0, r, d, subrot=true, p=_NO_ARG) = let( r = get_radius(r=r, d=d, dflt=0) ) rot_copies(rots=rots, v=BACK, cp=cp, n=n, sa=sa, delta=[-r, 0, 0], subrot=subrot, p=p); // Function&Module: zrot_copies() // // Usage: // zrot_copies(rots, [cp], [r=|d=], [sa=], [subrot=]) CHILDREN; // zrot_copies(n=, [cp=], [r=|d=], [sa=], [subrot=]) CHILDREN; // Usage: As a function to translate points, VNF, or Bezier patches // copies = zrot_copies(rots, [cp], [r=|d=], [sa=], [subrot=], p=); // copies = zrot_copies(n=, [cp=], [r=|d=], [sa=], [subrot=], p=); // Usage: Get Translation Matrices // mats = zrot_copies(rots, [cp], [r=|d=], [sa=], [subrot=]); // mats = zrot_copies(n=, [cp=], [r=|d=], [sa=], [subrot=]); // // Topics: Transformations, Distributors, Copiers // // Description: // When called as a module: // - Given an array of angles, rotates copies of the children to each of those angles around the Z axis. // - If given a count `n`, makes that many copies, rotated evenly around the Z axis. // - If given a radius `r` (or diameter `d`), distributes children around a ring of that size around the Z axis. // - If given a centerpoint `cp`, centers the rotation around that centerpoint. // - If `subrot` is true, each child will be rotated in place to keep the same size towards the center when making rings. // - The first (unrotated) copy will be placed at the relative starting angle `sa`. // When called as a function, *without* a `p=` argument, returns a list of transformation matrices, one for each copy. // When called as a function, *with* a `p=` argument, returns a list of transformed copies of `p=`. // // Arguments: // rots = Optional array of rotation angles, in degrees, to make copies at. // cp = Centerpoint to rotate around. Default: [0,0,0] // --- // n = Optional number of evenly distributed copies to be rotated around the ring. // sa = Starting angle, in degrees. For use with `n`. Angle is in degrees counter-clockwise from X+, when facing the origin from Z+. Default: 0 // r = If given, makes a ring of child copies around the Z axis, at the given radius. Default: 0 // d = If given, makes a ring of child copies around the Z axis, at the given diameter. // subrot = If false, don't sub-rotate children as they are copied around the ring. Default: true // p = Either a point, pointlist, VNF or Bezier patch to be translated when used as a function. // // Side Effects: // `$idx` is set to the index value of each child copy. // `$ang` is set to the rotation angle of each child copy, and can be used to modify each child individually. // `$axis` is set to the axis vector rotated around. // // See Also: move_copies(), xcopies(), ycopies(), zcopies(), line_copies(), rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies() // // Example: // zrot_copies([180, 270, 315]) // yrot(90) cylinder(h=20, r1=5, r2=0); // color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0); // // Example: // zrot_copies(n=6) // yrot(90) cylinder(h=20, r1=5, r2=0); // color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0); // // Example: // zrot_copies(n=6, r=10) // yrot(90) cylinder(h=20, r1=5, r2=0); // color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0); // // Example: // zrot_copies(n=6, r=20, sa=45) // yrot(90) cylinder(h=20, r1=5, r2=0, center=true); // color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0, center=true); // // Example: // zrot_copies(n=6, r=20, subrot=false) // yrot(-90) cylinder(h=20, r1=5, r2=0, center=true); // color("red",0.333) yrot(-90) cylinder(h=20, r1=5, r2=0, center=true); module zrot_copies(rots=[], cp=[0,0,0], n, sa=0, r, d, subrot=true) { r = get_radius(r=r, d=d, dflt=0); rot_copies(rots=rots, v=UP, cp=cp, n=n, sa=sa, delta=[r, 0, 0], subrot=subrot) children(); } function zrot_copies(rots=[], cp=[0,0,0], n, sa=0, r, d, subrot=true, p=_NO_ARG) = let( r = get_radius(r=r, d=d, dflt=0) ) rot_copies(rots=rots, v=UP, cp=cp, n=n, sa=sa, delta=[r, 0, 0], subrot=subrot, p=p); // Function&Module: arc_copies() // // Usage: // arc_copies(n, r|d=, [sa=], [ea=], [rot=]) CHILDREN; // arc_copies(n, rx=|dx=, ry=|dy=, [sa=], [ea=], [rot=]) CHILDREN; // Usage: As a function to translate points, VNF, or Bezier patches // copies = arc_copies(n, r|d=, [sa=], [ea=], [rot=], p=); // copies = arc_copies(n, rx=|dx=, ry=|dy=, [sa=], [ea=], [rot=], p=); // Usage: Get Translation Matrices // mats = arc_copies(n, r|d=, [sa=], [ea=], [rot=]); // mats = arc_copies(n, rx=|dx=, ry=|dy=, [sa=], [ea=], [rot=]); // // Topics: Transformations, Distributors, Copiers // // Description: // When called as a module, evenly distributes n duplicate children around an ovoid arc on the XY plane. // When called as a function, *without* a `p=` argument, returns a list of transformation matrices, one for each copy. // When called as a function, *with* a `p=` argument, returns a list of transformed copies of `p=`. // // Arguments: // n = number of copies to distribute around the circle. (Default: 6) // r = radius of circle (Default: 1) // --- // rx = radius of ellipse on X axis. Used instead of r. // ry = radius of ellipse on Y axis. Used instead of r. // d = diameter of circle. (Default: 2) // dx = diameter of ellipse on X axis. Used instead of d. // dy = diameter of ellipse on Y axis. Used instead of d. // rot = whether to rotate the copied children. (Default: true) // sa = starting angle. (Default: 0.0) // ea = ending angle. Will distribute copies CCW from sa to ea. (Default: 360.0) // p = Either a point, pointlist, VNF or Bezier patch to be translated when used as a function. // // Side Effects: // `$ang` is set to the rotation angle of each child copy, and can be used to modify each child individually. // `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually. // `$idx` is set to the index value of each child copy. // // See Also: move_copies(), xcopies(), ycopies(), zcopies(), line_copies(), rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies() // // Example: // #cube(size=[10,3,3],center=true); // arc_copies(d=40, n=5) cube(size=[10,3,3],center=true); // // Example: // #cube(size=[10,3,3],center=true); // arc_copies(d=40, n=5, sa=45, ea=225) cube(size=[10,3,3],center=true); // // Example: // #cube(size=[10,3,3],center=true); // arc_copies(r=15, n=8, rot=false) cube(size=[10,3,3],center=true); // // Example: // #cube(size=[10,3,3],center=true); // arc_copies(rx=20, ry=10, n=8) cube(size=[10,3,3],center=true); // Example(2D): Using `$idx` to alternate shapes // arc_copies(r=50, n=19, sa=0, ea=180) // if ($idx % 2 == 0) rect(6); // else circle(d=6); module arc_of(n=6,r,rx,ry,d,dx,dy,sa=0,ea=360,rot=true){ deprecate("arc_copies"); arc_copies(n,r,rx,ry,d,dx,dy,sa,ea,rot) children(); } module arc_copies( n=6, r=undef, rx=undef, ry=undef, d=undef, dx=undef, dy=undef, sa=0, ea=360, rot=true ) { req_children($children); rx = get_radius(r1=rx, r=r, d1=dx, d=d, dflt=1); ry = get_radius(r1=ry, r=r, d1=dy, d=d, dflt=1); sa = posmod(sa, 360); ea = posmod(ea, 360); n = (abs(ea-sa)<0.01)?(n+1):n; delt = (((ea<=sa)?360.0:0)+ea-sa)/(n-1); for ($idx = [0:1:n-1]) { $ang = sa + ($idx * delt); $pos =[rx*cos($ang), ry*sin($ang), 0]; translate($pos) { zrot(rot? atan2(ry*sin($ang), rx*cos($ang)) : 0) { children(); } } } } function arc_copies( n=6, r=undef, rx=undef, ry=undef, d=undef, dx=undef, dy=undef, sa=0, ea=360, rot=true, p=_NO_ARG ) = let( rx = get_radius(r1=rx, r=r, d1=dx, d=d, dflt=1), ry = get_radius(r1=ry, r=r, d1=dy, d=d, dflt=1), sa = posmod(sa, 360), ea = posmod(ea, 360), n = (abs(ea-sa)<0.01)?(n+1):n, delt = (((ea<=sa)?360.0:0)+ea-sa)/(n-1), mats = [ for (i = [0:1:n-1]) let( ang = sa + (i * delt), pos =[rx*cos(ang), ry*sin(ang), 0], ang2 = rot? atan2(ry*sin(ang), rx*cos(ang)) : 0 ) translate(pos) * zrot(ang2) ] ) p==_NO_ARG? mats : [for (m = mats) apply(m, p)]; // Function&Module: sphere_copies() // // Usage: // sphere_copies(n, r|d=, [cone_ang=], [scale=], [perp=]) CHILDREN; // Usage: As a function to translate points, VNF, or Bezier patches // copies = sphere_copies(n, r|d=, [cone_ang=], [scale=], [perp=], p=); // Usage: Get Translation Matrices // mats = sphere_copies(n, r|d=, [cone_ang=], [scale=], [perp=]); // // Topics: Transformations, Distributors, Copiers // // Description: // When called as a module, spreads children semi-evenly over the surface of a sphere or ellipsoid. // When called as a function, *without* a `p=` argument, returns a list of transformation matrices, one for each copy. // When called as a function, *with* a `p=` argument, returns a list of transformed copies of `p=`. // // Arguments: // n = How many copies to evenly spread over the surface. // r = Radius of the sphere to distribute over // --- // d = Diameter of the sphere to distribute over // cone_ang = Angle of the cone, in degrees, to limit how much of the sphere gets covered. For full sphere coverage, use 180. Measured pre-scaling. Default: 180 // scale = The [X,Y,Z] scaling factors to reshape the sphere being covered. // perp = If true, rotate children to be perpendicular to the sphere surface. Default: true // p = Either a point, pointlist, VNF or Bezier patch to be translated when used as a function. // // Side Effects: // `$pos` is set to the relative post-scaled centerpoint of each child copy, and can be used to modify each child individually. // `$theta` is set to the theta angle of the child from the center of the sphere. // `$phi` is set to the pre-scaled phi angle of the child from the center of the sphere. // `$rad` is set to the pre-scaled radial distance of the child from the center of the sphere. // `$idx` is set to the index number of each child being copied. // // See Also: move_copies(), xcopies(), ycopies(), zcopies(), line_copies(), rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies() // // Example: // sphere_copies(n=250, d=100, cone_ang=45, scale=[3,3,1]) // cylinder(d=10, h=10, center=false); // // Example: // sphere_copies(n=500, d=100, cone_ang=180) // color(unit(point3d(v_abs($pos)))) // cylinder(d=8, h=10, center=false); module ovoid_spread(n=100, r=undef, d=undef, cone_ang=90, scale=[1,1,1], perp=true) { deprecate("sphere_copies"); sphere_copies(n,r,d,cone_ang,scale,perp) children(); } module sphere_copies(n=100, r=undef, d=undef, cone_ang=90, scale=[1,1,1], perp=true) { req_children($children); r = get_radius(r=r, d=d, dflt=50); cnt = ceil(n / (cone_ang/180)); // Calculate an array of [theta,phi] angles for `n` number of // points, almost evenly spaced across the surface of a sphere. // This approximation is based on the golden spiral method. theta_phis = [for (x=[0:1:n-1]) [180*(1+sqrt(5))*(x+0.5)%360, acos(1-2*(x+0.5)/cnt)]]; for ($idx = idx(theta_phis)) { tp = theta_phis[$idx]; xyz = spherical_to_xyz(r, tp[0], tp[1]); $pos = v_mul(xyz,point3d(scale,1)); $theta = tp[0]; $phi = tp[1]; $rad = r; translate($pos) { if (perp) { rot(from=UP, to=xyz) children(); } else { children(); } } } } function sphere_copies(n=100, r=undef, d=undef, cone_ang=90, scale=[1,1,1], perp=true, p=_NO_ARG) = let( r = get_radius(r=r, d=d, dflt=50), cnt = ceil(n / (cone_ang/180)), // Calculate an array of [theta,phi] angles for `n` number of // points, almost evenly spaced across the surface of a sphere. // This approximation is based on the golden spiral method. theta_phis = [for (x=[0:1:n-1]) [180*(1+sqrt(5))*(x+0.5)%360, acos(1-2*(x+0.5)/cnt)]], mats = [ for (tp = theta_phis) let( xyz = spherical_to_xyz(r, tp[0], tp[1]), pos = v_mul(xyz,point3d(scale,1)) ) translate(pos) * (perp? rot(from=UP, to=xyz) : ident(4)) ] ) p==_NO_ARG? mats : [for (m = mats) apply(m, p)]; // Section: Placing copies of all children on a path // Function&Module: path_copies() // // Usage: Uniformly distribute copies // path_copies(path, [n], [spacing], [sp], [rotate_children], [closed=]) CHILDREN; // Usage: Place copies at specified locations // path_copies(path, dist=, [rotate_children=], [closed=]) CHILDREN; // Usage: As a function to translate points, VNF, or Bezier patches // copies = path_copies(path, [n], [spacing], [sp], [rotate_children], [closed=], p=); // copies = path_copies(path, dist=, [rotate_children=], [closed=], p=); // Usage: Get Translation Matrices // mats = path_copies(path, [n], [spacing], [sp], [rotate_children], [closed=]); // mats = path_copies(path, dist=, [rotate_children=], [closed=]); // // Topics: Transformations, Distributors, Copiers // // Description: // When called as a module: // - Place copies all of the children at points along the path based on path length. You can specify `dist` as // - a scalar or distance list and the children will be placed at the specified distances from the start of the path. Otherwise the children are // - placed at uniformly spaced points along the path. If you specify `n` but not `spacing` then `n` copies will be placed // - with one at path[0] if `closed` is true, or spanning the entire path from start to end if `closed` is false. // - If you specify `spacing` but not `n` then copies will spread out starting from one set at path[0] for `closed=true` or at the path center for open paths. // - If you specify `sp` then the copies will start at distance `sp` from the start of the path. // When called as a function, *without* a `p=` argument, returns a list of transformation matrices, one for each copy. // When called as a function, *with* a `p=` argument, returns a list of transformed copies of `p=`. // // Arguments: // path = path or 1-region where children are placed // n = number of copies // spacing = space between copies // sp = if given, copies will start distance sp from the path start and spread beyond that point // rotate_children = if true, rotate children to line up with curve normal. Default: true // --- // dist = Specify a list of distances to determine placement of children. // closed = If true treat path as a closed curve. Default: false // p = Either a point, pointlist, VNF or Bezier patch to be translated when used as a function. // // Side Effects: // `$pos` is set to the center of each copy // `$idx` is set to the index number of each copy. In the case of closed paths the first copy is at `path[0]` unless you give `sp`. // `$dir` is set to the direction vector of the path at the point where the copy is placed. // `$normal` is set to the direction of the normal vector to the path direction that is coplanar with the path at this point // // See Also: move_copies(), xcopies(), ycopies(), zcopies(), line_copies(), rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies() // // Example(2D): // spiral = [for(theta=[0:360*8]) theta * [cos(theta), sin(theta)]]/100; // stroke(spiral,width=.25); // color("red") path_copies(spiral, n=100) circle(r=1); // Example(2D): // circle = regular_ngon(n=64, or=10); // stroke(circle,width=1,closed=true); // color("green") path_copies(circle, n=7, closed=true) circle(r=1+$idx/3); // Example(2D): // heptagon = regular_ngon(n=7, or=10); // stroke(heptagon, width=1, closed=true); // color("purple") path_copies(heptagon, n=9, closed=true) rect([0.5,3],anchor=FRONT); // Example(2D): Direction at the corners is the average of the two adjacent edges // heptagon = regular_ngon(n=7, or=10); // stroke(heptagon, width=1, closed=true); // color("purple") path_copies(heptagon, n=7, closed=true) rect([0.5,3],anchor=FRONT); // Example(2D): Don't rotate the children // heptagon = regular_ngon(n=7, or=10); // stroke(heptagon, width=1, closed=true); // color("red") path_copies(heptagon, n=9, closed=true, rotate_children=false) rect([0.5,3],anchor=FRONT); // Example(2D): Open path, specify `n` // sinwav = [for(theta=[0:360]) 5*[theta/180, sin(theta)]]; // stroke(sinwav,width=.1); // color("red") path_copies(sinwav, n=5) rect([.2,1.5],anchor=FRONT); // Example(2D): Open path, specify `n` and `spacing` // sinwav = [for(theta=[0:360]) 5*[theta/180, sin(theta)]]; // stroke(sinwav,width=.1); // color("red") path_copies(sinwav, n=5, spacing=1) rect([.2,1.5],anchor=FRONT); // Example(2D): Closed path, specify `n` and `spacing`, copies centered around circle[0] // circle = regular_ngon(n=64,or=10); // stroke(circle,width=.1,closed=true); // color("red") path_copies(circle, n=10, spacing=1, closed=true) rect([.2,1.5],anchor=FRONT); // Example(2D): Open path, specify `spacing` // sinwav = [for(theta=[0:360]) 5*[theta/180, sin(theta)]]; // stroke(sinwav,width=.1); // color("red") path_copies(sinwav, spacing=5) rect([.2,1.5],anchor=FRONT); // Example(2D): Open path, specify `sp` // sinwav = [for(theta=[0:360]) 5*[theta/180, sin(theta)]]; // stroke(sinwav,width=.1); // color("red") path_copies(sinwav, n=5, sp=18) rect([.2,1.5],anchor=FRONT); // Example(2D): Open path, specify `dist` // sinwav = [for(theta=[0:360]) 5*[theta/180, sin(theta)]]; // stroke(sinwav,width=.1); // color("red") path_copies(sinwav, dist=[1,4,9,16]) rect([.2,1.5],anchor=FRONT); // Example(2D): // wedge = arc(angle=[0,100], r=10, $fn=64); // difference(){ // polygon(concat([[0,0]],wedge)); // path_copies(wedge,n=5,spacing=3) fwd(.1) rect([1,4],anchor=FRONT); // } // Example(Spin,VPD=115): 3d example, with children rotated into the plane of the path // tilted_circle = lift_plane([[0,0,0], [5,0,5], [0,2,3]],regular_ngon(n=64, or=12)); // path_sweep(regular_ngon(n=16,or=.1),tilted_circle); // path_copies(tilted_circle, n=15,closed=true) { // color("blue") cyl(h=3,r=.2, anchor=BOTTOM); // z-aligned cylinder // color("red") xcyl(h=10,r=.2, anchor=FRONT+LEFT); // x-aligned cylinder // } // Example(Spin,VPD=115): 3d example, with rotate_children set to false // tilted_circle = lift_plane([[0,0,0], [5,0,5], [0,2,3]], regular_ngon(n=64, or=12)); // path_sweep(regular_ngon(n=16,or=.1),tilted_circle); // path_copies(tilted_circle, n=25,rotate_children=false,closed=true) { // color("blue") cyl(h=3,r=.2, anchor=BOTTOM); // z-aligned cylinder // color("red") xcyl(h=10,r=.2, anchor=FRONT+LEFT); // x-aligned cylinder // } module path_spread(path, n, spacing, sp=undef, rotate_children=true, dist, closed){ deprecate("path_copes"); path_copies(path,n,spacing,sp,dist,rotate_children,dist, closed) children(); } module path_copies(path, n, spacing, sp=undef, dist, rotate_children=true, dist, closed) { req_children($children); is_1reg = is_1region(path); path = is_1reg ? path[0] : path; closed = default(closed, is_1reg); length = path_length(path,closed); distind = is_def(dist) ? sortidx(dist) : undef; distances = is_def(dist) ? assert(is_undef(n) && is_undef(spacing) && is_undef(sp), "Can't use n, spacing or undef with dist") select(dist,distind) : is_def(sp)? ( // Start point given is_def(n) && is_def(spacing)? count(n,sp,spacing) : is_def(n)? lerpn(sp, length, n) : list([sp:spacing:length]) ) : is_def(n) && is_undef(spacing)? lerpn(0,length,n,!closed) // N alone given : ( // No start point and spacing is given, N maybe given let( n = is_def(n)? n : floor(length/spacing)+(closed?0:1), ptlist = count(n,0,spacing), listcenter = mean(ptlist) ) closed? sort([for(entry=ptlist) posmod(entry-listcenter,length)]) : [for(entry=ptlist) entry + length/2-listcenter ] ); distOK = min(distances)>=0 && max(distances)<=length; dummy = assert(distOK,"Cannot fit all of the copies"); cutlist = path_cut_points(path, distances, closed, direction=true); planar = len(path[0])==2; for(i=[0:1:len(cutlist)-1]) { $pos = cutlist[i][0]; $idx = is_def(dist) ? distind[i] : i; $dir = rotate_children ? (planar?[1,0]:[1,0,0]) : cutlist[i][2]; $normal = rotate_children? (planar?[0,1]:[0,0,1]) : cutlist[i][3]; translate($pos) { if (rotate_children) { if(planar) { rot(from=[0,1],to=cutlist[i][3]) children(); } else { frame_map(x=cutlist[i][2], z=cutlist[i][3]) children(); } } else { children(); } } } } function path_copies(path, n, spacing, sp=undef, dist, rotate_children=true, dist, closed, p=_NO_ARG) = let( is_1reg = is_1region(path), path = is_1reg ? path[0] : path, closed = default(closed, is_1reg), length = path_length(path,closed), distind = is_def(dist) ? sortidx(dist) : undef, distances = is_def(dist) ? assert(is_undef(n) && is_undef(spacing) && is_undef(sp), "Can't use n, spacing or undef with dist") select(dist,distind) : is_def(sp)? ( // Start point given is_def(n) && is_def(spacing)? count(n,sp,spacing) : is_def(n)? lerpn(sp, length, n) : list([sp:spacing:length]) ) : is_def(n) && is_undef(spacing)? lerpn(0,length,n,!closed) // N alone given : ( // No start point and spacing is given, N maybe given let( n = is_def(n)? n : floor(length/spacing)+(closed?0:1), ptlist = count(n,0,spacing), listcenter = mean(ptlist) ) closed? sort([for(entry=ptlist) posmod(entry-listcenter,length)]) : [for(entry=ptlist) entry + length/2-listcenter ] ), distOK = min(distances)>=0 && max(distances)<=length, dummy = assert(distOK,"Cannot fit all of the copies"), cutlist = path_cut_points(path, distances, closed, direction=true), planar = len(path[0])==2, mats = [ for(i=[0:1:len(cutlist)-1]) translate(cutlist[i][0]) * ( !rotate_children? ident(4) : planar? rot(from=[0,1],to=cutlist[i][3]) : frame_map(x=cutlist[i][2], z=cutlist[i][3]) ) ] ) p==_NO_ARG? mats : [for (m = mats) apply(m, p)]; ////////////////////////////////////////////////////////////////////// // Section: Making a copy of all children with reflection ////////////////////////////////////////////////////////////////////// // Function&Module: xflip_copy() // // Usage: // xflip_copy([offset], [x]) CHILDREN; // Usage: As a function to translate points, VNF, or Bezier patches // copies = xflip_copy([offset], [x], p=); // Usage: Get Translation Matrices // mats = xflip_copy([offset], [x]); // // Topics: Transformations, Distributors, Copiers // // Description: // When called as a module, makes a copy of the children, mirrored across the X axis. // When called as a function, *without* a `p=` argument, returns a list of transformation matrices, one for each copy. // When called as a function, *with* a `p=` argument, returns a list of transformed copies of `p=`. // // Arguments: // offset = Distance to offset children right, before copying. // x = The X coordinate of the mirroring plane. Default: 0 // --- // p = Either a point, pointlist, VNF or Bezier patch to be translated when used as a function. // // Side Effects: // `$orig` is true for the original instance of children. False for the copy. // `$idx` is set to the index value of each copy. // // See Also: move_copies(), xcopies(), ycopies(), zcopies(), line_copies(), rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies() // // Example: // xflip_copy() yrot(90) cylinder(h=20, r1=4, r2=0); // color("blue",0.25) cube([0.01,15,15], center=true); // // Example: // xflip_copy(offset=5) yrot(90) cylinder(h=20, r1=4, r2=0); // color("blue",0.25) cube([0.01,15,15], center=true); // // Example: // xflip_copy(x=-5) yrot(90) cylinder(h=20, r1=4, r2=0); // color("blue",0.25) left(5) cube([0.01,15,15], center=true); module xflip_copy(offset=0, x=0) { req_children($children); mirror_copy(v=[1,0,0], offset=offset, cp=[x,0,0]) children(); } function xflip_copy(offset=0, x=0, p=_NO_ARG) = mirror_copy(v=[1,0,0], offset=offset, cp=[x,0,0], p=p); // Function&Module: yflip_copy() // // Usage: // yflip_copy([offset], [y]) CHILDREN; // Usage: As a function to translate points, VNF, or Bezier patches // copies = yflip_copy([offset], [y], p=); // Usage: Get Translation Matrices // mats = yflip_copy([offset], [y]); // // Topics: Transformations, Distributors, Copiers // // Description: // When called as a module, makes a copy of the children, mirrored across the Y axis. // When called as a function, *without* a `p=` argument, returns a list of transformation matrices, one for each copy. // When called as a function, *with* a `p=` argument, returns a list of transformed copies of `p=`. // // Arguments: // offset = Distance to offset children back, before copying. // y = The Y coordinate of the mirroring plane. Default: 0 // --- // p = Either a point, pointlist, VNF or Bezier patch to be translated when used as a function. // // Side Effects: // `$orig` is true for the original instance of children. False for the copy. // `$idx` is set to the index value of each copy. // // See Also: move_copies(), xcopies(), ycopies(), zcopies(), line_copies(), rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies() // // Example: // yflip_copy() xrot(-90) cylinder(h=20, r1=4, r2=0); // color("blue",0.25) cube([15,0.01,15], center=true); // // Example: // yflip_copy(offset=5) xrot(-90) cylinder(h=20, r1=4, r2=0); // color("blue",0.25) cube([15,0.01,15], center=true); // // Example: // yflip_copy(y=-5) xrot(-90) cylinder(h=20, r1=4, r2=0); // color("blue",0.25) fwd(5) cube([15,0.01,15], center=true); module yflip_copy(offset=0, y=0) { req_children($children); mirror_copy(v=[0,1,0], offset=offset, cp=[0,y,0]) children(); } function yflip_copy(offset=0, y=0, p=_NO_ARG) = mirror_copy(v=[0,1,0], offset=offset, cp=[0,y,0], p=p); // Function&Module: zflip_copy() // // Usage: // zflip_copy([offset], [z]) CHILDREN; // Usage: As a function to translate points, VNF, or Bezier patches // copies = zflip_copy([offset], [z], p=); // Usage: Get Translation Matrices // mats = zflip_copy([offset], [z]); // // Topics: Transformations, Distributors, Copiers // // Description: // When called as a module, makes a copy of the children, mirrored across the Z axis. // When called as a function, *without* a `p=` argument, returns a list of transformation matrices, one for each copy. // When called as a function, *with* a `p=` argument, returns a list of transformed copies of `p=`. // // Arguments: // offset = Distance to offset children up, before copying. // z = The Z coordinate of the mirroring plane. Default: 0 // --- // p = Either a point, pointlist, VNF or Bezier patch to be translated when used as a function. // // Side Effects: // `$orig` is true for the original instance of children. False for the copy. // `$idx` is set to the index value of each copy. // // See Also: move_copies(), xcopies(), ycopies(), zcopies(), line_copies(), rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies() // // Example: // zflip_copy() cylinder(h=20, r1=4, r2=0); // color("blue",0.25) cube([15,15,0.01], center=true); // // Example: // zflip_copy(offset=5) cylinder(h=20, r1=4, r2=0); // color("blue",0.25) cube([15,15,0.01], center=true); // // Example: // zflip_copy(z=-5) cylinder(h=20, r1=4, r2=0); // color("blue",0.25) down(5) cube([15,15,0.01], center=true); module zflip_copy(offset=0, z=0) { req_children($children); mirror_copy(v=[0,0,1], offset=offset, cp=[0,0,z]) children(); } function zflip_copy(offset=0, z=0, p=_NO_ARG) = mirror_copy(v=[0,0,1], offset=offset, cp=[0,0,z], p=p); // Function&Module: mirror_copy() // // Usage: // mirror_copy(v, [cp], [offset]) CHILDREN; // Usage: As a function to translate points, VNF, or Bezier patches // copies = mirror_copy(v, [cp], [offset], p=); // Usage: Get Translation Matrices // mats = mirror_copy(v, [cp], [offset]); // // Topics: Transformations, Distributors, Copiers // // Description: // When called as a module, makes a copy of the children, mirrored across the given plane. // When called as a function, *without* a `p=` argument, returns a list of transformation matrices, one for each copy. // When called as a function, *with* a `p=` argument, returns a list of transformed copies of `p=`. // // Arguments: // v = The normal vector of the plane to mirror across. // offset = distance to offset away from the plane. // cp = A point that lies on the mirroring plane. // --- // p = Either a point, pointlist, VNF or Bezier patch to be translated when used as a function. // // Side Effects: // `$orig` is true for the original instance of children. False for the copy. // `$idx` is set to the index value of each copy. // // See Also: move_copies(), xcopies(), ycopies(), zcopies(), line_copies(), rot_copies(), xrot_copies(), yrot_copies(), zrot_copies(), arc_copies(), sphere_copies() // // Example: // mirror_copy([1,-1,0]) zrot(-45) yrot(90) cylinder(d1=10, d2=0, h=20); // color("blue",0.25) zrot(-45) cube([0.01,15,15], center=true); // // Example: // mirror_copy([1,1,0], offset=5) rot(a=90,v=[-1,1,0]) cylinder(d1=10, d2=0, h=20); // color("blue",0.25) zrot(45) cube([0.01,15,15], center=true); // // Example: // mirror_copy(UP+BACK, cp=[0,-5,-5]) rot(from=UP, to=BACK+UP) cylinder(d1=10, d2=0, h=20); // color("blue",0.25) translate([0,-5,-5]) rot(from=UP, to=BACK+UP) cube([15,15,0.01], center=true); module mirror_copy(v=[0,0,1], offset=0, cp) { req_children($children); cp = is_vector(v,4)? plane_normal(v) * v[3] : is_vector(cp)? cp : is_num(cp)? cp*unit(v) : [0,0,0]; nv = is_vector(v,4)? plane_normal(v) : unit(v); off = nv*offset; if (cp == [0,0,0]) { translate(off) { $orig = true; $idx = 0; children(); } mirror(nv) translate(off) { $orig = false; $idx = 1; children(); } } else { translate(off) children(); translate(cp) mirror(nv) translate(-cp) translate(off) children(); } } function mirror_copy(v=[0,0,1], offset=0, cp, p=_NO_ARG) = let( cp = is_vector(v,4)? plane_normal(v) * v[3] : is_vector(cp)? cp : is_num(cp)? cp*unit(v) : [0,0,0], nv = is_vector(v,4)? plane_normal(v) : unit(v), off = nv*offset, mats = [ translate(off), translate(cp) * mirror(nv) * translate(-cp) * translate(off) ] ) p==_NO_ARG? mats : [for (m = mats) apply(m, p)]; //////////////////// // Section: Distributing children individually along a line /////////////////// // Module: xdistribute() // // Description: // Spreads out the children individually along the X axis. // Every child is placed at a different position, in order. // This is useful for laying out groups of disparate objects // where you only really care about the spacing between them. // // Usage: // xdistribute(spacing, [sizes]) CHILDREN; // xdistribute(l=, [sizes=]) CHILDREN; // // Arguments: // spacing = spacing between each child. (Default: 10.0) // sizes = Array containing how much space each child will need. // l = Length to distribute copies along. // // Side Effects: // `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually. // `$idx` is set to the index number of each child being copied. // // Example: // xdistribute(sizes=[100, 10, 30], spacing=40) { // sphere(r=50); // cube([10,20,30], center=true); // cylinder(d=30, h=50, center=true); // } module xdistribute(spacing=10, sizes=undef, l=undef) { req_children($children); dir = RIGHT; gaps = ($children < 2)? [0] : !is_undef(sizes)? [for (i=[0:1:$children-2]) sizes[i]/2 + sizes[i+1]/2] : [for (i=[0:1:$children-2]) 0]; spc = !is_undef(l)? ((l - sum(gaps)) / ($children-1)) : default(spacing, 10); gaps2 = [for (gap = gaps) gap+spc]; spos = dir * -sum(gaps2)/2; spacings = cumsum([0, each gaps2]); for (i=[0:1:$children-1]) { $pos = spos + spacings[i] * dir; $idx = i; translate($pos) children(i); } } // Module: ydistribute() // // Description: // Spreads out the children individually along the Y axis. // Every child is placed at a different position, in order. // This is useful for laying out groups of disparate objects // where you only really care about the spacing between them. // // Usage: // ydistribute(spacing, [sizes]) CHILDREN; // ydistribute(l=, [sizes=]) CHILDREN; // // Arguments: // spacing = spacing between each child. (Default: 10.0) // sizes = Array containing how much space each child will need. // l = Length to distribute copies along. // // Side Effects: // `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually. // `$idx` is set to the index number of each child being copied. // // Example: // ydistribute(sizes=[30, 20, 100], spacing=40) { // cylinder(d=30, h=50, center=true); // cube([10,20,30], center=true); // sphere(r=50); // } module ydistribute(spacing=10, sizes=undef, l=undef) { req_children($children); dir = BACK; gaps = ($children < 2)? [0] : !is_undef(sizes)? [for (i=[0:1:$children-2]) sizes[i]/2 + sizes[i+1]/2] : [for (i=[0:1:$children-2]) 0]; spc = !is_undef(l)? ((l - sum(gaps)) / ($children-1)) : default(spacing, 10); gaps2 = [for (gap = gaps) gap+spc]; spos = dir * -sum(gaps2)/2; spacings = cumsum([0, each gaps2]); for (i=[0:1:$children-1]) { $pos = spos + spacings[i] * dir; $idx = i; translate($pos) children(i); } } // Module: zdistribute() // // Description: // Spreads out each individual child along the Z axis. // Every child is placed at a different position, in order. // This is useful for laying out groups of disparate objects // where you only really care about the spacing between them. // // Usage: // zdistribute(spacing, [sizes]) CHILDREN; // zdistribute(l=, [sizes=]) CHILDREN; // // Arguments: // spacing = spacing between each child. (Default: 10.0) // sizes = Array containing how much space each child will need. // l = Length to distribute copies along. // // Side Effects: // `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually. // `$idx` is set to the index number of each child being copied. // // Example: // zdistribute(sizes=[30, 20, 100], spacing=40) { // cylinder(d=30, h=50, center=true); // cube([10,20,30], center=true); // sphere(r=50); // } module zdistribute(spacing=10, sizes=undef, l=undef) { req_children($children); dir = UP; gaps = ($children < 2)? [0] : !is_undef(sizes)? [for (i=[0:1:$children-2]) sizes[i]/2 + sizes[i+1]/2] : [for (i=[0:1:$children-2]) 0]; spc = !is_undef(l)? ((l - sum(gaps)) / ($children-1)) : default(spacing, 10); gaps2 = [for (gap = gaps) gap+spc]; spos = dir * -sum(gaps2)/2; spacings = cumsum([0, each gaps2]); for (i=[0:1:$children-1]) { $pos = spos + spacings[i] * dir; $idx = i; translate($pos) children(i); } } // Module: distribute() // // Description: // Spreads out the children individually along the direction `dir`. // Every child is placed at a different position, in order. // This is useful for laying out groups of disparate objects // where you only really care about the spacing between them. // // Usage: // distribute(spacing, sizes, dir) CHILDREN; // distribute(l=, [sizes=], [dir=]) CHILDREN; // // Arguments: // spacing = Spacing to add between each child. (Default: 10.0) // sizes = Array containing how much space each child will need. // dir = Vector direction to distribute copies along. Default: RIGHT // l = Length to distribute copies along. // // Side Effects: // `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually. // `$idx` is set to the index number of each child being copied. // // Example: // distribute(sizes=[100, 30, 50], dir=UP) { // sphere(r=50); // cube([10,20,30], center=true); // cylinder(d=30, h=50, center=true); // } module distribute(spacing=undef, sizes=undef, dir=RIGHT, l=undef) { req_children($children); gaps = ($children < 2)? [0] : !is_undef(sizes)? [for (i=[0:1:$children-2]) sizes[i]/2 + sizes[i+1]/2] : [for (i=[0:1:$children-2]) 0]; spc = !is_undef(l)? ((l - sum(gaps)) / ($children-1)) : default(spacing, 10); gaps2 = [for (gap = gaps) gap+spc]; spos = dir * -sum(gaps2)/2; spacings = cumsum([0, each gaps2]); for (i=[0:1:$children-1]) { $pos = spos + spacings[i] * dir; $idx = i; translate($pos) children(i); } } // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap