////////////////////////////////////////////////////////////////////// // LibFile: joiners.scad // Modules for joining separately printed parts including screw together, snap-together and dovetails. // Includes: // include <BOSL2/std.scad> // include <BOSL2/joiners.scad> // FileGroup: Parts // FileSummary: Joiner shapes for connecting separately printed objects. ////////////////////////////////////////////////////////////////////// include <rounding.scad> // Section: Half Joiners // Function&Module: half_joiner_clear() // Synopsis: Creates a mask to clear space for a {{half_joiner()}}. // SynTags: Geom, VNF // Topics: Joiners, Parts // See Also: half_joiner_clear(), half_joiner(), half_joiner2(), joiner_clear(), joiner(), snap_pin(), rabbit_clip(), dovetail() // Usage: As Module // half_joiner_clear(l, w, [ang=], [clearance=], [overlap=]) [ATTACHMENTS]; // Usage: As Function // vnf = half_joiner_clear(l, w, [ang=], [clearance=], [overlap=]); // Description: // Creates a mask to clear an area so that a half_joiner can be placed there. // Arguments: // l = Length of the joiner to clear space for. // w = Width of the joiner to clear space for. // ang = Overhang angle of the joiner. // --- // clearance = Extra width to clear. // overlap = Extra depth to clear. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // Example: // half_joiner_clear(); function half_joiner_clear(l=20, w=10, ang=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP) = let( guide = [w/3-get_slop()*2, ang_adj_to_opp(ang, l/3)*2, l/3], path = [ [ l/2,-overlap], [ guide.z/2, -guide.y/2-overlap], [-guide.z/2, -guide.y/2-overlap], [-l/2,-overlap], [-l/2, overlap], [-guide.z/2, guide.y/2+overlap], [ guide.z/2, guide.y/2+overlap], [ l/2, overlap], ], dpath = deduplicate(path, closed=true), vnf = linear_sweep(dpath, height=w+clearance*2, center=true, spin=90, orient=RIGHT) ) reorient(anchor,spin,orient, vnf=vnf, p=vnf); module half_joiner_clear(l=20, w=10, ang=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP) { vnf = half_joiner_clear(l=l, w=w, ang=ang, clearance=clearance, overlap=overlap); attachable(anchor,spin,orient, vnf=vnf) { vnf_polyhedron(vnf, convexity=2); children(); } } // Function&Module: half_joiner() // Synopsis: Creates a half-joiner shape to mate with a {{half_joiner2()}} shape.. // SynTags: Geom, VNF // Topics: Joiners, Parts // See Also: half_joiner_clear(), half_joiner(), half_joiner2(), joiner_clear(), joiner(), snap_pin(), rabbit_clip(), dovetail() // Usage: As Module // half_joiner(l, w, [base=], [ang=], [screwsize=], [$slop=]) [ATTACHMENTS]; // Usage: As Function // vnf = half_joiner(l, w, [base=], [ang=], [screwsize=], [$slop=]); // Description: // Creates a half_joiner object that can be attached to a matching half_joiner2 object. // Arguments: // l = Length of the half_joiner. // w = Width of the half_joiner. // --- // base = Length of the backing to the half_joiner. // ang = Overhang angle of the half_joiner. // screwsize = If given, diameter of screwhole. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // $slop = Printer specific slop value to make parts fit more closely. // Examples(FlatSpin,VPD=75): // half_joiner(screwsize=3); // half_joiner(l=20,w=10,base=10); // Example(3D): // diff() // cuboid(40) // attach([FWD,TOP,RIGHT]) // xcopies(20) half_joiner(); function half_joiner(l=20, w=10, base=10, ang=30, screwsize, anchor=CENTER, spin=0, orient=UP) = let( guide = [w/3-get_slop()*2, ang_adj_to_opp(ang, l/3)*2, l/3], snap_h = 1, snap = [guide.x+snap_h, 2*snap_h, l*0.6], slope = guide.z/2/(w/8), snap_top = slope * (snap.x-guide.x)/2, verts = [ [-w/2,-base,-l/2], [-w/2,-base,l/2], [w/2,-base,l/2], [w/2,-base,-l/2], [-w/2, 0,-l/2], [-w/2,-guide.y/2,-guide.z/2], [-w/2,-guide.y/2, guide.z/2], [-w/2, 0,l/2], [ w/2, 0,l/2], [ w/2,-guide.y/2, guide.z/2], [ w/2,-guide.y/2,-guide.z/2], [ w/2, 0,-l/2], [-guide.x/2, 0,-l/2], [-guide.x/2,-guide.y/2,-guide.z/2], [-guide.x/2-w/8,-guide.y/2, 0], [-guide.x/2,-guide.y/2, guide.z/2], [-guide.x/2, 0,l/2], [ guide.x/2, 0,l/2], [ guide.x/2,-guide.y/2, guide.z/2], [ guide.x/2+w/8,-guide.y/2, 0], [ guide.x/2,-guide.y/2,-guide.z/2], [ guide.x/2, 0,-l/2], [-w/6, -snap.y/2, -snap.z/2], [-w/6, -snap.y/2, -guide.z/2], [-snap.x/2, 0, min(snap_top-guide.z/2,-default(screwsize,0)*1.1/2)], [-w/6, snap.y/2, -guide.z/2], [-w/6, snap.y/2, -snap.z/2], [-snap.x/2, 0, snap_top-snap.z/2], [-w/6, -snap.y/2, snap.z/2], [-w/6, -snap.y/2, guide.z/2], [-snap.x/2, 0, max(guide.z/2-snap_top, default(screwsize,0)*1.1/2)], [-w/6, snap.y/2, guide.z/2], [-w/6, snap.y/2, snap.z/2], [-snap.x/2, 0, snap.z/2-snap_top], [ w/6, -snap.y/2, snap.z/2], [ w/6, -snap.y/2, guide.z/2], [ snap.x/2, 0, max(guide.z/2-snap_top, default(screwsize,0)*1.1/2)], [ w/6, snap.y/2, guide.z/2], [ w/6, snap.y/2, snap.z/2], [ snap.x/2, 0, snap.z/2-snap_top], [ w/6, -snap.y/2, -snap.z/2], [ w/6, -snap.y/2, -guide.z/2], [ snap.x/2, 0, min(snap_top-guide.z/2,-default(screwsize,0)*1.1/2)], [ w/6, snap.y/2, -guide.z/2], [ w/6, snap.y/2, -snap.z/2], [ snap.x/2, 0, snap_top-snap.z/2], [-w/6, guide.y/2, -guide.z/2], [-guide.x/2-w/8, guide.y/2, 0], [-w/6, guide.y/2, guide.z/2], [ w/6, guide.y/2, guide.z/2], [ guide.x/2+w/8, guide.y/2, 0], [ w/6, guide.y/2, -guide.z/2], if (screwsize != undef) each [ for (a = [0:45:359]) [guide.x/2+w/8, 0, 0] + screwsize * 1.1 / 2 * [-abs(sin(a))/slope, cos(a), sin(a)], for (a = [0:45:359]) [-(guide.x/2+w/8), 0, 0] + screwsize * 1.1 / 2 * [abs(sin(a))/slope, cos(a), sin(a)], ] ], faces = [ [0,1,2], [2,3,0], [0,4,5], [0,5,6], [0,6,1], [1,6,7], [3,10,11], [3,9,10], [2,9,3], [2,8,9], [1,7,16], [1,16,17], [1,17,8], [1,8,2], [0,3,11], [0,11,21], [0,21,12], [0,12,4], [10,20,11], [20,21,11], [12,13,5], [12,5,4], [9,8,18], [17,18,8], [6,16,7], [6,15,16], [19,10,9], [19,9,18], [19,20,10], [6,14,15], [6,5,14], [5,13,14], [24,26,25], [26,24,27], [22,27,24], [22,24,23], [22,26,27], [30,32,33], [30,31,32], [30,33,28], [30,28,29], [32,28,33], [40,41,42], [40,42,45], [45,42,43], [43,44,45], [40,45,44], [36,38,37], [36,39,38], [36,35,34], [36,34,39], [39,34,38], [12,26,22], [12,22,13], [22,23,13], [12,46,26], [46,25,26], [16,28,32], [16,15,28], [15,29,28], [48,16,32], [32,31,48], [17,38,34], [17,34,18], [18,34,35], [49,38,17], [37,38,49], [21,40,44], [51,21,44], [43,51,44], [20,40,21], [20,41,40], [17,16,49], [49,16,48], [21,51,46], [46,12,21], [51,50,49], [48,47,46], [46,51,49], [46,49,48], if (screwsize == undef) each [ [19,36,50], [19,35,36], [19,18,35], [36,37,50], [49,50,37], [19,50,42], [19,42,41], [41,20,19], [50,43,42], [50,51,43], [14,24,47], [14,23,24], [14,13,23], [47,24,25], [46,47,25], [47,30,14], [14,30,29], [14,29,15], [47,31,30], [47,48,31], ] else each [ [20,19,56], [20,56,57], [20,57,58], [41,58,42], [20,58,41], [50,51,52], [51,59,52], [51,58,59], [43,42,58], [51,43,58], [49,50,52], [49,52,53], [49,53,54], [37,54,36], [49,54,37], [56,19,18], [18,55,56], [18,54,55], [35,36,54], [18,35,54], [14,64,15], [15,64,63], [15,63,62], [29,62,30], [15,62,29], [48,31,62], [31,30,62], [48,62,61], [48,61,60], [60,47,48], [13,23,66], [23,24,66], [13,66,65], [13,65,64], [64,14,13], [46,47,60], [46,60,67], [46,67,66], [46,66,25], [66,24,25], for (i=[0:7]) let(b=52) [b+i, b+8+i, b+8+(i+1)%8], for (i=[0:7]) let(b=52) [b+i, b+8+(i+1)%8, b+(i+1)%8], ], ], pvnf = [verts, faces], vnf = xrot(90, p=pvnf) ) reorient(anchor,spin,orient, size=[w,l,base*2], p=vnf); module half_joiner(l=20, w=10, base=10, ang=30, screwsize, anchor=CENTER, spin=0, orient=UP) { vnf = half_joiner(l=l, w=w, base=base, ang=ang, screwsize=screwsize); if (is_list($tags_shown) && in_list("remove",$tags_shown)) { attachable(anchor,spin,orient, size=[w,l,base*2], $tag="remove") { half_joiner_clear(l=l, w=w, ang=ang, clearance=1); union(); } } else { attachable(anchor,spin,orient, size=[w,base*2,l], $tag="keep") { vnf_polyhedron(vnf, convexity=12); children(); } } } // Function&Module: half_joiner2() // Synopsis: Creates a half_joiner2 shape to mate with a {{half_joiner()}} shape.. // SynTags: Geom, VNF // Topics: Joiners, Parts // See Also: half_joiner_clear(), half_joiner(), half_joiner2(), joiner_clear(), joiner(), snap_pin(), rabbit_clip(), dovetail() // Usage: As Module // half_joiner2(l, w, [base=], [ang=], [screwsize=]) // Usage: As Function // vnf = half_joiner2(l, w, [base=], [ang=], [screwsize=]) // Description: // Creates a half_joiner2 object that can be attached to half_joiner object. // Arguments: // l = Length of the half_joiner. // w = Width of the half_joiner. // --- // base = Length of the backing to the half_joiner. // ang = Overhang angle of the half_joiner. // screwsize = Diameter of screwhole. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // Examples(FlatSpin,VPD=75): // half_joiner2(screwsize=3); // half_joiner2(w=10,base=10,l=20); // Example(3D): // diff() // cuboid(40) // attach([FWD,TOP,RIGHT]) // xcopies(20) half_joiner2(); function half_joiner2(l=20, w=10, base=10, ang=30, screwsize, anchor=CENTER, spin=0, orient=UP) = let( guide = [w/3, ang_adj_to_opp(ang, l/3)*2, l/3], snap_h = 1, snap = [guide.x+snap_h, 2*snap_h, l*0.6], slope = guide.z/2/(w/8), snap_top = slope * (snap.x-guide.x)/2, s1 = min(snap_top-guide.z/2,-default(screwsize,0)*1.1/2), s2 = max(guide.z/2-snap_top, default(screwsize,0)*1.1/2), verts = [ [-w/2,-base,-l/2], [-w/2,-base,l/2], [w/2,-base,l/2], [w/2,-base,-l/2], [-w/2, 0,-l/2], [-w/2, guide.y/2,-guide.z/2], [-w/2, guide.y/2, guide.z/2], [-w/2, 0,l/2], [ w/2, 0,l/2], [ w/2, guide.y/2, guide.z/2], [ w/2, guide.y/2,-guide.z/2], [ w/2, 0,-l/2], [-guide.x/2, 0,-l/2], [-guide.x/2,-guide.y/2,-guide.z/2], [-guide.x/2-w/8,-guide.y/2, 0], [-guide.x/2,-guide.y/2, guide.z/2], [-guide.x/2, 0,l/2], [ guide.x/2, 0,l/2], [ guide.x/2,-guide.y/2, guide.z/2], [ guide.x/2+w/8,-guide.y/2, 0], [ guide.x/2,-guide.y/2,-guide.z/2], [ guide.x/2, 0,-l/2], [-w/6, -snap.y/2, -snap.z/2], [-w/6, -snap.y/2, -guide.z/2], [-snap.x/2, 0, s1], [-w/6, snap.y/2, -guide.z/2], [-w/6, snap.y/2, -snap.z/2], [-snap.x/2, 0, snap_top-snap.z/2], [-w/6, -snap.y/2, snap.z/2], [-w/6, -snap.y/2, guide.z/2], [-snap.x/2, 0, s2], [-w/6, snap.y/2, guide.z/2], [-w/6, snap.y/2, snap.z/2], [-snap.x/2, 0, snap.z/2-snap_top], [ w/6, -snap.y/2, snap.z/2], [ w/6, -snap.y/2, guide.z/2], [ snap.x/2, 0, s2], [ w/6, snap.y/2, guide.z/2], [ w/6, snap.y/2, snap.z/2], [ snap.x/2, 0, snap.z/2-snap_top], [ w/6, -snap.y/2, -snap.z/2], [ w/6, -snap.y/2, -guide.z/2], [ snap.x/2, 0, s1], [ w/6, snap.y/2, -guide.z/2], [ w/6, snap.y/2, -snap.z/2], [ snap.x/2, 0, snap_top-snap.z/2], [-w/6, guide.y/2, -guide.z/2], [-guide.x/2-w/8, guide.y/2, 0], [-w/6, guide.y/2, guide.z/2], [ w/6, guide.y/2, guide.z/2], [ guide.x/2+w/8, guide.y/2, 0], [ w/6, guide.y/2, -guide.z/2], if (screwsize != undef) each [ for (a = [0:45:359]) [guide.x/2+w/8, 0, 0] + screwsize * 1.1 / 2 * [-abs(sin(a))/slope, cos(a), sin(a)], for (a = [0:45:359]) [-(guide.x/2+w/8), 0, 0] + screwsize * 1.1 / 2 * [abs(sin(a))/slope, cos(a), sin(a)], for (a = [0:45:359]) [w/2, 0, 0] + screwsize * 1.1 / 2 * [0, cos(a), sin(a)], for (a = [0:45:359]) [-w/2, 0, 0] + screwsize * 1.1 / 2 * [0, cos(a), sin(a)], ] ], faces = [ [0,1,2], [2,3,0], [1,7,16], [1,16,17], [1,17,8], [1,8,2], [0,3,11], [0,11,21], [0,21,12], [0,12,4], [10,51,11], [51,21,11], [12,46,5], [12,5,4], [9,8,49], [17,49,8], [6,16,7], [6,48,16], [50,10,9], [50,9,49], [50,51,10], [6,47,48], [6,5,47], [5,46,47], [24,25,26], [26,27,24], [22,24,27], [22,23,24], [22,27,26], [30,33,32], [30,32,31], [30,28,33], [30,29,28], [32,33,28], [40,42,41], [40,45,42], [45,43,42], [43,45,44], [40,44,45], [36,37,38], [36,38,39], [36,34,35], [36,39,34], [39,38,34], [12,22,26], [12,13,22], [22,13,23], [12,26,46], [46,26,25], [16,32,28], [16,28,15], [15,28,29], [48,32,16], [32,48,31], [17,34,38], [17,18,34], [18,35,34], [49,17,38], [37,49,38], [21,44,40], [51,44,21], [43,44,51], [20,21,40], [20,40,41], [17,16,18], [18,16,15], [21,20,13], [13,12,21], [20,19,18], [15,14,13], [13,20,18], [13,18,15], if (screwsize == undef) each [ [0,4,5], [0,5,6], [0,6,1], [1,6,7], [3,10,11], [3,9,10], [2,9,3], [2,8,9], [19,50,36], [19,36,35], [19,35,18], [36,50,37], [49,37,50], [19,42,50], [19,41,42], [41,19,20], [50,42,43], [50,43,51], [14,47,24], [14,24,23], [14,23,13], [47,25,24], [46,25,47], [47,14,30], [14,29,30], [14,15,29], [47,30,31], [47,31,48], ] else each [ [3,2,72], [2,71,72], [2,70,71], [2,8,70], [8,9,70], [9,69,70], [9,68,69], [9,10,68], [10,75,68], [10,74,75], [10,11,74], [3,72,73], [3,73,74], [3,74,11], [1,0,80], [0,81,80], [0,82,81], [0,4,82], [4,5,82], [5,83,82], [5,76,83], [5,6,76], [6,77,76], [6,78,77], [6,7,78], [7,1,78], [1,79,78], [1,80,79], [20,56,19], [20,57,56], [20,41,57], [41,58,57], [41,42,58], [50,52,51], [51,52,59], [43,59,58], [43,58,42], [51,59,43], [49,52,50], [49,53,52], [49,37,53], [37,36,54], [54,53,37], [56,18,19], [18,56,55], [18,55,35], [35,55,54], [36,35,54], [14,15,64], [15,63,64], [15,29,63], [29,62,63], [29,30,62], [31,48,61], [31,61,62], [30,31,62], [48,60,61], [60,48,47], [23,13,65], [65,66,23], [24,23,66], [13,64,65], [64,13,14], [46,60,47], [46,67,60], [46,25,67], [66,67,25], [25,24,66], for (i=[0:7]) let(b=52) each [ [b+i, b+16+(i+1)%8, b+16+i], [b+i, b+(i+1)%8, b+16+(i+1)%8], ], for (i=[0:7]) let(b=60) each [ [b+i, b+16+i, b+16+(i+1)%8], [b+i, b+16+(i+1)%8, b+(i+1)%8], ], ], ], verts2 = [ for (i = idx(verts)) !approx(s2, verts[54].z)? verts[i] : i==54? [ snap.x/2-0.01, verts[i].y, verts[i].z] : i==58? [ snap.x/2-0.01, verts[i].y, verts[i].z] : i==62? [-snap.x/2+0.01, verts[i].y, verts[i].z] : i==66? [-snap.x/2+0.01, verts[i].y, verts[i].z] : verts[i] ], pvnf = [verts2, faces], vnf = xrot(90, p=pvnf) ) reorient(anchor,spin,orient, size=[w,l,base*2], p=vnf); module half_joiner2(l=20, w=10, base=10, ang=30, screwsize, anchor=CENTER, spin=0, orient=UP) { vnf = half_joiner2(l=l, w=w, base=base, ang=ang, screwsize=screwsize); if (is_list($tags_shown) && in_list("remove",$tags_shown)) { attachable(anchor,spin,orient, size=[w,l,base*2], $tag="remove") { half_joiner_clear(l=l, w=w, ang=ang, clearance=1); union(); } } else { attachable(anchor,spin,orient, size=[w,base*2,l], $tag="keep") { vnf_polyhedron(vnf, convexity=12); children(); } } } // Section: Full Joiners // Module: joiner_clear() // Synopsis: Creates a mask to clear space for a {{joiner()}} shape. // SynTags: Geom // Topics: Joiners, Parts // See Also: half_joiner_clear(), half_joiner(), half_joiner2(), joiner_clear(), joiner(), snap_pin(), rabbit_clip(), dovetail() // Description: // Creates a mask to clear an area so that a joiner can be placed there. // Usage: // joiner_clear(l, w, [ang=], [clearance=], [overlap=]) [ATTACHMENTS]; // Arguments: // l = Length of the joiner to clear space for. // w = Width of the joiner to clear space for. // ang = Overhang angle of the joiner. // --- // clearance = Extra width to clear. // overlap = Extra depth to clear. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // Example: // joiner_clear(); function joiner_clear(l=40, w=10, ang=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP) = no_function("joiner_clear"); module joiner_clear(l=40, w=10, ang=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP) { dmnd_height = l*0.5; dmnd_width = dmnd_height*tan(ang); guide_size = w/3; guide_width = 2*(dmnd_height/2-guide_size)*tan(ang); attachable(anchor,spin,orient, size=[w, guide_width, l]) { union() { back(l/4) half_joiner_clear(l=l/2+0.01, w=w, ang=ang, overlap=overlap, clearance=clearance); fwd(l/4) half_joiner_clear(l=l/2+0.01, w=w, ang=ang, overlap=overlap, clearance=-0.01); } children(); } } // Module: joiner() // Synopsis: Creates a joiner shape that can mate with another rotated joiner shape. // SynTags: Geom // Topics: Joiners, Parts // See Also: half_joiner_clear(), half_joiner(), half_joiner2(), joiner_clear(), joiner(), snap_pin(), rabbit_clip(), dovetail() // Usage: // joiner(l, w, base, [ang=], [screwsize=], [$slop=]) [ATTACHMENTS]; // Description: // Creates a joiner object that can be attached to another joiner object. // Arguments: // l = Length of the joiner. // w = Width of the joiner. // base = Length of the backing to the joiner. // ang = Overhang angle of the joiner. // --- // screwsize = If given, diameter of screwhole. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // $slop = Printer specific slop value to make parts fit more closely. // Examples(FlatSpin,VPD=125): // joiner(screwsize=3); // joiner(l=40, w=10, base=10); // Example(3D): // diff() // cuboid(50) // attach([FWD,TOP,RIGHT]) // zrot_copies(n=2,r=15) // joiner(); function joiner(l=40, w=10, base=10, ang=30, screwsize, anchor=CENTER, spin=0, orient=UP) = no_function("joiner"); module joiner(l=40, w=10, base=10, ang=30, screwsize, anchor=CENTER, spin=0, orient=UP) { if (is_list($tags_shown) && in_list("remove",$tags_shown)) { attachable(anchor,spin,orient, size=[w,l,base*2], $tag="remove") { joiner_clear(w=w, l=l, ang=ang, clearance=1); union(); } } else { attachable(anchor,spin,orient, size=[w,l,base*2], $tag="keep") { union() { back(l/4) half_joiner(l=l/2, w=w, base=base, ang=ang, screwsize=screwsize); fwd(l/4) half_joiner2(l=l/2, w=w, base=base, ang=ang, screwsize=screwsize); } children(); } } } // Section: Dovetails // Module: dovetail() // Synopsis: Creates a possibly tapered dovetail shape. // SynTags: Geom // Topics: Joiners, Parts // See Also: joiner(), snap_pin(), rabbit_clip() // // Usage: // dovetail(gender, w=|width, h=|height, slide|thickness=, [slope=|angle=], [taper=|back_width=], [chamfer=], [r=|radius=], [round=], [extra=], [$slop=]) // // Description: // Produces a possibly tapered dovetail joint shape to attach to or subtract from two parts you wish to join together. // The tapered dovetail is particularly advantageous for long joints because the joint assembles without binding until // it is fully closed, and then wedges tightly. You can chamfer or round the corners of the dovetail shape for better // printing and assembly, or choose a fully rounded joint that looks more like a puzzle piece. The dovetail appears // parallel to the Y axis and projecting upwards, so in its default orientation it will slide together with a translation // in the positive Y direction. The gender determines whether the shape is meant to be added to your model or // differenced, and it also changes the anchor and orientation. The default anchor for dovetails is BOTTOM; // the default orientation depends on the gender, with male dovetails oriented UP and female ones DOWN. The dovetails by default // have extra extension of 0.01 for unions and differences. You should ensure that attachment is done with overlap=0 to ensure that // the sizing and positioning is correct. To adjust the fit, use the $slop variable, which increases the depth and width of // the female part of the joint to allow a clearance gap of $slop on each of the three sides. // // Arguments: // gender = A string, "male" or "female", to specify the gender of the dovetail. // w / width = Width (at the wider, top end) of the dovetail before tapering // h / height = Height of the dovetail (the amount it projects from its base) // slide / thickness = Distance the dovetail slides when you assemble it (length of sliding dovetails, thickness of regular dovetails) // --- // slope = slope of the dovetail. Standard woodworking slopes are 4, 6, or 8. Default: 6. // angle = angle (in degrees) of the dovetail. Specify only one of slope and angle. // taper = taper angle (in degrees). Dovetail gets narrower by this angle. Default: no taper // back_width = width of right hand end of the dovetail. This alternate method of specifying the taper may be easier to manage. Specify only one of `taper` and `back_width`. Note that `back_width` should be smaller than `width` to taper in the customary direction, with the smaller end at the back. // chamfer = amount to chamfer the corners of the joint (Default: no chamfer) // r / radius = amount to round over the corners of the joint (Default: no rounding) // round = true to round both corners of the dovetail and give it a puzzle piece look. Default: false. // $slop = Increase the width of socket by double this amount and depth by this amount to allow adjustment of the fit. // extra = amount of extra length and base extension added to dovetails for unions and differences. Default: 0.01 // Example: Ordinary straight dovetail, male version (sticking up) and female version (below the xy plane) // dovetail("male", width=15, height=8, slide=30); // right(20) dovetail("female", width=15, height=8, slide=30); // Example: Adding a 6 degree taper (Such a big taper is usually not necessary, but easier to see for the example.) // dovetail("male", w=15, h=8, slide=30, taper=6); // right(20) dovetail("female", 15, 8, 30, taper=6); // Same as above // Example: A block that can link to itself // diff() // cuboid([50,30,10]){ // attach(BACK) dovetail("male", slide=10, width=15, height=8); // tag("remove")attach(FRONT) dovetail("female", slide=10, width=15, height=8); // } // Example: Setting the dovetail angle. This is too extreme to be useful. // diff() // cuboid([50,30,10]){ // attach(BACK) dovetail("male", slide=10, width=15, height=8, angle=30); // tag("remove")attach(FRONT) dovetail("female", slide=10, width=15, height=8, angle=30); // } // Example: Adding a chamfer helps printed parts fit together without problems at the corners // diff("remove") // cuboid([50,30,10]){ // attach(BACK) dovetail("male", slide=10, width=15, height=8, chamfer=1); // tag("remove")attach(FRONT) dovetail("female", slide=10, width=15, height=8,chamfer=1); // } // Example: Rounding the outside corners is another option // diff("remove") // cuboid([50,30,10]) { // attach(BACK) dovetail("male", slide=10, width=15, height=8, radius=1, $fn=32); // tag("remove") attach(FRONT) dovetail("female", slide=10, width=15, height=8, radius=1, $fn=32); // } // Example: Or you can make a fully rounded joint // $fn=32; // diff("remove") // cuboid([50,30,10]){ // attach(BACK) dovetail("male", slide=10, width=15, height=8, radius=1.5, round=true); // tag("remove")attach(FRONT) dovetail("female", slide=10, width=15, height=8, radius=1.5, round=true); // } // Example: With a long joint like this, a taper makes the joint easy to assemble. It will go together easily and wedge tightly if you get the tolerances right. Specifying the taper with `back_width` may be easier than using a taper angle. // cuboid([50,30,10]) // attach(TOP) dovetail("male", slide=50, width=18, height=4, back_width=15, spin=90); // fwd(35) // diff("remove") // cuboid([50,30,10]) // tag("remove") attach(TOP) dovetail("female", slide=50, width=18, height=4, back_width=15, spin=90); // Example: A series of dovetails forming a tail board, with the inside of the joint up. A standard wood joint would have a zero taper. // cuboid([50,30,10]) // attach(BACK) xcopies(10,5) dovetail("male", slide=10, width=7, taper=4, height=4); // Example: Mating pin board for a half-blind right angle joint, where the joint only shows on the side but not the front. Note that the anchor method and use of `spin` ensures that the joint works even with a taper. // diff("remove") // cuboid([50,30,10]) // tag("remove")position(TOP+BACK) xcopies(10,5) dovetail("female", slide=10, width=7, taper=4, height=4, anchor=BOTTOM+FRONT,spin=180); function dovetail(gender, width, height, slide, h, w, angle, slope, thickness, taper, back_width, chamfer, extra=0.01, r, radius, round=false, anchor=BOTTOM, spin=0, orient) = no_function("dovetail"); module dovetail(gender, width, height, slide, h, w, angle, slope, thickness, taper, back_width, chamfer, extra=0.01, r, radius, round=false, anchor=BOTTOM, spin=0, orient) { radius = get_radius(r1=radius,r2=r); slide = one_defined([slide,thickness],"slide,thickness"); h = one_defined([h,height],"h,height"); w = one_defined([w,width],"w,width"); orient = is_def(orient) ? orient : gender == "female" ? DOWN : UP; count = num_defined([angle,slope]); count2 = num_defined([taper,back_width]); count3 = num_defined([chamfer, radius]); dummy = assert(count<=1, "Do not specify both angle and slope") assert(count2<=1, "Do not specify both taper and back_width") assert(count3<=1 || (radius==0 && chamfer==0), "Do not specify both chamfer and radius"); slope = is_def(slope) ? slope : is_def(angle) ? 1/tan(angle) : 6; height_slop = gender == "female" ? get_slop() : 0; // Need taper angle for computing width adjustment, but not used elsewhere taper_ang = is_def(taper) ? taper : is_def(back_width) ? atan((back_width-w)/2/slide) : 0; // This is the adjustment factor for width to grow in the direction normal to the dovetail face wfactor = sqrt( 1/slope^2 + 1/cos(taper_ang)^2 ); // adjust width for increased height adjust for normal to dovetail surface width_slop = 2*height_slop/slope + 2* height_slop * wfactor; width = w + width_slop; height = h + height_slop; back_width = u_add(back_width, width_slop); extra_offset = is_def(taper) ? -extra * tan(taper) : is_def(back_width) ? extra * (back_width-width)/slide/2 : 0; size = is_def(chamfer) && chamfer>0 ? chamfer : is_def(radius) && radius>0 ? radius : 0; fullsize = round ? [size,size] : gender == "male" ? [size,0] : [0,size]; type = is_def(chamfer) && chamfer>0 ? "chamfer" : "circle"; smallend_half = round_corners( move( [0,-slide/2-extra,0], p=[ [0, 0, height], [width/2 - extra_offset, 0, height], [width/2 - extra_offset - height/slope, 0, 0 ], [width/2 - extra_offset + height, 0, 0 ] ] ), method=type, cut = fullsize, closed=false ); smallend_points = concat(select(smallend_half, 1, -2), [down(extra,p=select(smallend_half, -2))]); offset = is_def(taper) ? -slide * tan(taper) : is_def(back_width) ? (back_width-width) / 2 : 0; bigend_points = move([offset+2*extra_offset,slide+2*extra,0], p=smallend_points); bigenough = all_nonnegative(column(smallend_half,0)) && all_nonnegative(column(bigend_points,0)); assert(bigenough, "Width (or back_width) of dovetail is not large enough for its geometry (angle and taper"); //adjustment = $overlap * (gender == "male" ? -1 : 1); // Adjustment for default overlap in attach() adjustment = 0; // Default overlap is assumed to be zero // This code computes the true normal from which the exact width factor can be obtained // as the x component. Comparing to wfactor above shows that they agree. // pts = [smallend_points[0], smallend_points[1], bigend_points[1],bigend_points[0]]; // n = -polygon_normal(pts); // echo(n=n); // echo(invwfactor = 1/wfactor, error = n.x-1/wfactor); attachable(anchor,spin,orient, size=[width+2*offset, slide, height]) { down(height/2+adjustment) { //color("red")stroke([pts],width=.1); skin( [ reverse(concat(smallend_points, xflip(p=reverse(smallend_points)))), reverse(concat(bigend_points, xflip(p=reverse(bigend_points)))) ], slices=0, convexity=4 ); } children(); } } // Section: Tension Clips // h is total height above 0 of the nub // nub extends below xy plane by distance nub/2 module _pin_nub(r, nub, h) { L = h / 4; rotate_extrude(){ polygon( [[ 0,-nub/2], [-r,-nub/2], [-r-nub, nub/2], [-r-nub, nub/2+L], [-r, h], [0, h]]); } } module _pin_slot(l, r, t, d, nub, depth, stretch) { yscale(4) intersection() { translate([t, 0, d + t / 4]) _pin_nub(r = r + t, nub = nub, h = l - (d + t / 4)); translate([-t, 0, d + t / 4]) _pin_nub(r = r + t, nub = nub, h = l - (d + t / 4)); } cube([2 * r, depth, 2 * l], center = true); up(l) zscale(stretch) ycyl(r = r, h = depth); } module _pin_shaft(r, lStraight, nub, nubscale, stretch, d, pointed) { extra = 0.02; // This sets the extra extension below the socket bottom // so that difference() works without issues rPoint = r / sqrt(2); down(extra) cylinder(r = r, h = lStraight + extra); up(lStraight) { zscale(stretch) { hull() { sphere(r = r); if (pointed) up(rPoint) cylinder(r1 = rPoint, r2 = 0, h = rPoint/stretch); } } } up(d) yscale(nubscale) _pin_nub(r = r, nub = nub, h = lStraight - d); } function _pin_size(size) = is_undef(size) ? [] : let(sizeok = in_list(size,["tiny", "small","medium", "large", "standard"])) assert(sizeok,"Pin size must be one of \"tiny\", \"small\", \"medium\" or \"standard\"") size=="standard" || size=="large" ? struct_set([], ["length", 10.8, "diameter", 7, "snap", 0.5, "nub_depth", 1.8, "thickness", 1.8, "preload", 0.2]): size=="medium" ? struct_set([], ["length", 8, "diameter", 4.6, "snap", 0.45, "nub_depth", 1.5, "thickness", 1.4, "preload", 0.2]) : size=="small" ? struct_set([], ["length", 6, "diameter", 3.2, "snap", 0.4, "nub_depth", 1.2, "thickness", 1.0, "preload", 0.16]) : size=="tiny" ? struct_set([], ["length", 4, "diameter", 2.5, "snap", 0.25, "nub_depth", 0.9, "thickness", 0.8, "preload", 0.1]): undef; // Module: snap_pin() // Synopsis: Creates a snap-pin that can slot into a {{snap_pin_socket()}} to join two parts. // SynTags: Geom // Topics: Joiners, Parts // See Also: snap_pin_socket(), joiner(), dovetail(), snap_pin(), rabbit_clip() // Usage: // snap_pin(size, [pointed=], [anchor=], [spin=], [orient]=) [ATTACHMENTS]; // snap_pin(r=|radius=|d=|diameter=, l=|length=, nub_depth=, snap=, thickness=, [clearance=], [preload=], [pointed=]) [ATTACHMENTS]; // Description: // Creates a snap pin that can be inserted into an appropriate socket to connect two objects together. You can choose from some standard // pin dimensions by giving a size, or you can specify all the pin geometry parameters yourself. If you use a standard size you can // override the standard parameters by specifying other ones. The pins have flat sides so they can // be printed. When oriented UP the shaft of the pin runs in the Z direction and the flat sides are the front and back. The default // orientation (FRONT) and anchor (FRONT) places the pin in a printable configuration, flat side down on the xy plane. // The tightness of fit is determined by `preload` and `clearance`. To make pins tighter increase `preload` and/or decrease `clearance`. // . // The "large" or "standard" size pin has a length of 10.8 and diameter of 7. The "medium" pin has a length of 8 and diameter of 4.6. The "small" pin // has a length of 6 and diameter of 3.2. The "tiny" pin has a length of 4 and a diameter of 2.5. // . // This pin is based on https://www.thingiverse.com/thing:213310 by Emmett Lalishe // and a modified version at https://www.thingiverse.com/thing:3218332 by acwest // and distributed under the Creative Commons - Attribution - Share Alike License // Arguments: // size = text string to select from a list of predefined sizes, one of "standard", "medium", "small", or "tiny". // --- // pointed = set to true to get a pointed pin, false to get one with a rounded end. Default: true // r/radius = radius of the pin // d/diameter = diameter of the pin // l/length = length of the pin // nub_depth = the distance of the nub from the base of the pin // snap = how much snap the pin provides (the nub projection) // thickness = thickness of the pin walls // pointed = if true the pin is pointed, otherwise it has a rounded tip. Default: true // clearance = how far to shrink the pin away from the socket walls. Default: 0.2 // preload = amount to move the nub towards the pin base, which can create tension from the misalignment with the socket. Default: 0.2 // Example: Pin in native orientation // snap_pin("standard", anchor=CENTER, orient=UP, thickness = 1, $fn=40); // Example: Pins oriented for printing // xcopies(spacing=10, n=4) snap_pin("standard", $fn=40); function snap_pin(size,r,radius,d,diameter, l,length, nub_depth, snap, thickness, clearance=0.2, preload, pointed=true, anchor=FRONT, spin=0, orient=FRONT, center) =no_function("snap_pin"); module snap_pin(size,r,radius,d,diameter, l,length, nub_depth, snap, thickness, clearance=0.2, preload, pointed=true, anchor=FRONT, spin=0, orient=FRONT, center) { preload_default = 0.2; sizedat = _pin_size(size); radius = get_radius(r1=r,r2=radius,d1=d,d2=diameter,dflt=struct_val(sizedat,"diameter")/2); length = first_defined([l,length,struct_val(sizedat,"length")]); snap = first_defined([snap, struct_val(sizedat,"snap")]); thickness = first_defined([thickness, struct_val(sizedat,"thickness")]); nub_depth = first_defined([nub_depth, struct_val(sizedat,"nub_depth")]); preload = first_defined([first_defined([preload, struct_val(sizedat, "preload")]),preload_default]); nubscale = 0.9; // Mysterious arbitrary parameter // The basic pin assumes a rounded cap of length sqrt(2)*r, which defines lStraight. // If the point is enabled the cap length is instead 2*r // preload shrinks the length, bringing the nubs closer together rInner = radius - clearance; stretch = sqrt(2)*radius/rInner; // extra stretch factor to make cap have proper length even though r is reduced. lStraight = length - sqrt(2) * radius - clearance; lPin = lStraight + (pointed ? 2*radius : sqrt(2)*radius); attachable(anchor=anchor,spin=spin, orient=orient, size=[nubscale*(2*rInner+2*snap + clearance),radius*sqrt(2)-2*clearance,2*lPin]){ zflip_copy() difference() { intersection() { cube([3 * (radius + snap), radius * sqrt(2) - 2 * clearance, 2 * length + 3 * radius], center = true); _pin_shaft(rInner, lStraight, snap+clearance/2, nubscale, stretch, nub_depth-preload, pointed); } _pin_slot(l = lStraight, r = rInner - thickness, t = thickness, d = nub_depth - preload, nub = snap, depth = 2 * radius + 0.02, stretch = stretch); } children(); } } // Module: snap_pin_socket() // Synopsis: Creates a snap-pin socket for a {{snap_pin()}} to slot into. // SynTags: Geom // Topics: Joiners, Parts // See Also: snap_pin(), joiner(), dovetail(), snap_pin(), rabbit_clip() // Usage: // snap_pin_socket(size, [fixed=], [fins=], [pointed=], [anchor=], [spin=], [orient=]) [ATTACHMENTS]; // snap_pin_socket(r=|radius=|d=|diameter=, l=|length=, nub_depth=, snap=, [fixed=], [pointed=], [fins=]) [ATTACHMENTS]; // Description: // Constructs a socket suitable for a snap_pin with the same parameters. If `fixed` is true then the socket has flat walls and the // pin will not rotate in the socket. If `fixed` is false then the socket is round and the pin will rotate, particularly well // if you add a lubricant. If `pointed` is true the socket is pointed to receive a pointed pin, otherwise it has a rounded and and // will be shorter. If `fins` is set to true then two fins are included inside the socket to act as supports (which may help when printing tip up, // especially when `pointed=false`). The default orientation is DOWN with anchor BOTTOM so that you can difference() the socket away from an object. // The socket extends 0.02 extra below its bottom anchor point so that differences will work correctly. (You must have $overlap smaller than 0.02 in // attach or the socket will be beneath the surface of the parent object.) // . // The "large" or "standard" size pin has a length of 10.8 and diameter of 7. The "medium" pin has a length of 8 and diameter of 4.6. The "small" pin // has a length of 6 and diameter of 3.2. The "tiny" pin has a length of 4 and a diameter of 2.5. // Arguments: // size = text string to select from a list of predefined sizes, one of "standard", "medium", "small", or "tiny". // --- // pointed = set to true to get a pointed pin, false to get one with a rounded end. Default: true // r/radius = radius of the pin // d/diameter = diameter of the pin // l/length = length of the pin // nub_depth = the distance of the nub from the base of the pin // snap = how much snap the pin provides (the nub projection) // fixed = if true the pin cannot rotate, if false it can. Default: true // pointed = if true the socket has a pointed tip. Default: true // fins = if true supporting fins are included. Default: false // Example: The socket shape itself in native orientation. // snap_pin_socket("standard", anchor=CENTER, orient=UP, fins=true, $fn=40); // Example: A spinning socket with fins: // snap_pin_socket("standard", anchor=CENTER, orient=UP, fins=true, fixed=false, $fn=40); // Example: A cube with a socket in the middle and one half-way off the front edge so you can see inside: // $fn=40; // diff("socket") cuboid([20,20,20]) // tag("socket"){ // attach(TOP) snap_pin_socket("standard"); // position(TOP+FRONT)snap_pin_socket("standard"); // } function snap_pin_socket(size, r, radius, l,length, d,diameter,nub_depth, snap, fixed=true, pointed=true, fins=false, anchor=BOTTOM, spin=0, orient=DOWN) = no_function("snap_pin_socket"); module snap_pin_socket(size, r, radius, l,length, d,diameter,nub_depth, snap, fixed=true, pointed=true, fins=false, anchor=BOTTOM, spin=0, orient=DOWN) { sizedat = _pin_size(size); radius = get_radius(r1=r,r2=radius,d1=d,d2=diameter,dflt=struct_val(sizedat,"diameter")/2); length = first_defined([l,length,struct_val(sizedat,"length")]); snap = first_defined([snap, struct_val(sizedat,"snap")]); nub_depth = first_defined([nub_depth, struct_val(sizedat,"nub_depth")]); tip = pointed ? sqrt(2) * radius : radius; lPin = length + (pointed?(2-sqrt(2))*radius:0); lStraight = lPin - (pointed?sqrt(2)*radius:radius); attachable(anchor=anchor,spin=spin,orient=orient, size=[2*(radius+snap),radius*sqrt(2),lPin]) { down(lPin/2) intersection() { cube([3 * (radius + snap), fixed ? radius * sqrt(2) : 3*(radius+snap), 3 * lPin + 3 * radius], center = true); union() { _pin_shaft(radius,lStraight,snap,1,1,nub_depth,pointed); if (fins) up(lStraight){ cube([2 * radius, 0.01, 2 * tip], center = true); cube([0.01, 2 * radius, 2 * tip], center = true); } } } children(); } } // Module: rabbit_clip() // Synopsis: Creates a rabbit-eared clip that can snap into a slot. // SynTags: Geom // Topics: Joiners, Parts // See Also: snap_pin(), joiner(), dovetail(), snap_pin(), rabbit_clip() // Usage: // rabbit_clip(type, length, width, snap, thickness, depth, [compression=], [clearance=], [lock=], [lock_clearance=], [splineteps=], [anchor=], [orient=], [spin=]) [ATTACHMENTS]; // Description: // Creates a clip with two flexible ears to lock into a mating socket, or create a mask to produce the appropriate // mating socket. The clip can be made to insert and release easily, or to hold much better, or it can be // created with locking flanges that will make it very hard or impossible to remove. Unlike the snap pin, this clip // is rectangular and can be made at any height, so a suitable clip could be very thin. It's also possible to get a // solid connection with a short pin. // . // The type parameters specifies whether to make a clip, a socket mask, or a double clip. The length is the // total nominal length of the clip. (The actual length will be very close, but not equal to this.) The width // gives the nominal width of the clip, which is the actual width of the clip at its base. The snap parameter // gives the depth of the clip sides, which controls how easy the clip is to insert and remove. The clip "ears" are // made over-wide by the compression value. A nonzero compression helps make the clip secure in its socket. // The socket's width and length are increased by the clearance value which creates some space and can compensate // for printing inaccuracy. The socket will be slightly longer than the nominal width. The thickness is the thickness // curved line that forms the clip. The clip depth is the amount the basic clip shape is extruded. Be sure that you // make the socket with a larger depth than the clip (try 0.4 mm) to allow ease of insertion of the clip. The clearance // value does not apply to the depth. The splinesteps parameter increases the sampling of the clip curves. // . // By default clips appear with orient=UP and sockets with orient=DOWN. The clips and sockets extend 0.02 units below // their base so that unions and differences will work without trouble, but be sure that the attach overlap is smaller // than 0.02. // . // The first figure shows the dimensions of the rabbit clip. The second figure shows the clip in red overlayed on // its socket in yellow. The left clip has a nonzero clearance, so its socket is bigger than the clip all around. // The right hand locking clip has no clearance, but it has a lock clearance, which provides some space behind // the lock to allow the clip to fit. (Note that depending on your printer, this can be set to zero.) // Figure(2DMed,NoAxes): // snap=1.5; // comp=0.75; // mid = 8.053; // computed in rabbit_clip // tip = [-4.58,18.03]; // translate([9,3]){ // back_half() // rabbit_clip("pin",width=12, length=18, depth=1, thickness = 1, compression=comp, snap=snap, orient=BACK); // color("blue"){ // stroke([[6,0],[6,18]],width=0.1); // stroke([[6+comp, 12], [6+comp, 18]], width=.1); // } // color("red"){ // stroke([[6-snap,mid], [6,mid]], endcaps="arrow2",width=0.15); // translate([6+.4,mid-.15])text("snap",size=1,valign="center"); // translate([6+comp/2,19.5])text("compression", size=1, halign="center"); // stroke([[6+comp/2,19.3], [6+comp/2,17.7]], endcap2="arrow2", width=.15); // fwd(1.1)text("width",size=1,halign="center"); // xflip_copy()stroke([[2,-.7], [6,-.7]], endcap2="arrow2", width=.15); // move([-6.7,mid])rot(90)text("length", size=1, halign="center"); // stroke([[-7,10.3], [-7,18]], width=.15, endcap2="arrow2"); // stroke([[-7,0], [-7,5.8]], width=.15,endcap1="arrow2"); // stroke([tip, tip-[0,1]], width=.15); // move([tip.x+2,19.5])text("thickness", halign="center",size=1); // stroke([[tip.x+2, 19.3], tip+[.1,.1]], width=.15, endcap2="arrow2"); // } // } // // Figure(2DMed,NoAxes): // snap=1.5; // comp=0; // translate([29,3]){ // back_half() // rabbit_clip("socket", width=12, length=18, depth=1, thickness = 1, compression=comp, snap=snap, orient=BACK,lock=true); // color("red")back_half() // rabbit_clip("pin",width=12, length=18, depth=1, thickness = 1, compression=comp, snap=snap, // orient=BACK,lock=true,lock_clearance=1); // } // translate([9,3]){ // back_half() // rabbit_clip("socket", clearance=.5,width=12, length=18, depth=1, thickness = 1, // compression=comp, snap=snap, orient=BACK,lock=false); // color("red")back_half() // rabbit_clip("pin",width=12, length=18, depth=1, thickness = 1, compression=comp, snap=snap, // orient=BACK,lock=false,lock_clearance=1); // } // Arguments: // type = One of "pin", "socket", "male", "female" or "double" to specify what to make. // length = nominal clip length // width = nominal clip width // snap = depth of hollow on the side of the clip // thickness = thickness of the clip "line" // depth = amount to extrude clip (give extra room for the socket, about 0.4mm) // --- // compression = excess width at the "ears" to lock more tightly. Default: 0.1 // clearance = extra space in the socket for easier insertion. Default: 0.1 // lock = set to true to make a locking clip that may be irreversible. Default: false // lock_clearance = give clearance for the lock. Default: 0 // splinesteps = number of samples in the curves of the clip. Default: 8 // anchor = anchor point for clip // orient = clip orientation. Default: UP for pins, DOWN for sockets // spin = spin the clip. Default: 0 // // Example: Here are several sizes that work printed in PLA on a Prusa MK3, with default clearance of 0.1 and a depth of 5 // module test_pair(length, width, snap, thickness, compression, lock=false) // { // depth = 5; // extra_depth = 10;// Change this to 0.4 for closed sockets // cuboid([max(width+5,12),12, depth], chamfer=.5, edges=[FRONT,"Y"], anchor=BOTTOM) // attach(BACK) // rabbit_clip(type="pin",length=length, width=width,snap=snap,thickness=thickness,depth=depth, // compression=compression,lock=lock); // right(width+13) // diff("remove") // cuboid([width+8,max(12,length+2),depth+3], chamfer=.5, edges=[FRONT,"Y"], anchor=BOTTOM) // tag("remove") // attach(BACK) // rabbit_clip(type="socket",length=length, width=width,snap=snap,thickness=thickness, // depth=depth+extra_depth, lock=lock,compression=0); // } // left(37)ydistribute(spacing=28){ // test_pair(length=6, width=7, snap=0.25, thickness=0.8, compression=0.1); // test_pair(length=3.5, width=7, snap=0.1, thickness=0.8, compression=0.1); // snap = 0.2 gives a firmer connection // test_pair(length=3.5, width=5, snap=0.1, thickness=0.8, compression=0.1); // hard to take apart // } // right(17)ydistribute(spacing=28){ // test_pair(length=12, width=10, snap=1, thickness=1.2, compression=0.2); // test_pair(length=8, width=7, snap=0.75, thickness=0.8, compression=0.2, lock=true); // With lock, very firm and irreversible // test_pair(length=8, width=7, snap=0.75, thickness=0.8, compression=0.2, lock=true); // With lock, very firm and irreversible // } // Example: Double clip to connect two sockets // rabbit_clip("double",length=8, width=7, snap=0.75, thickness=0.8, compression=0.2,depth=5); // Example: A modified version of the clip that acts like a backpack strap clip, where it locks tightly but you can squeeze to release. // cuboid([25,15,5],anchor=BOTTOM) // attach(BACK)rabbit_clip("pin", length=25, width=25, thickness=1.5, snap=2, compression=0, lock=true, depth=5, lock_clearance=3); // left(32) // diff("remove") // cuboid([30,30,11],orient=BACK,anchor=BACK){ // tag("remove")attach(BACK)rabbit_clip("socket", length=25, width=25, thickness=1.5, snap=2, compression=0, lock=true, depth=5.5, lock_clearance=3); // xflip_copy() // position(FRONT+LEFT) // xscale(0.8) // tag("remove")zcyl(l=20,r=13.5, $fn=64); // } function rabbit_clip(type, length, width, snap, thickness, depth, compression=0.1, clearance=.1, lock=false, lock_clearance=0, splinesteps=8, anchor, orient, spin=0) = no_function("rabbit_clip"); module rabbit_clip(type, length, width, snap, thickness, depth, compression=0.1, clearance=.1, lock=false, lock_clearance=0, splinesteps=8, anchor, orient, spin=0) { legal_types = ["pin","socket","male","female","double"]; check = assert(is_num(width) && width>0,"Width must be a positive value") assert(is_num(length) && length>0, "Length must be a positive value") assert(is_num(thickness) && thickness>0, "Thickness must be a positive value") assert(is_num(snap) && snap>=0, "Snap must be a non-negative value") assert(is_num(depth) && depth>0, "Depth must be a positive value") assert(is_num(compression) && compression >= 0, "Compression must be a nonnegative value") assert(is_bool(lock)) assert(is_num(lock_clearance)) assert(in_list(type,legal_types),str("type must be one of ",legal_types)); if (type=="double") { attachable(size=[width+2*compression, depth, 2*length], anchor=default(anchor,BACK), spin=spin, orient=default(orient,BACK)){ union(){ rabbit_clip("pin", length=length, width=width, snap=snap, thickness=thickness, depth=depth, compression=compression, lock=lock, anchor=BOTTOM, orient=UP); rabbit_clip("pin", length=length, width=width, snap=snap, thickness=thickness, depth=depth, compression=compression, lock=lock, anchor=BOTTOM, orient=DOWN); cuboid([width-thickness, depth, thickness]); } children(); } } else { anchor = default(anchor,BOTTOM); is_pin = in_list(type,["pin","male"]); //default_overlap = 0.01 * (is_pin?1:-1); // Shift by this much to undo default overlap default_overlap = 0; extra = 0.02; // Amount of extension below nominal based position for the socket, must exceed default overlap of 0.01 clearance = is_pin ? 0 : clearance; compression = is_pin ? compression : 0; orient = is_def(orient) ? orient : is_pin ? UP : DOWN; earwidth = 2*thickness+snap; point_length = earwidth/2.15; // The adjustment is using cos(theta)*earwidth/2 and sin(theta)*point_length, but the computation // is obscured because theta is atan(length/2/snap) scaled_len = length - 0.5 * (earwidth * snap + point_length * length) / sqrt(sqr(snap)+sqr(length/2)); bottom_pt = [0,max(scaled_len*0.15+thickness, 2*thickness)]; ctr = [width/2,scaled_len] + line_normal([width/2-snap, scaled_len/2], [width/2, scaled_len]) * earwidth/2; inside_pt = circle_circle_tangents(0, bottom_pt, earwidth/2, ctr)[0][1]; sidepath =[ [width/2,0], [width/2-snap,scaled_len/2], [width/2+(is_pin?compression:0), scaled_len], ctr - point_length * line_normal([width/2,scaled_len], inside_pt), inside_pt ]; fullpath = concat( sidepath, [bottom_pt], reverse(apply(xflip(),sidepath)) ); dummy2 = assert(fullpath[4].y < fullpath[3].y, "Pin is too wide for its length"); snapmargin = -snap + last(sidepath).x;// - compression; if (is_pin){ if (snapmargin<0) echo("WARNING: The snap is too large for the clip to squeeze to fit its socket") echo(snapmargin=snapmargin); } // Force tangent to be vertical at the outer edge of the clip to avoid overshoot fulltangent = list_set(path_tangents(fullpath, uniform=false),[2,8], [[0,1],[0,-1]]); subset = is_pin ? [0:10] : [0,1,2,3, 7,8,9,10]; // Remove internal points from the socket tangent = select(fulltangent, subset); path = select(fullpath, subset); socket_smooth = .04; pin_smooth = [.075, .075, .15, .12, .06]; smoothing = is_pin ? concat(pin_smooth, reverse(pin_smooth)) : let(side_smooth=select(pin_smooth, 0, 2)) concat(side_smooth, [socket_smooth], reverse(side_smooth)); bez = path_to_bezpath(path,relsize=smoothing,tangents=tangent); rounded = bezpath_curve(bez,splinesteps=splinesteps); bounds = pointlist_bounds(rounded); extrapt = is_pin ? [] : [rounded[0] - [0,extra]]; finalpath = is_pin ? rounded : let(withclearance=offset(rounded, r=-clearance, closed=false)) concat( [[withclearance[0].x,-extra]], withclearance, [[-withclearance[0].x,-extra]]); attachable(size=[bounds[1].x-bounds[0].x, depth, bounds[1].y-bounds[0].y], anchor=anchor, spin=spin, orient=orient){ xrot(90) translate([0,-(bounds[1].y-bounds[0].y)/2+default_overlap,-depth/2]) linear_extrude(height=depth, convexity=10) { if (lock) xflip_copy() right(clearance) polygon([sidepath[1]+[-thickness/10,lock_clearance], sidepath[2]-[thickness*.75,0], sidepath[2], [sidepath[2].x,sidepath[1].y+lock_clearance]]); if (is_pin) offset_stroke(finalpath, width=[thickness,0]); else polygon(finalpath); } children(); } } } // Section: Splines // Module: hirth() // Synopsis: Creates a Hirth face spline that locks together two cylinders. // SynTags: Geom // Usage: // hirth(n, ir|id=, or|od=, tooth_angle, [cone_angle=], [chamfer=], [rounding=], [base=], [crop=], [anchor=], [spin=], [orient=] // Description: // Create a Hirth face spline. The Hirth face spline is a joint that locks together two cylinders using radially // positioned triangular teeth on the ends of the cylinders. If the joint is held together (e.g. with a screw) then // the two parts will rotate (or not) together. The two parts of the regular Hirth spline joint are identical. // Each tooth is a triangle that grows larger with radius. You specify a nominal tooth angle; the actual tooth // angle will be slightly different. // . // You can also specify a cone_angle which raises or lowers the angle of the teeth. When you do this you need to // mate splines with opposite angles such as -20 and +20. The splines appear centered at the origin so that two // splines will mate if their centers coincide. Therefore `attach(CENTER,CENTER)` will produce two mating splines // assuming that they are rotated correctly. The bottom anchors will be at the bottom of the spline base. The top // anchors are at an arbitrary location and are not useful. // . // By default the spline is created as a polygon with `2n` edges and the radius is the outer radius to the unchamfered corners. // For large choices of `n` this will produce result that is close to circular. For small `n` the result will be obviously polygonal. // If you want a cylindrical result then set `crop=true`, which will intersect an oversized version of the joint with a suitable cylinder. // Note that cropping makes the most difference when the tooth count is low. // . // The teeth are chamfered proportionally based on the `chamfer` argument which specifies the fraction of the teeth tips // to remove. The teeth valleys are chamfered by half the specified value to ensure that there is room for the parts // to mate. If you use the rounding parameter then the roundings cut away the chamfer corners, so chamfered and rounded // joints are compatible with each other. Note that rounding doesn't always produce a smooth transition to the roundover, // particularly with large cone angle. // The base is added based on the unchamfered dimensions of the joint, and the "teeth_bot" anchor is located // based on the unchamfered dimensions. // . // By default the teeth are symmetric, which is ideal for registration and for situations where loading may occur in either // direction. The skew parameter will skew the teeth by the specified amount, where a skew of ±1 gives a tooth with a vertical // side either on the left or the right. Intermediate values will produce partially skewed teeth. Note that the skew // applies after the tooth profile is computed with the specified tooth_angle, which means that the skewed tooth will // have an altered tooth angle from the one specified. // . // The joint is constructed with a tooth peak aligned with the X+ axis. // For two hirth joints to mate they must have the same tooth count, opposite cone angles, and the chamfer/rounding values // must be equal. (One can be chamfered and one rounded, but with the same value.) The rotation required to mate the parts // depends on the skew and whether the tooth count is odd or even. To apply this rotation automatically, set `rot=true`. // . // When you pick extreme parameters such as very large cone angle, or very small tooth count (e.g. 2 or 3), the joint may // develop a weird shape, and the shape may be unexpectedly sensitive to things like whether chamfering is enabled. It is difficult // to identify the point where the shapes become odd, or even perhaps invalid. For example, with 2 teeth a skew of 0.95 works fine, but // a skew of 0.97 produces a truncated shape and 0.99 produces a 2-part shape. A skew of 1 produces a degenerate, invalid shape. // Since it's hard to determine which parameters, exactly, produce "bad" outcomes, we have chosen not to limit the production // of the extreme shapes, so take care if using extreme parameter values. // Named Anchors: // "teeth_bot" = center of the joint, aligned with the bottom of the (unchamfered/unrounded) teeth, pointing DOWN. // Arguments: // n = number of teeth // ir/id = inner radius or diameter // or/od = outer radius or diameter // tooth_angle = nominal tooth angle. Default: 60 // cone_angle = raise or lower the angle of the teeth in the radial direction. Default: 0 // skew = skew the tooth shape. Default: 0 // chamfer = chamfer teeth by this fraction at tips and half this fraction at valleys. Default: 0 // rounding = round the teeth by this fraction at the tips, and half this fraction at valleys. Default: 0 // rot = if true rotate so the part will mate (via attachment) with another identical part. Default: false // base = add base of this height to the bottom. Default: 1 // crop = crop to a cylindrical shape. Default: false // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // Example(3D,NoScale): Basic uncropped hirth spline // hirth(32,20,50); // Example(3D,NoScale): Raise cone angle // hirth(32,20,50,cone_angle=30); // Example(3D,NoScale): Lower cone angle // hirth(32,20,50,cone_angle=-30); // Example(3D,NoScale): Adding a large base // hirth(20,20,50,base=20); // Example(3D,NoScale): Only 8 teeth, with chamfering // hirth(8,20,50,tooth_angle=60,base=10,chamfer=.1); // Example(3D,NoScale): Only 8 teeth, cropped // hirth(8,20,50,tooth_angle=60,base=10,chamfer=.1, crop=true); // Example(3D,NoScale): Only 8 teeth, with rounding // hirth(8,20,50,tooth_angle=60,base=10,rounding=.1); // Example(3D,NoScale): Only 8 teeth, different tooth angle, cropping with $fn to crop cylinder aligned with teeth // hirth(8,20,50,tooth_angle=90,base=10,rounding=.05,crop=true,$fn=48); // Example(3D,NoScale): Two identical parts joined together (with 1 unit offset to reveal the joint line). With odd tooth count and no skew the teeth line up correctly: // hirth(27,20,50, tooth_angle=60,base=2,chamfer=.05) // up(1) attach(CENTER,CENTER) // hirth(27,20,50, tooth_angle=60,base=2,chamfer=.05); // Example(3D,NoScale): Two conical parts joined together, with opposite cone angles for a correct joint. With an even tooth count one part needs to be rotated for the parts to align: // hirth(26,20,50, tooth_angle=60,base=2,cone_angle=30,chamfer=.05) // up(1) attach(CENTER,CENTER) // hirth(26,20,50, tooth_angle=60,base=2,cone_angle=-30, chamfer=.05, rot=true); // Example(3D,NoScale): Using skew to create teeth with vertical faces // hirth(17,20,50,skew=-1, base=5, chamfer=0.05); // Example(3D,NoScale): If you want to change how tall the teeth are you do that by changing the tooth angle. Increasing the tooth angle makes the teeth shorter: // hirth(17,20,50,tooth_angle=120,skew=0, base=5, rounding=0.05, crop=true); module hirth(n, ir, or, id, od, tooth_angle=60, cone_angle=0, chamfer, rounding, base=1, crop=false,skew=0, rot=false, orient,anchor,spin) { ir = get_radius(r=ir,d=id); or = get_radius(r=or,d=od); dummy = assert(all_positive([ir]), "ir/id must be a positive value") assert(all_positive([or]), "or/od must be a positive value") assert(is_int(n) && n>1, "n must be an integer larger than 1") assert(is_finite(skew) && abs(skew)<=1, "skew must be a number between -1 and 1") assert(ir<or, "inside radius (ir/id) must be smaller than outside radius (or/od)") assert(all_positive([tooth_angle]) && tooth_angle<360*(n-1)/2/n, str("tooth angle must be between 0 and ",360*(n-1)/2/n," for spline with ",n," teeth.")) assert(num_defined([chamfer,rounding]) <=1, "Cannot define both chamfer and rounding") assert(is_undef(chamfer) || all_nonnegative([chamfer]) && chamfer<1/2, "chamfer must be a non-negative value smaller than 1/2") assert(is_undef(rounding) || all_nonnegative([rounding]) && rounding<1/2, "rounding must be a non-negative value smaller than 1/2") assert(all_positive([base]), "base must be a positive value") ; tooth_height = sin(180/n) / tan(tooth_angle/2); // Normalized tooth height cone_height = -tan(cone_angle); // Normalized height change corresponding to the cone angle ridge_angle = atan(tooth_height/2 + cone_height); valley_angle = atan(-tooth_height/2 + cone_height); angle = 180/n; // Half the angle occupied by each tooth going around the circle factor = crop ? 3 : 1; // Make it oversized when crop is true // project spherical coordinate point onto cylinder of radius r cyl_proj = function (r,theta_phi) [for(pt=theta_phi) let(xyz = spherical_to_xyz(1,pt[0], 90-pt[1])) r * xyz / norm(point2d(xyz))]; edge = cyl_proj(or,[[-angle, valley_angle], [0, ridge_angle]]); cutfrac = first_defined([chamfer,rounding,0]); rounding = rounding==0? undef:rounding; ridgecut=xyz_to_spherical(lerp(edge[0],edge[1], 1-cutfrac)); valleycut=xyz_to_spherical(lerp(edge[0],edge[1], cutfrac/2)); ridge_chamf = [ridgecut.y,90-ridgecut.z]; valley_chamf = [valleycut.y,90-valleycut.z]; basicprof = [ if (is_def(rounding)) [-angle, valley_chamf.y], valley_chamf, ridge_chamf ]; full = deduplicate(concat(basicprof, reverse(xflip(basicprof)))); skewed = back(valley_angle, skew(sxy=skew*angle/(ridge_angle-valley_angle),fwd(valley_angle,full))); pprofile = is_undef(rounding) ? skewed : let( segs = max(16,segs(or*rounding)), // Using computed values for the joints lead to round-off error issues joints = [(skewed[1]-skewed[0]).x, (skewed[3]-skewed[2]).x/2, (skewed[3]-skewed[2]).x/2,(skewed[5]-skewed[4]).x ], roundpts = round_corners(skewed, joint=joints, closed=false,$fn=segs) ) roundpts; profile = [ for(i=[0:1:len(pprofile)-2]) each [pprofile[i], if (pprofile[i+1].x-pprofile[i].x > 90) // Interpolate an extra point if angle > 90 deg let( edge = cyl_proj(or, select(pprofile,i,i+1)), cutpt = xyz_to_spherical(lerp(edge[0],edge[1],.48)) // Exactly .5 is too close to or crosses the origin ) [cutpt.y,90-cutpt.z] ], last(pprofile) ]; // This code computes the realized tooth angle // out = cyl_proj(or, pprofile); // in = cyl_proj(ir,pprofile); // p1 = plane3pt(out[0], out[1], in[1]); // p2 = plane3pt(out[2], out[1], in[1]); // echo(toothang=vector_angle(plane_normal(p1), plane_normal(p2))); bottom = min([tan(valley_angle)*ir,tan(valley_angle)*or])-base-cone_height*ir; ang_ofs = !rot ? -skew*angle : n%2==0 ? -(angle-skew*angle) - skew*angle : -angle*(2-skew)-skew*angle; topinner = down(cone_height*ir,[for(ang=lerpn(0,360,n,endpoint=false)) each zrot(ang+ang_ofs,cyl_proj(ir/factor,profile))]); topouter = down(cone_height*ir,[for(ang=lerpn(0,360,n,endpoint=false)) each zrot(ang+ang_ofs,cyl_proj(factor*or,profile))]); safebottom = min(min(column(topinner,2)), min(column(topouter,2))) - base - (crop?1:0); botinner = [for(val=topinner) [val.x,val.y,safebottom]]; botouter = [for(val=topouter) [val.x,val.y,safebottom]]; vert = [topouter, topinner, botinner, botouter]; datamin = min(min(column(topinner,2)), min(column(topouter,2))); anchors = [ named_anchor("teeth_bot", [0,0,bottom], DOWN) ]; attachable(anchor=anchor,spin=spin,orient=orient, r=or, h=-2*bottom,anchors=anchors){ intersection(){ vnf_polyhedron(vnf_vertex_array(vert, reverse=true, col_wrap=true, row_wrap=true),convexity=min(10,n)); if (crop) zmove(bottom)tube(or=or,ir=ir,height=4*or,anchor=BOT,$fa=1,$fs=1); } children(); } } // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap