////////////////////////////////////////////////////////////////////// // LibFile: regions.scad // This file provides 2D boolean set operations on polygons, where you can // compute, for example, the intersection or union of the shape defined by point lists, producing // a new point list. Of course, such operations may produce shapes with multiple // components. To handle that, we use "regions" which are lists of paths representing the polygons. // In addition to set operations, you can calculate offsets, determine whether a point is in a // region and you can decompose a region into parts. // Includes: // include // FileGroup: Advanced Modeling // FileSummary: Offsets and boolean geometry of 2D paths and regions. // FileFootnotes: STD=Included in std.scad ////////////////////////////////////////////////////////////////////// // CommonCode: // include // Section: Regions // A region is a list of polygons meeting these conditions: // . // - Every polygon on the list is simple, meaning it does not intersect itself // - Two polygons on the list do not cross each other // - A vertex of one polygon never meets the edge of another one except at a vertex // . // Note that this means vertex-vertex touching between two polygons is acceptable // to define a region. Note, however, that regions with vertex-vertex contact usually // cannot be rendered with CGAL. See {{is_valid_region()}} for examples of valid regions and // lists of polygons that are not regions. Note that {{is_region_simple()}} will identify // regions with no polygon intersections at all, which should render successfully witih CGAL. // . // The actual geometry of the region is defined by XORing together // all of the polygons in the list. This may sound obscure, but it simply means that nested // boundaries make rings in the obvious fashion, and non-nested shapes simply union together. // Checking that a list of polygons is a valid region, meaning that it satisfies all of the conditions // above, can be a time consuming test, so it is not done automatically. It is your responsibility to ensure that your regions are // compliant. You can construct regions by making a suitable list of polygons, or by using // set operation function such as union() or difference(), which all acccept polygons, as // well as regions, as their inputs. And if you must you can clean up an ill-formed region using make_region(), // which will break up self-intersecting polygons and polygons that cross each other. // Function: is_region() // Usage: // bool = is_region(x); // Description: // Returns true if the given item looks like a region. A region is a list of non-crossing simple polygons. This test just checks // that the argument is a list whose first entry is a path. function is_region(x) = is_list(x) && is_path(x.x); // Function: is_valid_region() // Usage: // bool = is_valid_region(region, [eps]); // Description: // Returns true if the input is a valid region, meaning that it is a list of simple polygons whose segments do not cross each other. // This test can be time consuming with regions that contain many points. // It differs from `is_region()` which simply checks that the object is a list whose first entry is a path // because it searches all the list polygons for any self-intersections or intersections with each other. // Will also return true if given a single simple polygon. Use {{make_region()}} to convert sets of self-intersecting polygons into // a region. // Arguments: // region = region to check // eps = tolerance for geometric comparisons. Default: `EPSILON` = 1e-9 // Example(2D,NoAxes): In all of the examples each polygon in the region appears in a different color. Two non-intersecting squares make a valid region. // region = [square(10), right(11,square(8))]; // rainbow(region)stroke($item, width=.2,closed=true); // back(11)text(is_valid_region(region) ? "region" : "non-region", size=2); // Example(2D,NoAxes): Nested squares form a region // region = [for(i=[3:2:10]) square(i,center=true)]; // rainbow(region)stroke($item, width=.2,closed=true); // back(6)text(is_valid_region(region) ? "region" : "non-region", size=2,halign="center"); // Example(2D,NoAxes): Also a region: // region= [square(10,center=true), square(5,center=true), right(10,square(7))]; // rainbow(region)stroke($item, width=.2,closed=true); // back(8)text(is_valid_region(region) ? "region" : "non-region", size=2); // Example(2D,NoAxes): The squares cross each other, so not a region // object = [square(10), move([8,8], square(8))]; // rainbow(object)stroke($item, width=.2,closed=true); // back(17)text(is_valid_region(object) ? "region" : "non-region", size=2); // Example(2D,NoAxes): A union is one way to fix the above example and get a region. (Note that union is run here on two simple polygons, which are valid regions themselves and hence acceptable inputs to union. // region = union([square(10), move([8,8], square(8))]); // rainbow(region)stroke($item, width=.25,closed=true); // back(12)text(is_valid_region(region) ? "region" : "non-region", size=2); // Example(2D,NoAxes): Not a region due to a self-intersecting (non-simple) hourglass polygon // object = [move([-2,-2],square(14)), [[0,0],[10,0],[0,10],[10,10]]]; // rainbow(object)stroke($item, width=.2,closed=true); // move([-1.5,13])text(is_valid_region(object) ? "region" : "non-region", size=2); // Example(2D,NoAxes): Breaking hourglass in half fixes it. Now it's a region: // region = [move([-2,-2],square(14)), [[0,0],[10,0],[5,5]], [[5,5],[0,10],[10,10]]]; // rainbow(region)stroke($item, width=.2,closed=true); // Example(2D,NoAxes): A single polygon corner touches an edge, so not a region: // object = [[[-10,0], [-10,10], [20,10], [20,-20], [-10,-20], // [-10,-10], [0,0], [10,-10], [10,0]]]; // rainbow(object)stroke($item, width=.3,closed=true); // move([-4,12])text(is_valid_region(object) ? "region" : "non-region", size=3); // Example(2D,NoAxes): Corners touch in the same polygon, so the polygon is not simple and the object is not a region. // object = [[[0,0],[10,0],[10,10],[-10,10],[-10,0],[0,0],[-5,5],[5,5]]]; // rainbow(object)stroke($item, width=.3,closed=true); // move([-10,12])text(is_valid_region(object) ? "region" : "non-region", size=3); // Example(2D,NoAxes): The shape above as a valid region with two polygons: // region = [ [[0,0],[10,0],[10,10],[-10,10],[-10,0]], // [[0,0],[5,5],[-5,5]] ]; // rainbow(region)stroke($item, width=.3,closed=true); // move([-5.5,12])text(is_valid_region(region) ? "region" : "non-region", size=3); // Example(2D,NoAxes): As with the "broken" hourglass, Touching at corners is OK. This is a region. // region = [square(10), move([10,10], square(8))]; // rainbow(region)stroke($item, width=.25,closed=true); // back(12)text(is_valid_region(region) ? "region" : "non-region", size=2); // Example(2D,NoAxes): These two squares share part of an edge, hence not a region // object = [square(10), move([10,2], square(7))]; // stroke(object[0], width=0.2,closed=true); // color("red")dashed_stroke(object[1], width=0.25,closed=true); // back(12)text(is_valid_region(object) ? "region" : "non-region", size=2); // Example(2D,NoAxes): These two squares share a full edge, hence not a region // object = [square(10), right(10, square(10))]; // stroke(object[0], width=0.2,closed=true); // color("red")dashed_stroke(object[1], width=0.25,closed=true); // back(12)text(is_valid_region(object) ? "region" : "non-region", size=2); // Example(2D,NoAxes): Sharing on edge on the inside, also not a regionn // object = [square(10), [[0,0], [2,2],[2,8],[0,10]]]; // stroke(object[0], width=0.2,closed=true); // color("red")dashed_stroke(object[1], width=0.25,closed=true); // back(12)text(is_valid_region(object) ? "region" : "non-region", size=2); // Example(2D,NoAxes): Crossing at vertices is also bad // object = [square(10), [[10,0],[0,10],[8,13],[13,8]]]; // rainbow(object)stroke($item, width=.2,closed=true); // back(14)text(is_valid_region(object) ? "region" : "non-region", size=2); // Example(2D,NoAxes): One polygon touches another in the middle of an edge // object = [square(10), [[10,5],[15,0],[15,10]]]; // rainbow(object)stroke($item, width=.2,closed=true); // back(11)text(is_valid_region(object) ? "region" : "non-region", size=2); // Example(2D,NoAxes): The polygon touches the side, but the side has a vertex at the contact point so this is a region // poly1 = [ each square(30,center=true), [15,0]]; // poly2 = right(10,circle(5,$fn=4)); // poly3 = left(0,circle(5,$fn=4)); // poly4 = move([0,-8],square([10,3])); // region = [poly1,poly2,poly3,poly4]; // rainbow(region)stroke($item, width=.25,closed=true); // move([-5,16.5])text(is_valid_region(region) ? "region" : "non-region", size=3); // color("black")move_copies(region[0]) circle(r=.4); // Example(2D,NoAxes): The polygon touches the side, but not at a vertex so this is not a region // poly1 = fwd(4,[ each square(30,center=true), [15,0]]); // poly2 = right(10,circle(5,$fn=4)); // poly3 = left(0,circle(5,$fn=4)); // poly4 = move([0,-8],square([10,3])); // object = [poly1,poly2,poly3,poly4]; // rainbow(object)stroke($item, width=.25,closed=true); // move([-9,12.5])text(is_valid_region(object) ? "region" : "non-region", size=3); // color("black")move_copies(object[0]) circle(r=.4); // Example(2D,NoAxes): The inner polygon touches the middle of the edges, so not a region // poly1 = square(20,center=true); // poly2 = circle(10,$fn=8); // object=[poly1,poly2]; // rainbow(object)stroke($item, width=.25,closed=true); // move([-10,11.4])text(is_valid_region(object) ? "region" : "non-region", size=3); // Example(2D,NoAxes): The above shape made into a region using {{difference()}} now has four components that touch at corners // poly1 = square(20,center=true); // poly2 = circle(10,$fn=8); // region = difference(poly1,poly2); // rainbow(region)stroke($item, width=.25,closed=true); // move([-5,11.4])text(is_valid_region(region) ? "region" : "non-region", size=3); function is_valid_region(region, eps=EPSILON) = let(region=force_region(region)) assert(is_region(region), "Input is not a region") // no short paths [for(p=region) if (len(p)<3) 1] == [] && // all paths are simple [for(p=region) if (!is_path_simple(p,closed=true,eps=eps)) 1] == [] && // paths do not cross each other [for(i=[0:1:len(region)-2]) if (_polygon_crosses_region(list_tail(region,i+1),region[i], eps=eps)) 1] == [] && // one path doesn't touch another in the middle of an edge [for(i=idx(region), j=idx(region)) if (i!=j) for(v=region[i], edge=pair(region[j],wrap=true)) let( v1 = edge[1]-edge[0], v0 = v - edge[0], t = v0*v1/(v1*v1) ) if (abs(cross(v0,v1))eps && t<1-eps) 1 ]==[]; // internal function: // returns true if the polygon crosses the region so that part of the // polygon is inside the region and part is outside. function _polygon_crosses_region(region, poly, eps=EPSILON) = let( subpaths = flatten(split_region_at_region_crossings(region,[poly],eps=eps)[1]) ) [for(path=subpaths) let(isect= [for (subpath = subpaths) let( midpt = mean([subpath[0], subpath[1]]), rel = point_in_region(midpt,region,eps=eps) ) rel ]) if (!all_equal(isect) || isect[0]==0) 1 ] != []; // Function: is_region_simple() // Usage: // bool = is_region_simple(region, [eps]); // Description: // We extend the notion of the simple path to regions: a simple region is entirely // non-self-intersecting, meaning that it is formed from a list of simple polygons that // don't intersect each other at all—not even with corner contact points. // Regions with corner contact are valid but may fail CGAL. Simple regions // should not create problems with CGAL. // Arguments: // region = region to check // eps = tolerance for geometric comparisons. Default: `EPSILON` = 1e-9 // Example(2D,NoAxes): Corner contact means it's not simple // region = [move([-2,-2],square(14)), [[0,0],[10,0],[5,5]], [[5,5],[0,10],[10,10]]]; // rainbow(region)stroke($item, width=.2,closed=true); // move([-1,13])text(is_region_simple(region) ? "simple" : "not-simple", size=2); // Example(2D,NoAxes): Moving apart the triangles makes it simple: // region = [move([-2,-2],square(14)), [[0,0],[10,0],[5,4.5]], [[5,5.5],[0,10],[10,10]]]; // rainbow(region)stroke($item, width=.2,closed=true); // move([1,13])text(is_region_simple(region) ? "simple" : "not-simple", size=2); function is_region_simple(region, eps=EPSILON) = let(region=force_region(region)) assert(is_region(region), "Input is not a region") [for(p=region) if (!is_path_simple(p,closed=true,eps=eps)) 1] == [] && [for(i=[0:1:len(region)-2]) if (_region_region_intersections([region[i]], list_tail(region,i+1), eps=eps)[0][0] != []) 1 ] ==[]; // Function: make_region() // Usage: // region = make_region(polys, [nonzero], [eps]); // Description: // Takes a list of polygons that may intersect themselves or cross each other // and converts it into a properly defined region without // these defects. // Arguments: // polys = list of polygons to use // nonzero = set to true to use nonzero rule for polygon membership. Default: false // eps = Epsilon for geometric comparisons. Default: `EPSILON` (1e-9) // Example(2D,NoAxes): The pentagram is self-intersecting, so it is not a region. Here it becomes five triangles: // pentagram = turtle(["move",100,"left",144], repeat=4); // region = make_region(pentagram); // rainbow(region)stroke($item, width=1,closed=true); // Example(2D,NoAxes): Alternatively with the nonzero option you can get the perimeter: // pentagram = turtle(["move",100,"left",144], repeat=4); // region = make_region(pentagram,nonzero=true); // rainbow(region)stroke($item, width=1,closed=true); // Example(2D,NoAxes): Two crossing squares become two L-shaped components // region = make_region([square(10), move([5,5],square(8))]); // rainbow(region)stroke($item, width=.3,closed=true); function make_region(polys,nonzero=false,eps=EPSILON) = let(polys=force_region(polys)) assert(is_region(polys), "Input is not a region") exclusive_or( [for(poly=polys) each polygon_parts(poly,nonzero,eps)], eps=eps); // Function: force_region() // Usage: // region = force_region(poly) // Description: // If the input is a polygon then return it as a region. Otherwise return it unaltered. // Arguments: // poly = polygon to turn into a region function force_region(poly) = is_path(poly) ? [poly] : poly; // Section: Turning a region into geometry // Module: region() // Usage: // region(r, [anchor], [spin=], [cp=], [atype=]) [ATTACHMENTS]; // Description: // Creates the 2D polygons described by the given region or list of polygons. This module works on // arbitrary lists of polygons that cross each other and hence do not define a valid region. The // displayed result is the exclusive-or of the polygons listed in the input. // Arguments: // r = region to create as geometry // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `"origin"` // --- // spin = Rotate this many degrees after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // cp = Centerpoint for determining intersection anchors or centering the shape. Determintes the base of the anchor vector. Can be "centroid", "mean", "box" or a 2D point. Default: "centroid" // atype = Set to "hull" or "intersect" to select anchor type. Default: "hull" // Example(2D): Displaying a region // region([circle(d=50), square(25,center=true)]); // Example(2D): Displaying a list of polygons that intersect each other, which is not a region // rgn = concat( // [for (d=[50:-10:10]) circle(d=d-5)], // [square([60,10], center=true)] // ); // region(rgn); module region(r, anchor="origin", spin=0, cp="centroid", atype="hull") { assert(in_list(atype, _ANCHOR_TYPES), "Anchor type must be \"hull\" or \"intersect\""); r = force_region(r); dummy=assert(is_region(r), "Input is not a region"); points = flatten(r); lengths = [for(path=r) len(path)]; starts = [0,each cumsum(lengths)]; paths = [for(i=idx(r)) count(s=starts[i], n=lengths[i])]; attachable(anchor, spin, two_d=true, region=r, extent=atype=="hull", cp=cp){ polygon(points=points, paths=paths); children(); } } // Section: Gometrical calculations with regions // Function: point_in_region() // Usage: // check = point_in_region(point, region, [eps]); // Description: // Tests if a point is inside, outside, or on the border of a region. // Returns -1 if the point is outside the region. // Returns 0 if the point is on the boundary. // Returns 1 if the point lies inside the region. // Arguments: // point = The point to test. // region = The region to test against, as a list of polygon paths. // eps = Acceptable variance. Default: `EPSILON` (1e-9) // Example(2D,Med): Red points are in the region. // region = [for(i=[2:4:10]) hexagon(r=i)]; // color("#ff7") region(region); // for(x=[-10:10], y=[-10:10]) // if (point_in_region([x,y], region)>=0) // move([x,y]) color("red") circle(0.15, $fn=12); // else // move([x,y]) color("#ddf") circle(0.1, $fn=12); function point_in_region(point, region, eps=EPSILON) = let(region=force_region(region)) assert(is_region(region), "Region given to point_in_region is not a region") assert(is_vector(point,2), "Point must be a 2D point in point_in_region") _point_in_region(point, region, eps); function _point_in_region(point, region, eps=EPSILON, i=0, cnt=0) = i >= len(region) ? ((cnt%2==1)? 1 : -1) : let( pip = point_in_polygon(point, region[i], eps=eps) ) pip == 0 ? 0 : _point_in_region(point, region, eps=eps, i=i+1, cnt = cnt + (pip>0? 1 : 0)); // Function: region_area() // Usage: // area = region_area(region); // Description: // Computes the area of the specified valid region. (If the region is invalid and has self intersections // the result is meaningless.) // Arguments: // region = region whose area to compute // Examples: // area = region_area([square(10), right(20,square(8))]); // Returns 164 function region_area(region) = assert(is_region(region), "Input must be a region") let( parts = region_parts(region) ) -sum([for(R=parts, poly=R) polygon_area(poly,signed=true)]); function _clockwise_region(r) = [for(p=r) clockwise_polygon(p)]; // Function: are_regions_equal() // Usage: // b = are_regions_equal(region1, region2, [either_winding]) // Description: // Returns true if the components of region1 and region2 are the same polygons (in any order). // Arguments: // region1 = first region // region2 = second region // either_winding = if true then two shapes test equal if they wind in opposite directions. Default: false function are_regions_equal(region1, region2, either_winding=false) = let( region1=force_region(region1), region2=force_region(region2) ) assert(is_region(region1) && is_region(region2), "One of the inputs is not a region") len(region1) != len(region2)? false : __are_regions_equal(either_winding?_clockwise_region(region1):region1, either_winding?_clockwise_region(region2):region2, 0); function __are_regions_equal(region1, region2, i) = i >= len(region1)? true : !_is_polygon_in_list(region1[i], region2)? false : __are_regions_equal(region1, region2, i+1); /// Internal Function: _region_region_intersections() /// Usage: /// risect = _region_region_intersections(region1, region2, [closed1], [closed2], [eps] /// Description: /// Returns a pair of sorted lists such that risect[0] is a list of intersection /// points for every path in region1, and similarly risect[1] is a list of intersection /// points for the paths in region2. For each path the intersection list is /// a sorted list of the form [PATHIND, SEGMENT, U]. You can specify that the paths in either /// region be regarded as open paths if desired. Default is to treat them as /// regions and hence the paths as closed polygons. /// . /// Included as intersection points are points where region1 touches itself at a vertex or /// region2 touches itself at a vertex. (The paths are assumed to have no self crossings. /// Self crossings of the paths in the regions are not returned.) function _region_region_intersections(region1, region2, closed1=true,closed2=true, eps=EPSILON) = let( intersections = [ for(p1=idx(region1)) let( path = closed1?list_wrap(region1[p1]):region1[p1] ) for(i = [0:1:len(path)-2]) let( a1 = path[i], a2 = path[i+1], nrm = norm(a1-a2) ) if( nrm>eps ) // ignore zero-length path edges let( seg_normal = [-(a2-a1).y, (a2-a1).x]/nrm, ref = a1*seg_normal ) // `signs[j]` is the sign of the signed distance from // poly vertex j to the line [a1,a2] where near zero // distances are snapped to zero; poly edges // with equal signs at its vertices cannot intersect // the path edge [a1,a2] or they are collinear and // further tests can be discarded. for(p2=idx(region2)) let( poly = closed2?list_wrap(region2[p2]):region2[p2], signs = [for(v=poly*seg_normal) abs(v-ref) < eps ? 0 : sign(v-ref) ] ) if(max(signs)>=0 && min(signs)<=0) // some edge intersects line [a1,a2] for(j=[0:1:len(poly)-2]) if(signs[j]!=signs[j+1]) let( // exclude non-crossing and collinear segments b1 = poly[j], b2 = poly[j+1], isect = _general_line_intersection([a1,a2],[b1,b2],eps=eps) ) if (isect && isect[1]>= -eps && isect[1]<= 1+eps && isect[2]>= -eps && isect[2]<= 1+eps) [[p1,i,isect[1]], [p2,j,isect[2]]] ], regions=[region1,region2], // Create a flattened index list corresponding to the points in region1 and region2 // that gives each point as an intersection point ptind = [for(i=[0:1]) [for(p=idx(regions[i])) for(j=idx(regions[i][p])) [p,j,0]]], points = [for(i=[0:1]) flatten(regions[i])], // Corner points are those points where the region touches itself, hence duplicate // points in the region's point set cornerpts = [for(i=[0:1]) [for(k=vector_search(points[i],eps,points[i])) each if (len(k)>1) select(ptind[i],k)]], risect = [for(i=[0:1]) concat(column(intersections,i), cornerpts[i])], counts = [count(len(region1)), count(len(region2))], pathind = [for(i=[0:1]) search(counts[i], risect[i], 0)] ) [for(i=[0:1]) [for(j=counts[i]) _sort_vectors(select(risect[i],pathind[i][j]))]]; // Section: Breaking up regions into subregions // Function: split_region_at_region_crossings() // Usage: // split_region = split_region_at_region_crossings(region1, region2, [closed1], [closed2], [eps]) // Description: // Splits region1 at the places where polygons in region1 touches each other at corners and at locations // where region1 intersections region2. Split region2 similarly with respect to region1. // The return is a pair of results of the form [split1, split2] where split1=[frags1,frags2,...] // and frags1 is a list of paths that when placed end to end (in the given order), give the first polygon of region1. // Each path in the list is either entirely inside or entirely outside region2. // Then frags2 is the decomposition of the second polygon into path pieces, and so on. Finally split2 is // the same list, but for the polygons in region2. // You can pass a single polygon in for either region, but the output will be a singleton list, as if // you passed in a singleton region. If you set the closed parameters to false then the region components // will be treated as open paths instead of polygons. // Arguments: // region1 = first region // region2 = second region // closed1 = if false then treat region1 as list of open paths. Default: true // closed2 = if false then treat region2 as list of open paths. Default: true // eps = Acceptable variance. Default: `EPSILON` (1e-9) // Example(2D): // path = square(50,center=false); // region = [circle(d=80), circle(d=40)]; // paths = split_region_at_region_crossings(path, region); // color("#aaa") region(region); // rainbow(paths[0][0]) stroke($item, width=2); // right(110){ // color("#aaa") region([path]); // rainbow(flatten(paths[1])) stroke($item, width=2); // } function split_region_at_region_crossings(region1, region2, closed1=true, closed2=true, eps=EPSILON) = let( region1=force_region(region1), region2=force_region(region2) ) assert(is_region(region1) && is_region(region2),"One of the inputs is not a region") let( xings = _region_region_intersections(region1, region2, closed1, closed2, eps), regions = [region1,region2], closed = [closed1,closed2] ) [for(i=[0:1]) [for(p=idx(xings[i])) let( crossings = deduplicate([ [p,0,0], each xings[i][p], [p,len(regions[i][p])-(closed[i]?1:2), 1], ],eps=eps), subpaths = [ for (frag = pair(crossings)) deduplicate( _path_select(regions[i][p], frag[0][1], frag[0][2], frag[1][1], frag[1][2], closed=closed[i]), eps=eps ) ] ) [for(s=subpaths) if (len(s)>1) s] ] ]; // Function: region_parts() // Usage: // rgns = region_parts(region); // Description: // Divides a region into a list of connected regions. Each connected region has exactly one clockwise outside boundary // and zero or more counter-clockwise outlines defining internal holes. Note that behavior is undefined on invalid regions whose // components cross each other. // Example(2D,NoAxes): // R = [for(i=[1:7]) square(i,center=true)]; // region_list = region_parts(R); // rainbow(region_list) region($item); // Example(2D,NoAxes): // R = [back(7,square(3,center=true)), // square([20,10],center=true), // left(5,square(8,center=true)), // for(i=[4:2:8]) // right(5,square(i,center=true))]; // region_list = region_parts(R); // rainbow(region_list) region($item); function region_parts(region) = let( region = force_region(region) ) assert(is_region(region), "Input is not a region") let( inside = [for(i=idx(region)) let(pt = mean([region[i][0], region[i][1]])) [for(j=idx(region)) i==j ? 0 : point_in_polygon(pt,region[j]) >=0 ? 1 : 0] ], level = inside*repeat(1,len(region)) ) [ for(i=idx(region)) if(level[i]%2==0) let( possible_children = search([level[i]+1],level,0)[0], keep=search([1], select(inside,possible_children), 0, i)[0] ) [ clockwise_polygon(region[i]), for(good=keep) ccw_polygon(region[possible_children[good]]) ] ]; // Section: Offset and 2D Boolean Set Operations function _offset_chamfer(center, points, delta) = let( dist = sign(delta)*norm(center-line_intersection(select(points,[0,2]), [center, points[1]])), endline = _shift_segment(select(points,[0,2]), delta-dist) ) [ line_intersection(endline, select(points,[0,1])), line_intersection(endline, select(points,[1,2])) ]; function _shift_segment(segment, d) = assert(!approx(segment[0],segment[1]),"Path has repeated points") move(d*line_normal(segment),segment); // Extend to segments to their intersection point. First check if the segments already have a point in common, // which can happen if two colinear segments are input to the path variant of `offset()` function _segment_extension(s1,s2) = norm(s1[1]-s2[0])<1e-6 ? s1[1] : line_intersection(s1,s2,LINE,LINE); function _makefaces(direction, startind, good, pointcount, closed) = let( lenlist = list_bset(good, pointcount), numfirst = len(lenlist), numsecond = sum(lenlist), prelim_faces = _makefaces_recurse(startind, startind+len(lenlist), numfirst, numsecond, lenlist, closed) ) direction? [for(entry=prelim_faces) reverse(entry)] : prelim_faces; function _makefaces_recurse(startind1, startind2, numfirst, numsecond, lenlist, closed, firstind=0, secondind=0, faces=[]) = // We are done if *both* firstind and secondind reach their max value, which is the last point if !closed or one past // the last point if closed (wrapping around). If you don't check both you can leave a triangular gap in the output. ((firstind == numfirst - (closed?0:1)) && (secondind == numsecond - (closed?0:1)))? faces : _makefaces_recurse( startind1, startind2, numfirst, numsecond, lenlist, closed, firstind+1, secondind+lenlist[firstind], lenlist[firstind]==0? ( // point in original path has been deleted in offset path, so it has no match. We therefore // make a triangular face using the current point from the offset (second) path // (The current point in the second path can be equal to numsecond if firstind is the last point) concat(faces,[[secondind%numsecond+startind2, firstind+startind1, (firstind+1)%numfirst+startind1]]) // in this case a point or points exist in the offset path corresponding to the original path ) : ( concat(faces, // First generate triangular faces for all of the extra points (if there are any---loop may be empty) [for(i=[0:1:lenlist[firstind]-2]) [firstind+startind1, secondind+i+1+startind2, secondind+i+startind2]], // Finish (unconditionally) with a quadrilateral face [ [ firstind+startind1, (firstind+1)%numfirst+startind1, (secondind+lenlist[firstind])%numsecond+startind2, (secondind+lenlist[firstind]-1)%numsecond+startind2 ] ] ) ) ); // Determine which of the shifted segments are good function _good_segments(path, d, shiftsegs, closed, quality) = let( maxind = len(path)-(closed ? 1 : 2), pathseg = [for(i=[0:maxind]) select(path,i+1)-path[i]], pathseg_len = [for(seg=pathseg) norm(seg)], pathseg_unit = [for(i=[0:maxind]) pathseg[i]/pathseg_len[i]], // Order matters because as soon as a valid point is found, the test stops // This order works better for circular paths because they succeed in the center alpha = concat([for(i=[1:1:quality]) i/(quality+1)],[0,1]) ) [ for (i=[0:len(shiftsegs)-1]) (i>maxind)? true : _segment_good(path,pathseg_unit,pathseg_len, d - 1e-7, shiftsegs[i], alpha) ]; // Determine if a segment is good (approximately) // Input is the path, the path segments normalized to unit length, the length of each path segment // the distance threshold, the segment to test, and the locations on the segment to test (normalized to [0,1]) // The last parameter, index, gives the current alpha index. // // A segment is good if any part of it is farther than distance d from the path. The test is expensive, so // we want to quit as soon as we find a point with distance > d, hence the recursive code structure. // // This test is approximate because it only samples the points listed in alpha. Listing more points // will make the test more accurate, but slower. function _segment_good(path,pathseg_unit,pathseg_len, d, seg,alpha ,index=0) = index == len(alpha) ? false : _point_dist(path,pathseg_unit,pathseg_len, alpha[index]*seg[0]+(1-alpha[index])*seg[1]) > d ? true : _segment_good(path,pathseg_unit,pathseg_len,d,seg,alpha,index+1); // Input is the path, the path segments normalized to unit length, the length of each path segment // and a test point. Computes the (minimum) distance from the path to the point, taking into // account that the minimal distance may be anywhere along a path segment, not just at the ends. function _point_dist(path,pathseg_unit,pathseg_len,pt) = min([ for(i=[0:len(pathseg_unit)-1]) let( v = pt-path[i], projection = v*pathseg_unit[i], segdist = projection < 0? norm(pt-path[i]) : projection > pathseg_len[i]? norm(pt-select(path,i+1)) : norm(v-projection*pathseg_unit[i]) ) segdist ]); // Function: offset() // Usage: // offsetpath = offset(path, [r=|delta=], [chamfer=], [closed=], [check_valid=], [quality=], [same_length=]) // path_faces = offset(path, return_faces=true, [r=|delta=], [chamfer=], [closed=], [check_valid=], [quality=], [firstface_index=], [flip_faces=]) // Description: // Takes a 2D input path, polygon or region and returns a path offset by the specified amount. As with the built-in // offset() module, you can use `r` to specify rounded offset and `delta` to specify offset with // corners. If you used `delta` you can set `chamfer` to true to get chamfers. // For paths and polygons positive offsets make the polygons larger. For paths, // positive offsets shift the path to the left, relative to the direction of the path. Note // that the path must not include any 180 degree turns, where the path reverses direction. // . // When offsets shrink the path, segments cross and become invalid. By default `offset()` checks // for this situation. To test validity the code checks that segments have distance larger than (r // or delta) from the input path. This check takes O(N^2) time and may mistakenly eliminate // segments you wanted included in various situations, so you can disable it if you wish by setting // check_valid=false. Another situation is that the test is not sufficiently thorough and some // segments persist that should be eliminated. In this case, increase `quality` to 2 or 3. (This // increases the number of samples on the segment that are checked.) Run time will increase. In // some situations you may be able to decrease run time by setting quality to 0, which causes only // segment ends to be checked. // . // When invalid segments are eliminated, the path length decreases. If you use chamfering or rounding, then // the chamfers and roundings can increase the length of the output path. Hence points in the output may be // difficult to associate with the input. If you want to maintain alignment between the points you // can use the `same_length` option. This option requires that you use `delta=` with `chamfer=false` to ensure // that no points are added. When points collapse to a single point in the offset, the output includes // that point repeated to preserve the correct length. // . // Another way to obtain alignment information is to use the return_faces option, which can // provide alignment information for all offset parameters: it returns a face list which lists faces between // the original path and the offset path where the vertices are ordered with the original path // first, starting at `firstface_index` and the offset path vertices appearing afterwords. The // direction of the faces can be flipped using `flip_faces`. When you request faces the return // value is a list: [offset_path, face_list]. // Arguments: // path = the path to process. A list of 2d points. // --- // r = offset radius. Distance to offset. Will round over corners. // delta = offset distance. Distance to offset with pointed corners. // chamfer = chamfer corners when you specify `delta`. Default: false // closed = if true path is treate as a polygon. Default: False. // check_valid = perform segment validity check. Default: True. // quality = validity check quality parameter, a small integer. Default: 1. // same_length = return a path with the same length as the input. Only compatible with `delta=`. Default: false // return_faces = return face list. Default: False. // firstface_index = starting index for face list. Default: 0. // flip_faces = flip face direction. Default: false // Example(2D,NoAxes): // star = star(5, r=100, ir=30); // #stroke(closed=true, star, width=3); // stroke(closed=true, width=3, offset(star, delta=10, closed=true)); // Example(2D,NoAxes): // star = star(5, r=100, ir=30); // #stroke(closed=true, star, width=3); // stroke(closed=true, width=3, // offset(star, delta=10, chamfer=true, closed=true)); // Example(2D,NoAxes): // star = star(5, r=100, ir=30); // #stroke(closed=true, star, width=3); // stroke(closed=true, width=3, // offset(star, r=10, closed=true)); // Example(2D,NoAxes): // star = star(7, r=120, ir=50); // #stroke(closed=true, width=3, star); // stroke(closed=true, width=3, // offset(star, delta=-15, closed=true)); // Example(2D,NoAxes): // star = star(7, r=120, ir=50); // #stroke(closed=true, width=3, star); // stroke(closed=true, width=3, // offset(star, delta=-15, chamfer=true, closed=true)); // Example(2D,NoAxes): // star = star(7, r=120, ir=50); // #stroke(closed=true, width=3, star); // stroke(closed=true, width=3, // offset(star, r=-15, closed=true, $fn=20)); // Example(2D,NoAxes): This case needs `quality=2` for success // test = [[0,0],[10,0],[10,7],[0,7], [-1,-3]]; // polygon(offset(test,r=-1.9, closed=true, quality=2)); // //polygon(offset(test,r=-1.9, closed=true, quality=1)); // Fails with erroneous 180 deg path error // %down(.1)polygon(test); // Example(2D,NoAxes): This case fails if `check_valid=true` when delta is large enough because segments are too close to the opposite side of the curve. // star = star(5, r=22, ir=13); // stroke(star,width=.3,closed=true); // color("green") // stroke(offset(star, delta=-9, closed=true),width=.3,closed=true); // Works with check_valid=true (the default) // color("red") // stroke(offset(star, delta=-10, closed=true, check_valid=false), // Fails if check_valid=true // width=.3,closed=true); // Example(2D): But if you use rounding with offset then you need `check_valid=true` when `r` is big enough. It works without the validity check as long as the offset shape retains a some of the straight edges at the star tip, but once the shape shrinks smaller than that, it fails. There is no simple way to get a correct result for the case with `r=10`, because as in the previous example, it will fail if you turn on validity checks. // star = star(5, r=22, ir=13); // color("green") // stroke(offset(star, r=-8, closed=true,check_valid=false), width=.1, closed=true); // color("red") // stroke(offset(star, r=-10, closed=true,check_valid=false), width=.1, closed=true); // Example(2D,NoAxes): The extra triangles in this example show that the validity check cannot be skipped // ellipse = scale([20,4], p=circle(r=1,$fn=64)); // stroke(ellipse, closed=true, width=0.3); // stroke(offset(ellipse, r=-3, check_valid=false, closed=true), // width=0.3, closed=true); // Example(2D,NoAxes): The triangles are removed by the validity check // ellipse = scale([20,4], p=circle(r=1,$fn=64)); // stroke(ellipse, closed=true, width=0.3); // stroke(offset(ellipse, r=-3, check_valid=true, closed=true), // width=0.3, closed=true); // Example(2D): Open path. The path moves from left to right and the positive offset shifts to the left of the initial red path. // sinpath = 2*[for(theta=[-180:5:180]) [theta/4,45*sin(theta)]]; // #stroke(sinpath, width=2); // stroke(offset(sinpath, r=17.5),width=2); // Example(2D,NoAxes): Region // rgn = difference(circle(d=100), // union(square([20,40], center=true), // square([40,20], center=true))); // #linear_extrude(height=1.1) stroke(rgn, width=1); // region(offset(rgn, r=-5)); // Example(2D,NoAxes): Using `same_length=true` to align the original curve to the offset. Note that lots of points map to the corner at the top. // closed=false; // path = [for(angle=[0:5:180]) 10*[angle/100,2*sin(angle)]]; // opath = offset(path, delta=-3,same_length=true,closed=closed); // stroke(path,closed=closed,width=.3); // stroke(opath,closed=closed,width=.3); // color("red") for(i=idx(path)) stroke([path[i],opath[i]],width=.3); function offset( path, r=undef, delta=undef, chamfer=false, closed=false, check_valid=true, quality=1, return_faces=false, firstface_index=0, flip_faces=false, same_length=false ) = assert(!(same_length && return_faces), "Cannot combine return_faces with same_length") is_region(path)? assert(!return_faces, "return_faces not supported for regions.") let( ofsregs = [for(R=region_parts(path)) difference([for(i=idx(R)) offset(R[i], r=u_mul(i>0?-1:1,r), delta=u_mul(i>0?-1:1,delta), chamfer=chamfer, check_valid=check_valid, quality=quality,closed=true)])] ) union(ofsregs) : let(rcount = num_defined([r,delta])) assert(rcount==1,"Must define exactly one of 'delta' and 'r'") assert(!same_length || (is_def(delta) && !chamfer), "Must specify delta, with chamfer=false, when same_length=true") assert(is_path(path), "Input must be a path or region") let( chamfer = is_def(r) ? false : chamfer, quality = max(0,round(quality)), flip_dir = closed && !is_polygon_clockwise(path)? -1 : 1, d = flip_dir * (is_def(r) ? r : delta) ) d==0 && !return_faces ? path : let( // shiftsegs = [for(i=[0:len(path)-1]) _shift_segment(select(path,i,i+1), d)], shiftsegs = [for(i=[0:len(path)-2]) _shift_segment([path[i],path[i+1]], d), if (closed) _shift_segment([last(path),path[0]],d) else [path[0],path[1]] // dummy segment, not used ], // good segments are ones where no point on the segment is less than distance d from any point on the path good = check_valid ? _good_segments(path, abs(d), shiftsegs, closed, quality) : repeat(true,len(shiftsegs)), goodsegs = bselect(shiftsegs, good), goodpath = bselect(path,good) ) assert(len(goodsegs)-(!closed && select(good,-1)?1:0)>0,"Offset of path is degenerate") let( // Extend the shifted segments to their intersection points sharpcorners = [for(i=[0:len(goodsegs)-1]) _segment_extension(select(goodsegs,i-1), select(goodsegs,i))], // If some segments are parallel then the extended segments are undefined. This case is not handled // Note if !closed the last corner doesn't matter, so exclude it parallelcheck = (len(sharpcorners)==2 && !closed) || all_defined(closed? sharpcorners : select(sharpcorners, 1,-2)) ) assert(parallelcheck, "Path contains a segment that reverses direction (180 deg turn)") let( // This is a boolean array that indicates whether a corner is an outside or inside corner // For outside corners, the newcorner is an extension (angle 0), for inside corners, it turns backward // If either side turns back it is an inside corner---must check both. // Outside corners can get rounded (if r is specified and there is space to round them) outsidecorner = len(sharpcorners)==2 ? [false,false] : [for(i=[0:len(goodsegs)-1]) let(prevseg=select(goodsegs,i-1)) (i==0 || i==len(goodsegs)-1) && !closed ? false // In open case first entry is bogus : (goodsegs[i][1]-goodsegs[i][0]) * (goodsegs[i][0]-sharpcorners[i]) > 0 && (prevseg[1]-prevseg[0]) * (sharpcorners[i]-prevseg[1]) > 0 ], steps = is_def(delta) ? [] : [ for(i=[0:len(goodsegs)-1]) r==0 ? 0 // if path is open but first and last entries match value is not used, but // computation below gives error, so special case handle it : i==len(goodsegs)-1 && !closed && approx(goodpath[i],goodsegs[i][0]) ? 0 // floor is important here to ensure we don't generate extra segments when nearly straight paths expand outward : 1+floor(segs(r)*vector_angle( select(goodsegs,i-1)[1]-goodpath[i], goodsegs[i][0]-goodpath[i]) /360) ], // If rounding is true then newcorners replaces sharpcorners with rounded arcs where needed // Otherwise it's the same as sharpcorners // If rounding is on then newcorners[i] will be the point list that replaces goodpath[i] and newcorners later // gets flattened. If rounding is off then we set it to [sharpcorners] so we can later flatten it and get // plain sharpcorners back. newcorners = is_def(delta) && !chamfer ? [sharpcorners] : [for(i=[0:len(goodsegs)-1]) (!chamfer && steps[i] <=1) // Don't round if steps is smaller than 2 || !outsidecorner[i] // Don't round inside corners || (!closed && (i==0 || i==len(goodsegs)-1)) // Don't round ends of an open path ? [sharpcorners[i]] : chamfer ? _offset_chamfer( goodpath[i], [ select(goodsegs,i-1)[1], sharpcorners[i], goodsegs[i][0] ], d ) : // rounded case arc(cp=goodpath[i], points=[ select(goodsegs,i-1)[1], goodsegs[i][0] ], n=steps[i]) ], pointcount = (is_def(delta) && !chamfer)? repeat(1,len(sharpcorners)) : [for(i=[0:len(goodsegs)-1]) len(newcorners[i])], start = [goodsegs[0][0]], end = [goodsegs[len(goodsegs)-2][1]], edges = closed? flatten(newcorners) : concat(start,slice(flatten(newcorners),1,-2),end), faces = !return_faces? [] : _makefaces( flip_faces, firstface_index, good, pointcount, closed ), final_edges = same_length ? select(edges, [0,each list_head (cumsum([for(g=good) g?1:0]))]) : edges ) return_faces? [edges,faces] : final_edges; /// Internal Function: _filter_region_parts() /// /// splits region1 into subpaths where either it touches itself or crosses region2. Classifies all of the /// subpaths as described below and keeps the ones listed in keep1. A similar process is performed for region2. /// All of the kept subpaths are assembled into polygons and returned as a lst. /// . /// The four types of subpath from the region are defined relative to the second region: /// "O" - the subpath is outside the second region /// "I" - the subpath is in the second region's interior /// "S" - the subpath is on the 2nd region's border and the two regions interiors are on the same side of the subpath /// "U" - the subpath is on the 2nd region's border and the two regions meet at the subpath from opposite sides /// You specify which type of subpaths to keep with a string of the desired types such as "OS". function _filter_region_parts(region1, region2, keep, eps=EPSILON) = // We have to compute common vertices between paths in the region because // they can be places where the path must be cut, even though they aren't // found my the split_path function. let( subpaths = split_region_at_region_crossings(region1,region2,eps=eps), regions=[force_region(region1), force_region(region2)] ) _assemble_path_fragments( [for(i=[0:1]) let( keepS = search("S",keep[i])!=[], keepU = search("U",keep[i])!=[], keepoutside = search("O",keep[i]) !=[], keepinside = search("I",keep[i]) !=[], all_subpaths = flatten(subpaths[i]) ) for (subpath = all_subpaths) let( midpt = mean([subpath[0], subpath[1]]), rel = point_in_region(midpt,regions[1-i],eps=eps), keepthis = rel<0 ? keepoutside : rel>0 ? keepinside : !(keepS || keepU) ? false : let( sidept = midpt + 0.01*line_normal(subpath[0],subpath[1]), rel1 = point_in_region(sidept,regions[0],eps=eps)>0, rel2 = point_in_region(sidept,regions[1],eps=eps)>0 ) rel1==rel2 ? keepS : keepU ) if (keepthis) subpath ] ); function _list_three(a,b,c) = is_undef(b) ? a : [ a, if (is_def(b)) b, if (is_def(c)) c ]; // Function&Module: union() // Usage: // union() CHILDREN; // region = union(regions); // region = union(REGION1,REGION2); // region = union(REGION1,REGION2,REGION3); // Description: // When called as a function and given a list of regions or 2D polygons, // returns the union of all given regions and polygons. Result is a single region. // When called as the built-in module, makes the union of the given children. // Arguments: // regions = List of regions to union. // Example(2D): // shape1 = move([-8,-8,0], p=circle(d=50)); // shape2 = move([ 8, 8,0], p=circle(d=50)); // color("green") region(union(shape1,shape2)); // for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true); function union(regions=[],b=undef,c=undef,eps=EPSILON) = let(regions=_list_three(regions,b,c)) len(regions)==0? [] : len(regions)==1? regions[0] : let(regions=[for (r=regions) is_path(r)? [r] : r]) union([ _filter_region_parts(regions[0],regions[1],["OS", "O"], eps=eps), for (i=[2:1:len(regions)-1]) regions[i] ], eps=eps ); // Function&Module: difference() // Usage: // difference() CHILDREN; // region = difference(regions); // region = difference(REGION1,REGION2); // region = difference(REGION1,REGION2,REGION3); // Description: // When called as a function, and given a list of regions or 2D polygons, // takes the first region or polygon and differences away all other regions/polygons from it. The resulting // region is returned. // When called as the built-in module, makes the set difference of the given children. // Arguments: // regions = List of regions or polygons to difference. // Example(2D): // shape1 = move([-8,-8,0], p=circle(d=50)); // shape2 = move([ 8, 8,0], p=circle(d=50)); // for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true); // color("green") region(difference(shape1,shape2)); function difference(regions=[],b=undef,c=undef,eps=EPSILON) = let(regions = _list_three(regions,b,c)) len(regions)==0? [] : len(regions)==1? regions[0] : regions[0]==[] ? [] : let(regions=[for (r=regions) is_path(r)? [r] : r]) difference([ _filter_region_parts(regions[0],regions[1],["OU", "I"], eps=eps), for (i=[2:1:len(regions)-1]) regions[i] ], eps=eps ); // Function&Module: intersection() // Usage: // intersection() CHILDREN; // region = intersection(regions); // region = intersection(REGION1,REGION2); // region = intersection(REGION1,REGION2,REGION3); // Description: // When called as a function, and given a list of regions or polygons returns the // intersection of all given regions. Result is a single region. // When called as the built-in module, makes the intersection of all the given children. // Arguments: // regions = List of regions to intersect. // Example(2D): // shape1 = move([-8,-8,0], p=circle(d=50)); // shape2 = move([ 8, 8,0], p=circle(d=50)); // for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true); // color("green") region(intersection(shape1,shape2)); function intersection(regions=[],b=undef,c=undef,eps=EPSILON) = let(regions = _list_three(regions,b,c)) len(regions)==0 ? [] : len(regions)==1? regions[0] : regions[0]==[] || regions[1]==[] ? [] : intersection([ _filter_region_parts(regions[0],regions[1],["IS","I"],eps=eps), for (i=[2:1:len(regions)-1]) regions[i] ], eps=eps ); // Function&Module: exclusive_or() // Usage: // exclusive_or() CHILDREN; // region = exclusive_or(regions); // region = exclusive_or(REGION1,REGION2); // region = exclusive_or(REGION1,REGION2,REGION3); // Description: // When called as a function and given a list of regions or 2D polygons, // returns the exclusive_or of all given regions. Result is a single region. // When called as a module, performs a boolean exclusive-or of up to 10 children. Note that when // the input regions cross each other the exclusive-or operator will produce shapes that // meet at corners (non-simple regions), which do not render in CGAL. // Arguments: // regions = List of regions or polygons to exclusive_or // Example(2D): As Function. A linear_sweep of this shape fails to render in CGAL. // shape1 = move([-8,-8,0], p=circle(d=50)); // shape2 = move([ 8, 8,0], p=circle(d=50)); // for (shape = [shape1,shape2]) // color("red") stroke(shape, width=0.5, closed=true); // color("green") region(exclusive_or(shape1,shape2)); // Example(2D): As Module. A linear_extrude() of the resulting geometry fails to render in CGAL. // exclusive_or() { // square(40,center=false); // circle(d=40); // } function exclusive_or(regions=[],b=undef,c=undef,eps=EPSILON) = let(regions = _list_three(regions,b,c)) len(regions)==0? [] : len(regions)==1? force_region(regions[0]) : regions[0]==[] ? exclusive_or(list_tail(regions)) : regions[1]==[] ? exclusive_or(list_remove(regions,1)) : exclusive_or([ _filter_region_parts(regions[0],regions[1],["IO","IO"],eps=eps), for (i=[2:1:len(regions)-1]) regions[i] ], eps=eps ); module exclusive_or() { if ($children==1) { children(); } else if ($children==2) { difference() { children(0); children(1); } difference() { children(1); children(0); } } else if ($children==3) { exclusive_or() { exclusive_or() { children(0); children(1); } children(2); } } else if ($children==4) { exclusive_or() { exclusive_or() { children(0); children(1); } exclusive_or() { children(2); children(3); } } } else if ($children==5) { exclusive_or() { exclusive_or() { children(0); children(1); children(2); children(3); } children(4); } } else if ($children==6) { exclusive_or() { exclusive_or() { children(0); children(1); children(2); children(3); } children(4); children(5); } } else if ($children==7) { exclusive_or() { exclusive_or() { children(0); children(1); children(2); children(3); } children(4); children(5); children(6); } } else if ($children==8) { exclusive_or() { exclusive_or() { children(0); children(1); children(2); children(3); } exclusive_or() { children(4); children(5); children(6); children(7); } } } else if ($children==9) { exclusive_or() { exclusive_or() { children(0); children(1); children(2); children(3); } exclusive_or() { children(4); children(5); children(6); children(7); } children(8); } } else if ($children==10) { exclusive_or() { exclusive_or() { children(0); children(1); children(2); children(3); } exclusive_or() { children(4); children(5); children(6); children(7); } children(8); children(9); } } else { assert($children<=10, "exclusive_or() can only handle up to 10 children."); } } // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap