////////////////////////////////////////////////////////////////////// // LibFile: geometry.scad // Geometry helpers. // To use, add the following lines to the beginning of your file: // ``` // use // ``` ////////////////////////////////////////////////////////////////////// // CommonCode: // include // Section: Lines and Triangles // Function: point_on_segment2d() // Usage: // point_on_segment2d(point, edge); // Description: // Determine if the point is on the line segment between two points. // Returns true if yes, and false if not. // Arguments: // point = The point to test. // edge = Array of two points forming the line segment to test against. // eps = Acceptable variance. Default: `EPSILON` (1e-9) function point_on_segment2d(point, edge, eps=EPSILON) = approx(point,edge[0],eps=eps) || approx(point,edge[1],eps=eps) || // The point is an endpoint sign(edge[0].x-point.x)==sign(point.x-edge[1].x) // point is in between the && sign(edge[0].y-point.y)==sign(point.y-edge[1].y) // edge endpoints && approx(point_left_of_segment2d(point, edge),0,eps=eps); // and on the line defined by edge // Function: point_left_of_segment2d() // Usage: // point_left_of_segment2d(point, edge); // Description: // Return >0 if point is left of the line defined by edge. // Return =0 if point is on the line. // Return <0 if point is right of the line. // Arguments: // point = The point to check position of. // edge = Array of two points forming the line segment to test against. function point_left_of_segment2d(point, edge) = (edge[1].x-edge[0].x) * (point.y-edge[0].y) - (point.x-edge[0].x) * (edge[1].y-edge[0].y); // Internal non-exposed function. function _point_above_below_segment(point, edge) = edge[0].y <= point.y? ( (edge[1].y > point.y && point_left_of_segment2d(point, edge) > 0)? 1 : 0 ) : ( (edge[1].y <= point.y && point_left_of_segment2d(point, edge) < 0)? -1 : 0 ); // Function: collinear() // Usage: // collinear(a, b, c, [eps]); // Description: // Returns true if three points are co-linear. // Arguments: // a = First point. // b = Second point. // c = Third point. // eps = Acceptable variance. Default: `EPSILON` (1e-9) function collinear(a, b, c, eps=EPSILON) = distance_from_line([a,b], c) < eps; // Function: collinear_indexed() // Usage: // collinear_indexed(points, a, b, c, [eps]); // Description: // Returns true if three points are co-linear. // Arguments: // points = A list of points. // a = Index in `points` of first point. // b = Index in `points` of second point. // c = Index in `points` of third point. // eps = Acceptable max angle variance. Default: EPSILON (1e-9) degrees. function collinear_indexed(points, a, b, c, eps=EPSILON) = let( p1=points[a], p2=points[b], p3=points[c] ) collinear(p1, p2, p3, eps); // Function: distance_from_line() // Usage: // distance_from_line(line, pt); // Description: // Finds the perpendicular distance of a point `pt` from the line `line`. // Arguments: // line = A list of two points, defining a line that both are on. // pt = A point to find the distance of from the line. // Example: // distance_from_line([[-10,0], [10,0]], [3,8]); // Returns: 8 function distance_from_line(line, pt) = let(a=line[0], n=normalize(line[1]-a), d=a-pt) norm(d - ((d * n) * n)); // Function: line_normal() // Usage: // line_normal([P1,P2]) // line_normal(p1,p2) // Description: // Returns the 2D normal vector to the given 2D line. This is otherwise known as the perpendicular vector counter-clockwise to the given ray. // Arguments: // p1 = First point on 2D line. // p2 = Second point on 2D line. // Example(2D): // p1 = [10,10]; // p2 = [50,30]; // n = line_normal(p1,p2); // stroke([p1,p2], endcap2="arrow2"); // color("green") stroke([p1,p1+10*n], endcap2="arrow2"); // color("blue") place_copies([p1,p2]) circle(d=2, $fn=12); function line_normal(p1,p2) = is_undef(p2)? line_normal(p1[0],p1[1]) : normalize([p1.y-p2.y,p2.x-p1.x]); // 2D Line intersection from two segments. // This function returns [p,t,u] where p is the intersection point of // the lines defined by the two segments, t is the proportional distance // of the intersection point along s1, and u is the proportional distance // of the intersection point along s2. The proportional values run over // the range of 0 to 1 for each segment, so if it is in this range, then // the intersection lies on the segment. Otherwise it lies somewhere on // the extension of the segment. function _general_line_intersection(s1,s2,eps=EPSILON) = let( denominator = det2([s1[0],s2[0]]-[s1[1],s2[1]]) ) approx(denominator,0,eps=eps)? [undef,undef,undef] : let( t = det2([s1[0],s2[0]]-s2) / denominator, u = det2([s1[0],s1[0]]-[s2[0],s1[1]]) / denominator ) [s1[0]+t*(s1[1]-s1[0]), t, u]; // Function: line_intersection() // Usage: // line_intersection(l1, l2); // Description: // Returns the 2D intersection point of two unbounded 2D lines. // Returns `undef` if the lines are parallel. // Arguments: // l1 = First 2D line, given as a list of two 2D points on the line. // l2 = Second 2D line, given as a list of two 2D points on the line. function line_intersection(l1,l2,eps=EPSILON) = let(isect = _general_line_intersection(l1,l2,eps=eps)) isect[0]; // Function: segment_intersection() // Usage: // segment_intersection(s1, s2); // Description: // Returns the 2D intersection point of two 2D line segments. // Returns `undef` if they do not intersect. // Arguments: // s1 = First 2D segment, given as a list of the two 2D endpoints of the line segment. // s2 = Second 2D segment, given as a list of the two 2D endpoints of the line segment. // eps = Acceptable variance. Default: `EPSILON` (1e-9) function segment_intersection(s1,s2,eps=EPSILON) = let( isect = _general_line_intersection(s1,s2,eps=eps) ) isect[1]<0-eps || isect[1]>1+eps || isect[2]<0-eps || isect[2]>1+eps ? undef : isect[0]; // Function: line_segment_intersection() // Usage: // line_segment_intersection(line, segment); // Description: // Returns the 2D intersection point of an unbounded 2D line, and a bounded 2D line segment. // Returns `undef` if they do not intersect. // Arguments: // line = The unbounded 2D line, defined by two 2D points on the line. // segment = The bounded 2D line segment, given as a list of the two 2D endpoints of the segment. // eps = Acceptable variance. Default: `EPSILON` (1e-9) function line_segment_intersection(line,segment,eps=EPSILON) = let( isect = _general_line_intersection(line,segment,eps=eps) ) isect[2]<0-eps || isect[2]>1+eps ? undef : isect[0]; // Function: line_closest_point() // Usage: // line_closest_point(line,pt); // Description: // Returns the point on the given `line` that is closest to the given point `pt`. // Arguments: // line = A list of two points that are on the unbounded line. // pt = The point to find the closest point on the line to. function line_closest_point(line,pt) = let( n = line_normal(line), isect = _general_line_intersection(line,[pt,pt+n]) ) isect[0]; // Function: segment_closest_point() // Usage: // segment_closest_point(seg,pt); // Description: // Returns the point on the given line segment `seg` that is closest to the given point `pt`. // Arguments: // seg = A list of two points that are the endpoints of the bounded line segment. // pt = The point to find the closest point on the segment to. function segment_closest_point(seg,pt) = let( n = line_normal(seg), isect = _general_line_intersection(seg,[pt,pt+n]) ) norm(n)==0? seg[0] : isect[1]<=0? seg[0] : isect[1]>=1? seg[1] : isect[0]; // Function: find_circle_2tangents() // Usage: // find_circle_2tangents(pt1, pt2, pt3, r|d); // Description: // Returns [centerpoint, normal] of a circle of known size that is between and tangent to two rays with the same starting point. // Both rays start at `pt2`, and one passes through `pt1`, while the other passes through `pt3`. // If the rays given are 180ยบ apart, `undef` is returned. If the rays are 3D, the normal returned is the plane normal of the circle. // Arguments: // pt1 = A point that the first ray passes though. // pt2 = The starting point of both rays. // pt3 = A point that the second ray passes though. // r = The radius of the circle to find. // d = The diameter of the circle to find. // Example(2D): // pts = [[60,40], [10,10], [65,5]]; // rad = 10; // stroke([pts[1],pts[0]], endcap2="arrow2"); // stroke([pts[1],pts[2]], endcap2="arrow2"); // circ = find_circle_2tangents(pt1=pts[0], pt2=pts[1], pt3=pts[2], r=rad); // translate(circ[0]) { // color("green") { // stroke(circle(r=rad),closed=true); // stroke([[0,0],rad*[cos(315),sin(315)]]); // } // } // place_copies(pts) color("blue") circle(d=2, $fn=12); // translate(circ[0]) color("red") circle(d=2, $fn=12); // labels = [[pts[0], "pt1"], [pts[1],"pt2"], [pts[2],"pt3"], [circ[0], "CP"], [circ[0]+[cos(315),sin(315)]*rad*0.7, "r"]]; // for(l=labels) translate(l[0]+[0,2]) color("black") text(text=l[1], size=2.5, halign="center"); function find_circle_2tangents(pt1, pt2, pt3, r=undef, d=undef) = let(r = get_radius(r=r, d=d, dflt=undef)) assert(r!=undef, "Must specify either r or d.") (is_undef(pt2) && is_undef(pt3) && is_list(pt1))? find_circle_2tangents(pt1[0], pt1[1], pt1[2], r=r) : let( v1 = normalize(pt1 - pt2), v2 = normalize(pt3 - pt2) ) approx(norm(v1+v2))? undef : let( a = vector_angle(v1,v2), n = vector_axis(v1,v2), v = normalize(mean([v1,v2])), s = r/sin(a/2), cp = pt2 + s*v/norm(v) ) [cp, n]; // Function: find_circle_3points() // Usage: // find_circle_3points(pt1, pt2, pt3); // Description: // Returns the [CENTERPOINT, RADIUS, NORMAL] of the circle that passes through three non-collinear // points. The centerpoint will be a 2D or 3D vector, depending on the points input. If all three // points are 2D, then the resulting centerpoint will be 2D, and the normal will be UP ([0,0,1]). // If any of the points are 3D, then the resulting centerpoint will be 3D. If the three points are // collinear, then `[undef,undef,undef]` will be returned. The normal will be a normalized 3D // vector with a non-negative Z axis. // Arguments: // pt1 = The first point. // pt2 = The second point. // pt3 = The third point. // Example(2D): // pts = [[60,40], [10,10], [65,5]]; // circ = find_circle_3points(pts[0], pts[1], pts[2]); // translate(circ[0]) color("green") stroke(circle(r=circ[1]),closed=true,$fn=72); // translate(circ[0]) color("red") circle(d=3, $fn=12); // place_copies(pts) color("blue") circle(d=3, $fn=12); function find_circle_3points(pt1, pt2, pt3) = (is_undef(pt2) && is_undef(pt3) && is_list(pt1))? find_circle_3points(pt1[0], pt1[1], pt1[2]) : collinear(pt1,pt2,pt3)? [undef,undef,undef] : let( v1 = pt1-pt2, v2 = pt3-pt2, n = vector_axis(v1,v2), n2 = n.z<0? -n : n ) len(pt1)+len(pt2)+len(pt3)>6? ( let( a = project_plane(pt1, pt1, pt2, pt3), b = project_plane(pt2, pt1, pt2, pt3), c = project_plane(pt3, pt1, pt2, pt3), res = find_circle_3points(a, b, c) ) res[0]==undef? [undef,undef,undef] : let( cp = lift_plane(res[0], pt1, pt2, pt3), r = norm(pt2-cp) ) [cp, r, n2] ) : let( mp1 = pt2 + v1/2, mp2 = pt2 + v2/2, mpv1 = rot(90, v=n, p=v1), mpv2 = rot(90, v=n, p=v2), l1 = [mp1, mp1+mpv1], l2 = [mp2, mp2+mpv2], isect = line_intersection(l1,l2) ) is_undef(isect)? [undef,undef,undef] : let( r = norm(pt2-isect) ) [isect, r, n2]; // Function: find_circle_tangents() // Usage: // tangents = find_circle_tangents(r|d, cp, pt); // Description: // Given a circle and a point outside that circle, finds the tangent point(s) on the circle for a // line passing through the point. Returns list of zero or more sublists of [ANG, TANGPT] // Arguments: // r = Radius of the circle. // d = Diameter of the circle. // cp = The coordinates of the circle centerpoint. // pt = The coordinates of the external point. // Example(2D): // cp = [-10,-10]; r = 30; pt = [30,10]; // tanpts = subindex(find_circle_tangents(r=r, cp=cp, pt=pt),1); // color("yellow") translate(cp) circle(r=r); // color("cyan") for(tp=tanpts) {stroke([tp,pt]); stroke([tp,cp]);} // color("red") place_copies(tanpts) circle(d=3,$fn=12); // color("blue") place_copies([cp,pt]) circle(d=3,$fn=12); function find_circle_tangents(r, d, cp, pt) = assert(is_num(r) || is_num(d)) assert(is_vector(cp)) assert(is_vector(pt)) let( r = get_radius(r=r, d=d, dflt=1), delta = pt - cp, dist = norm(delta), baseang = atan2(delta.y,delta.x) ) dist < r? [] : approx(dist,r)? [[baseang, pt]] : let( relang = acos(r/dist), angs = [baseang + relang, baseang - relang] ) [for (ang=angs) [ang, cp + r*[cos(ang),sin(ang)]]]; // Function: tri_calc() // Usage: // tri_calc(ang,ang2,adj,opp,hyp); // Description: // Given a side length and an angle, or two side lengths, calculates the rest of the side lengths // and angles of a right triangle. Returns [ADJACENT, OPPOSITE, HYPOTENUSE, ANGLE, ANGLE2] where // ADJACENT is the length of the side adjacent to ANGLE, and OPPOSITE is the length of the side // opposite of ANGLE and adjacent to ANGLE2. ANGLE and ANGLE2 are measured in degrees. // This is certainly more verbose and slower than writing your own calculations, but has the nice // benefit that you can just specify the info you have, and don't have to figure out which trig // formulas you need to use. // Figure(2D): // color("#ccc") { // stroke(closed=false, width=0.5, [[45,0], [45,5], [50,5]]); // stroke(closed=false, width=0.5, arc(N=6, r=15, cp=[0,0], start=0, angle=30)); // stroke(closed=false, width=0.5, arc(N=6, r=14, cp=[50,30], start=212, angle=58)); // } // color("black") stroke(closed=true, [[0,0], [50,30], [50,0]]); // color("#0c0") { // translate([10.5,2.5]) text(size=3,text="ang",halign="center",valign="center"); // translate([44.5,22]) text(size=3,text="ang2",halign="center",valign="center"); // } // color("blue") { // translate([25,-3]) text(size=3,text="Adjacent",halign="center",valign="center"); // translate([53,15]) rotate(-90) text(size=3,text="Opposite",halign="center",valign="center"); // translate([25,18]) rotate(30) text(size=3,text="Hypotenuse",halign="center",valign="center"); // } // Arguments: // ang = The angle in degrees of the primary corner of the triangle. // ang2 = The angle in degrees of the other non-right corner of the triangle. // adj = The length of the side adjacent to the primary corner. // opp = The length of the side opposite to the primary corner. // hyp = The length of the hypotenuse. // Example: // tri = tri_calc(opp=15,hyp=30); // echo(adjacent=tri[0], opposite=tri[1], hypotenuse=tri[2], angle=tri[3], angle2=tri[4]); // Examples: // adj = tri_calc(ang=30,opp=10)[0]; // opp = tri_calc(ang=20,hyp=30)[1]; // hyp = tri_calc(ang2=50,adj=20)[2]; // ang = tri_calc(adj=20,hyp=30)[3]; // ang2 = tri_calc(adj=20,hyp=40)[4]; function tri_calc(ang,ang2,adj,opp,hyp) = assert(ang==undef || ang2==undef,"You cannot specify both ang and ang2.") assert(num_defined([ang,ang2,adj,opp,hyp])==2, "You must specify exactly two arguments.") let( ang = ang!=undef? assert(ang>0&&ang<90) ang : ang2!=undef? (90-ang2) : adj==undef? asin(constrain(opp/hyp,-1,1)) : opp==undef? acos(constrain(adj/hyp,-1,1)) : atan2(opp,adj), ang2 = ang2!=undef? assert(ang2>0&&ang2<90) ang2 : (90-ang), adj = adj!=undef? assert(adj>0) adj : (opp!=undef? (opp/tan(ang)) : (hyp*cos(ang))), opp = opp!=undef? assert(opp>0) opp : (adj!=undef? (adj*tan(ang)) : (hyp*sin(ang))), hyp = hyp!=undef? assert(hyp>0) assert(adj=0) assert(is_num(opp)&&opp>=0) sqrt(hyp*hyp-opp*opp); // Function: hyp_ang_to_adj() // Usage: // adj = hyp_ang_to_adj(hyp,ang); // Description: // Given the length of the hypotenuse and the angle of the primary corner of a right triangle, // returns the length of the adjacent side. // Arguments: // hyp = The length of the hypotenuse of the right triangle. // ang = The angle in degrees of the primary corner of the right triangle. // Example: // adj = hyp_ang_to_adj(8,60); // Returns: 4 function hyp_ang_to_adj(hyp,ang) = assert(is_num(hyp)&&hyp>=0) assert(is_num(ang)&&ang>0&&ang<90) hyp*cos(ang); // Function: opp_ang_to_adj() // Usage: // adj = opp_ang_to_adj(opp,ang); // Description: // Given the angle of the primary corner of a right triangle, and the length of the side opposite of it, // returns the length of the adjacent side. // Arguments: // opp = The length of the side of the right triangle that is opposite from the primary angle. // ang = The angle in degrees of the primary corner of the right triangle. // Example: // adj = opp_ang_to_adj(8,30); // Returns: 4 function opp_ang_to_adj(opp,ang) = assert(is_num(opp)&&opp>=0) assert(is_num(ang)&&ang>0&&ang<90) opp/tan(ang); // Function: hyp_adj_to_opp() // Usage: // opp = hyp_adj_to_opp(hyp,adj); // Description: // Given the length of the hypotenuse and the adjacent side, returns the length of the opposite side. // Arguments: // hyp = The length of the hypotenuse of the right triangle. // adj = The length of the side of the right triangle that is adjacent to the primary angle. // Example: // opp = hyp_adj_to_opp(5,4); // Returns: 3 function hyp_adj_to_opp(hyp,adj) = assert(is_num(hyp)&&hyp>=0) assert(is_num(adj)&&adj>=0) sqrt(hyp*hyp-adj*adj); // Function: hyp_ang_to_opp() // Usage: // opp = hyp_ang_to_opp(hyp,adj); // Description: // Given the length of the hypotenuse of a right triangle, and the angle of the corner, returns the length of the opposite side. // Arguments: // hyp = The length of the hypotenuse of the right triangle. // ang = The angle in degrees of the primary corner of the right triangle. // Example: // opp = hyp_ang_to_opp(8,30); // Returns: 4 function hyp_ang_to_opp(hyp,ang) = assert(is_num(hyp)&&hyp>=0) assert(is_num(ang)&&ang>0&&ang<90) hyp*sin(ang); // Function: adj_ang_to_opp() // Usage: // opp = adj_ang_to_opp(adj,ang); // Description: // Given the length of the adjacent side of a right triangle, and the angle of the corner, returns the length of the opposite side. // Arguments: // adj = The length of the side of the right triangle that is adjacent to the primary angle. // ang = The angle in degrees of the primary corner of the right triangle. // Example: // opp = adj_ang_to_opp(8,45); // Returns: 8 function adj_ang_to_opp(adj,ang) = assert(is_num(adj)&&adj>=0) assert(is_num(ang)&&ang>0&&ang<90) adj*tan(ang); // Function: adj_opp_to_hyp() // Usage: // hyp = adj_opp_to_hyp(adj,opp); // Description: // Given the length of the adjacent and opposite sides of a right triangle, returns the length of thee hypotenuse. // Arguments: // adj = The length of the side of the right triangle that is adjacent to the primary angle. // opp = The length of the side of the right triangle that is opposite from the primary angle. // Example: // hyp = adj_opp_to_hyp(3,4); // Returns: 5 function adj_opp_to_hyp(adj,opp) = assert(is_num(adj)&&adj>=0) assert(is_num(opp)&&opp>=0) norm([opp,adj]); // Function: adj_ang_to_hyp() // Usage: // hyp = adj_ang_to_hyp(adj,ang); // Description: // For a right triangle, given the length of the adjacent side, and the corner angle, returns the length of the hypotenuse. // Arguments: // adj = The length of the side of the right triangle that is adjacent to the primary angle. // ang = The angle in degrees of the primary corner of the right triangle. // Example: // hyp = adj_ang_to_hyp(4,60); // Returns: 8 function adj_ang_to_hyp(adj,ang) = assert(is_num(adj)&&adj>=0) assert(is_num(ang)&&ang>=0&&ang<90) adj/cos(ang); // Function: opp_ang_to_hyp() // Usage: // hyp = opp_ang_to_hyp(opp,ang); // Description: // For a right triangle, given the length of the opposite side, and the corner angle, returns the length of the hypotenuse. // Arguments: // opp = The length of the side of the right triangle that is opposite from the primary angle. // ang = The angle in degrees of the primary corner of the right triangle. // Example: // hyp = opp_ang_to_hyp(4,30); // Returns: 8 function opp_ang_to_hyp(opp,ang) = assert(is_num(opp)&&opp>=0) assert(is_num(ang)&&ang>0&&ang<=90) opp/sin(ang); // Function: hyp_adj_to_ang() // Usage: // ang = hyp_adj_to_ang(hyp,adj); // Description: // For a right triangle, given the lengths of the hypotenuse and the adjacent sides, returns the angle of the corner. // Arguments: // hyp = The length of the hypotenuse of the right triangle. // adj = The length of the side of the right triangle that is adjacent to the primary angle. // Example: // ang = hyp_adj_to_ang(8,4); // Returns: 60 degrees function hyp_adj_to_ang(hyp,adj) = assert(is_num(hyp)&&hyp>0) assert(is_num(adj)&&adj>=0) acos(adj/hyp); // Function: hyp_opp_to_ang() // Usage: // ang = hyp_opp_to_ang(hyp,opp); // Description: // For a right triangle, given the lengths of the hypotenuse and the opposite sides, returns the angle of the corner. // Arguments: // hyp = The length of the hypotenuse of the right triangle. // opp = The length of the side of the right triangle that is opposite from the primary angle. // Example: // ang = hyp_opp_to_ang(8,4); // Returns: 30 degrees function hyp_opp_to_ang(hyp,opp) = assert(is_num(hyp)&&hyp>0) assert(is_num(opp)&&opp>=0) asin(opp/hyp); // Function: adj_opp_to_ang() // Usage: // ang = adj_opp_to_ang(adj,opp); // Description: // For a right triangle, given the lengths of the adjacent and opposite sides, returns the angle of the corner. // Arguments: // adj = The length of the side of the right triangle that is adjacent to the primary angle. // opp = The length of the side of the right triangle that is opposite from the primary angle. // Example: // ang = adj_opp_to_ang(sqrt(3)/2,0.5); // Returns: 30 degrees function adj_opp_to_ang(adj,opp) = assert(is_num(adj)&&adj>=0) assert(is_num(opp)&&opp>=0) atan2(opp,adj); // Function: triangle_area() // Usage: // triangle_area(a,b,c); // Description: // Returns the area of a triangle formed between three 2D or 3D vertices. // Result will be negative if the points are 2D and in in clockwise order. // Examples: // triangle_area([0,0], [5,10], [10,0]); // Returns -50 // triangle_area([10,0], [5,10], [0,0]); // Returns 50 function triangle_area(a,b,c) = len(a)==3? 0.5*norm(cross(c-a,c-b)) : ( a.x * (b.y - c.y) + b.x * (c.y - a.y) + c.x * (a.y - b.y) ) / 2; // Section: Planes // Function: plane3pt() // Usage: // plane3pt(p1, p2, p3); // Description: // Generates the cartesian equation of a plane from three non-collinear points on the plane. // Returns [A,B,C,D] where Ax+By+Cz+D=0 is the equation of a plane. // Arguments: // p1 = The first point on the plane. // p2 = The second point on the plane. // p3 = The third point on the plane. function plane3pt(p1, p2, p3) = let( p1=point3d(p1), p2=point3d(p2), p3=point3d(p3), normal = normalize(cross(p3-p1, p2-p1)) ) concat(normal, [normal*p1]); // Function: plane3pt_indexed() // Usage: // plane3pt_indexed(points, i1, i2, i3); // Description: // Given a list of points, and the indices of three of those points, // generates the cartesian equation of a plane that those points all // lie on. Requires that the three indexed points be non-collinear. // Returns [A,B,C,D] where Ax+By+Cz+D=0 is the equation of a plane. // Arguments: // points = A list of points. // i1 = The index into `points` of the first point on the plane. // i2 = The index into `points` of the second point on the plane. // i3 = The index into `points` of the third point on the plane. function plane3pt_indexed(points, i1, i2, i3) = let( p1 = points[i1], p2 = points[i2], p3 = points[i3] ) plane3pt(p1,p2,p3); // Function: plane_from_pointslist() // Usage: // plane_from_pointslist(points); // Description: // Given a list of 3 or more coplanar points, returns the cartesian equation of a plane. // Returns [A,B,C,D] where Ax+By+Cz+D=0 is the equation of the plane. function plane_from_pointslist(points) = let( points = deduplicate(points), indices = find_noncollinear_points(points), p1 = points[indices[0]], p2 = points[indices[1]], p3 = points[indices[2]], plane = plane3pt(p1,p2,p3), out = ((plane.x+plane.y+plane.z)<0)? plane3pt(p1,p3,p2) : plane ) out; // Function: plane_normal() // Usage: // plane_normal(plane); // Description: // Returns the normal vector for the given plane. function plane_normal(plane) = [for (i=[0:2]) plane[i]]; // Function: distance_from_plane() // Usage: // distance_from_plane(plane, point) // Description: // Given a plane as [A,B,C,D] where the cartesian equation for that plane // is Ax+By+Cz+D=0, determines how far from that plane the given point is. // The returned distance will be positive if the point is in front of the // plane; on the same side of the plane as the normal of that plane points // towards. If the point is behind the plane, then the distance returned // will be negative. The normal of the plane is the same as [A,B,C]. // Arguments: // plane = The [A,B,C,D] values for the equation of the plane. // point = The point to test. function distance_from_plane(plane, point) = [plane.x, plane.y, plane.z] * point3d(point) - plane[3]; // Function: coplanar() // Usage: // coplanar(plane, point); // Description: // Given a plane as [A,B,C,D] where the cartesian equation for that plane // is Ax+By+Cz+D=0, determines if the given point is on that plane. // Returns true if the point is on that plane. // Arguments: // plane = The [A,B,C,D] values for the equation of the plane. // point = The point to test. function coplanar(plane, point) = abs(distance_from_plane(plane, point)) <= EPSILON; // Function: in_front_of_plane() // Usage: // in_front_of_plane(plane, point); // Description: // Given a plane as [A,B,C,D] where the cartesian equation for that plane // is Ax+By+Cz+D=0, determines if the given point is on the side of that // plane that the normal points towards. The normal of the plane is the // same as [A,B,C]. // Arguments: // plane = The [A,B,C,D] values for the equation of the plane. // point = The point to test. function in_front_of_plane(plane, point) = distance_from_plane(plane, point) > EPSILON; // Section: Paths and Polygons // Function: is_path() // Usage: // is_path(x); // Description: // Returns true if the given item looks like a path. A path is defined as a list of two or more points. function is_path(x) = is_list(x) && is_vector(x.x) && len(x)>1; // Function: is_closed_path() // Usage: // is_closed_path(path, [eps]); // Description: // Returns true if the first and last points in the given path are coincident. function is_closed_path(path, eps=EPSILON) = approx(path[0], path[len(path)-1], eps=eps); // Function: close_path() // Usage: // close_path(path); // Description: // If a path's last point does not coincide with its first point, closes the path so it does. function close_path(path, eps=EPSILON) = is_closed_path(path,eps=eps)? path : concat(path,[path[0]]); // Function: cleanup_path() // Usage: // cleanup_path(path); // Description: // If a path's last point coincides with its first point, deletes the last point in the path. function cleanup_path(path, eps=EPSILON) = is_closed_path(path,eps=eps)? select(path,0,-2) : path; // Function: path_self_intersections() // Usage: // isects = path_self_intersections(path, [eps]); // Description: // Locates all self intersections of the given path. Returns a list of intersections, where // each intersection is a list like [POINT, SEGNUM1, PROPORTION1, SEGNUM2, PROPORTION2] where // POINT is the coordinates of the intersection point, SEGNUMs are the integer indices of the // intersecting segments along the path, and the PROPORTIONS are the 0.0 to 1.0 proportions // of how far along those segments they intersect at. A proportion of 0.0 indicates the start // of the segment, and a proportion of 1.0 indicates the end of the segment. // Arguments: // path = The path to find self intersections of. // closed = If true, treat path like a closed polygon. Default: true // eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9) // Example(2D): // path = [ // [-100,100], [0,-50], [100,100], [100,-100], [0,50], [-100,-100] // ]; // isects = path_self_intersections(path, closed=true); // // isects == [[[-33.3333, 0], 0, 0.666667, 4, 0.333333], [[33.3333, 0], 1, 0.333333, 3, 0.666667]] // stroke(path, closed=true, width=1); // for (isect=isects) translate(isect[0]) color("blue") sphere(d=10); function path_self_intersections(path, closed=true, eps=EPSILON) = let( path = cleanup_path(path, eps=eps), plen = len(path) ) [ for (i = [0:1:plen-(closed?2:3)], j=[i+1:1:plen-(closed?1:2)]) let( a1 = path[i], a2 = path[(i+1)%plen], b1 = path[j], b2 = path[(j+1)%plen], isect = (max(a1.x, a2.x) < min(b1.x, b2.x))? undef : (min(a1.x, a2.x) > max(b1.x, b2.x))? undef : (max(a1.y, a2.y) < min(b1.y, b2.y))? undef : (min(a1.y, a2.y) > max(b1.y, b2.y))? undef : let( c = a1-a2, d = b1-b2, denom = (c.x*d.y)-(c.y*d.x) ) abs(denom)eps && isect[1]<=1+eps && isect[2]>eps && isect[2]<=1+eps ) [isect[0], i, isect[1], j, isect[2]] ]; function _tag_self_crossing_subpaths(path, closed=true, eps=EPSILON) = let( subpaths = split_path_at_self_crossings( path, closed=closed, eps=eps ) ) [ for (subpath = subpaths) let( seg = select(subpath,0,1), mp = mean(seg), n = line_normal(seg) / 2048, p1 = mp + n, p2 = mp - n, p1in = point_in_polygon(p1, path) >= 0, p2in = point_in_polygon(p2, path) >= 0, tag = (p1in && p2in)? "I" : "O" ) [tag, subpath] ]; // Function: decompose_path() // Usage: // splitpaths = decompose_path(path, [closed], [eps]); // Description: // Given a possibly self-crossing path, decompose it into non-crossing paths that are on the perimeter // of the areas bounded by that path. // Arguments: // path = The path to split up. // closed = If true, treat path like a closed polygon. Default: true // eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9) // Example(2D): // path = [ // [-100,100], [0,-50], [100,100], [100,-100], [0,50], [-100,-100] // ]; // splitpaths = decompose_path(path, closed=true); // rainbow(splitpaths) stroke($item, closed=true, width=3); function decompose_path(path, closed=true, eps=EPSILON) = let( path = cleanup_path(path, eps=eps), tagged = _tag_self_crossing_subpaths(path, closed=closed, eps=eps), kept = [for (sub = tagged) if(sub[0] == "O") sub[1]], outregion = assemble_path_fragments(kept, eps=eps) ) outregion; // Function: path_subselect() // Usage: // path_subselect(path,s1,u1,s2,u2,[closed]): // Description: // Returns a portion of a path, from between the `u1` part of segment `s1`, to the `u2` part of // segment `s2`. Both `u1` and `u2` are values between 0.0 and 1.0, inclusive, where 0 is the start // of the segment, and 1 is the end. Both `s1` and `s2` are integers, where 0 is the first segment. // Arguments: // path = The path to get a section of. // s1 = The number of the starting segment. // u1 = The proportion along the starting segment, between 0.0 and 1.0, inclusive. // s2 = The number of the ending segment. // u2 = The proportion along the ending segment, between 0.0 and 1.0, inclusive. // closed = If true, treat path as a closed polygon. function path_subselect(path, s1, u1, s2, u2, closed=false) = let( lp = len(path), l = lp-(closed?0:1), u1 = s1<0? 0 : s1>l? 1 : u1, u2 = s2<0? 0 : s2>l? 1 : u2, s1 = constrain(s1,0,l), s2 = constrain(s2,0,l), pathout = concat( (s10)? [lerp(path[s2],path[(s2+1)%lp],u2)] : [] ) ) pathout; // Function: polygon_area() // Usage: // area = polygon_area(vertices); // Description: // Given a polygon, returns the area of that polygon. If the polygon is self-crossing, the results are undefined. function polygon_area(vertices) = 0.5*sum([for(i=[0:len(vertices)-1]) det2(select(vertices,i,i+1))]); // Function: polygon_shift() // Usage: // polygon_shift(poly, i); // Description: // Given a polygon `poly`, rotates the point ordering so that the first point in the polygon path is the one at index `i`. // Arguments: // poly = The list of points in the polygon path. // i = The index of the point to shift to the front of the path. // Example: // polygon_shift([[3,4], [8,2], [0,2], [-4,0]], 2); // Returns [[0,2], [-4,0], [3,4], [8,2]] function polygon_shift(poly, i) = list_rotate(cleanup_path(poly), i); // Function: polygon_shift_to_closest_point() // Usage: // polygon_shift_to_closest_point(path, pt); // Description: // Given a polygon `path`, rotates the point ordering so that the first point in the path is the one closest to the given point `pt`. function polygon_shift_to_closest_point(path, pt) = let( path = cleanup_path(path), closest = path_closest_point(path,pt), seg = select(path,closest[0],closest[0]+1), u = norm(closest[1]-seg[0]) / norm(seg[1]-seg[0]), segnum = closest[0] + (u>0.5? 1 : 0) ) select(path,segnum,segnum+len(path)-1); // Function: first_noncollinear() // Usage: // first_noncollinear(i1, i2, points); // Description: // Returns index of the first point in `points` that is not collinear with the points indexed by `i1` and `i2`. // Arguments: // i1 = The first point. // i2 = The second point. // points = The list of points to find a non-collinear point from. function first_noncollinear(i1, i2, points) = [for (j = idx(points)) if (j!=i1 && j!=i2 && !collinear_indexed(points,i1,i2,j)) j][0]; // Function: find_noncollinear_points() // Usage: // find_noncollinear_points(points); // Description: // Finds the indices of three good non-collinear points from the points list `points`. function find_noncollinear_points(points) = let( a = 0, b = furthest_point(points[a], points), c = max_index([ for (p=points) sin(vector_angle(points[a]-p,points[b]-p)) * norm(p-points[a]) * norm(p-points[b]) ]) ) [a, b, c]; // Function: centroid() // Usage: // centroid(vertices) // Description: // Given a simple 2D polygon, returns the coordinates of the polygon's centroid. // If the polygon is self-intersecting, the results are undefined. function centroid(vertices) = sum([ for(i=[0:len(vertices)-1]) let(segment=select(vertices,i,i+1)) det2(segment)*sum(segment) ]) / 6 / polygon_area(vertices); function _extreme_angle_fragment(seg, fragments, rightmost=true, eps=EPSILON) = !fragments? [undef, []] : let( delta = seg[1] - seg[0], segang = atan2(delta.y,delta.x), frags = [ for (i = idx(fragments)) let( fragment = fragments[i], fwdmatch = approx(seg[1], fragment[0], eps=eps), bakmatch = approx(seg[1], select(fragment,-1), eps=eps) ) [ fwdmatch, bakmatch, bakmatch? reverse(fragment) : fragment ] ], angs = [ for (frag = frags) (frag[0] || frag[1])? let( delta2 = frag[2][1] - frag[2][0], segang2 = atan2(delta2.y, delta2.x) ) modang(segang2 - segang) : ( rightmost? 999 : -999 ) ], fi = rightmost? min_index(angs) : max_index(angs) ) abs(angs[fi]) > 360? [undef, fragments] : let( remainder = [for (i=idx(fragments)) if (i!=fi) fragments[i]], frag = frags[fi], foundfrag = frag[2] ) [foundfrag, remainder]; // Function: assemble_a_path_from_fragments() // Usage: // assemble_a_path_from_fragments(subpaths); // Description: // Given a list of incomplete paths, assembles them together into one complete closed path, and // remainder fragments. Returns [PATH, FRAGMENTS] where FRAGMENTS is the list of remaining // polyline path fragments. // Arguments: // fragments = List of polylines to be assembled into complete polygons. // rightmost = If true, assemble paths using rightmost turns. Leftmost if false. // eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9) function assemble_a_path_from_fragments(fragments, rightmost=true, eps=EPSILON) = len(fragments)==0? _finished : let( path = fragments[0], newfrags = slice(fragments, 1, -1) ) is_closed_path(path, eps=eps)? ( // starting fragment is already closed [path, newfrags] ) : let( // Find rightmost/leftmost continuation fragment seg = select(path,-2,-1), frags = slice(fragments,1,-1), extrema = _extreme_angle_fragment(seg=seg, fragments=frags, rightmost=rightmost, eps=eps), foundfrag = extrema[0], remainder = extrema[1], newfrags = remainder ) is_undef(foundfrag)? ( // No remaining fragments connect! INCOMPLETE PATH! // Treat it as complete. [path, newfrags] ) : is_closed_path(foundfrag, eps=eps)? ( let( newfrags = concat([path], remainder) ) // Found fragment is already closed [foundfrag, newfrags] ) : let( fragend = select(foundfrag,-1), hits = [for (i = idx(path,end=-2)) if(approx(path[i],fragend,eps=eps)) i] ) hits? ( let( // Found fragment intersects with initial path hitidx = select(hits,-1), newpath = slice(path,0,hitidx+1), newfrags = concat(len(newpath)>1? [newpath] : [], remainder), outpath = concat(slice(path,hitidx,-2), foundfrag) ) [outpath, newfrags] ) : let( // Path still incomplete. Continue building it. newpath = concat(path, slice(foundfrag, 1, -1)), newfrags = concat([newpath], remainder) ) assemble_a_path_from_fragments( fragments=newfrags, rightmost=rightmost, eps=eps ); // Function: assemble_path_fragments() // Usage: // assemble_path_fragments(subpaths); // Description: // Given a list of incomplete paths, assembles them together into complete closed paths if it can. // Arguments: // fragments = List of polylines to be assembled into complete polygons. // rightmost = If true, assemble paths using rightmost turns. Leftmost if false. // eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9) function assemble_path_fragments(fragments, rightmost=true, eps=EPSILON, _finished=[]) = len(fragments)==0? _finished : let( result = assemble_a_path_from_fragments( fragments=fragments, rightmost=rightmost, eps=eps ), newpath = result[0], remainder = result[1], finished = concat(_finished, [newpath]) ) assemble_path_fragments( fragments=remainder, rightmost=rightmost, eps=eps, _finished=finished ); // Function: simplify_path() // Description: // Takes a path and removes unnecessary collinear points. // Usage: // simplify_path(path, [eps]) // Arguments: // path = A list of 2D path points. // eps = Largest positional variance allowed. Default: `EPSILON` (1-e9) function simplify_path(path, eps=EPSILON) = len(path)<=2? path : let( indices = concat([0], [for (i=[1:1:len(path)-2]) if (!collinear_indexed(path, i-1, i, i+1, eps=eps)) i], [len(path)-1]) ) [for (i = indices) path[i]]; // Function: simplify_path_indexed() // Description: // Takes a list of points, and a path as a list of indices into `points`, // and removes all path points that are unecessarily collinear. // Usage: // simplify_path_indexed(path, eps) // Arguments: // points = A list of points. // path = A list of indices into `points` that forms a path. // eps = Largest angle variance allowed. Default: EPSILON (1-e9) degrees. function simplify_path_indexed(points, path, eps=EPSILON) = len(path)<=2? path : let( indices = concat([0], [for (i=[1:1:len(path)-2]) if (!collinear_indexed(points, path[i-1], path[i], path[i+1], eps=eps)) i], [len(path)-1]) ) [for (i = indices) path[i]]; // Function: point_in_polygon() // Usage: // point_in_polygon(point, path) // Description: // This function tests whether the given point is inside, outside or on the boundary of // the specified 2D polygon using the Winding Number method. // The polygon is given as a list of 2D points, not including the repeated end point. // Returns -1 if the point is outside the polyon. // Returns 0 if the point is on the boundary. // Returns 1 if the point lies in the interior. // The polygon does not need to be simple: it can have self-intersections. // But the polygon cannot have holes (it must be simply connected). // Rounding error may give mixed results for points on or near the boundary. // Arguments: // point = The point to check position of. // path = The list of 2D path points forming the perimeter of the polygon. // eps = Acceptable variance. Default: `EPSILON` (1e-9) function point_in_polygon(point, path, eps=EPSILON) = // Original algorithm from http://geomalgorithms.com/a03-_inclusion.html // Does the point lie on any edges? If so return 0. sum([for(i=[0:1:len(path)-1]) let(seg=select(path,i,i+1)) if(!approx(seg[0],seg[1],eps=eps)) point_on_segment2d(point, seg, eps=eps)?1:0]) > 0? 0 : // Otherwise compute winding number and return 1 for interior, -1 for exterior sum([for(i=[0:1:len(path)-1]) let(seg=select(path,i,i+1)) if(!approx(seg[0],seg[1],eps=eps)) _point_above_below_segment(point, seg)]) != 0? 1 : -1; // Function: pointlist_bounds() // Usage: // pointlist_bounds(pts); // Description: // Finds the bounds containing all the 2D or 3D points in `pts`. // Returns `[[MINX, MINY, MINZ], [MAXX, MAXY, MAXZ]]` // Arguments: // pts = List of points. function pointlist_bounds(pts) = [ [for (a=[0:2]) min([ for (x=pts) point3d(x)[a] ]) ], [for (a=[0:2]) max([ for (x=pts) point3d(x)[a] ]) ] ]; // Function: closest_point() // Usage: // closest_point(pt, points); // Description: // Given a list of `points`, finds the index of the closest point to `pt`. // Arguments: // pt = The point to find the closest point to. // points = The list of points to search. function closest_point(pt, points) = min_index([for (p=points) norm(p-pt)]); // Function: furthest_point() // Usage: // furthest_point(pt, points); // Description: // Given a list of `points`, finds the index of the furthest point from `pt`. // Arguments: // pt = The point to find the farthest point from. // points = The list of points to search. // Example: function furthest_point(pt, points) = max_index([for (p=points) norm(p-pt)]); // Function: polygon_is_clockwise() // Usage: // polygon_is_clockwise(path); // Description: // Return true if the given 2D simple polygon is in clockwise order, false otherwise. // Results for complex (self-intersecting) polygon are indeterminate. // Arguments: // path = The list of 2D path points for the perimeter of the polygon. function polygon_is_clockwise(path) = let( minx = min(subindex(path,0)), lowind = search(minx, path, 0, 0), lowpts = select(path, lowind), miny = min(subindex(lowpts, 1)), extreme_sub = search(miny, lowpts, 1, 1)[0], extreme = select(lowind,extreme_sub) ) det2([select(path,extreme+1)-path[extreme], select(path, extreme-1)-path[extreme]])<0; // Function: clockwise_polygon() // Usage: // clockwise_polygon(path); // Description: // Given a polygon path, returns the clockwise winding version of that path. function clockwise_polygon(path) = polygon_is_clockwise(path)? path : reverse(path); // Function: ccw_polygon() // Usage: // ccw_polygon(path); // Description: // Given a polygon path, returns the counter-clockwise winding version of that path. function ccw_polygon(path) = polygon_is_clockwise(path)? reverse(path) : path; // Section: Regions and Boolean 2D Geometry // Function: is_region() // Usage: // is_region(x); // Description: // Returns true if the given item looks like a region. A region is defined as a list of zero or more paths. function is_region(x) = is_list(x) && is_path(x.x); // Function: close_region() // Usage: // close_region(region); // Description: // Closes all paths within a given region. function close_region(region, eps=EPSILON) = [for (path=region) close_path(path, eps=eps)]; // Function: check_and_fix_path() // Usage: // check_and_fix_path(path, [valid_dim], [closed]) // Description: // Checks that the input is a path. If it is a region with one component, converts it to a path. // valid_dim specfies the allowed dimension of the points in the path. // If the path is closed, removed duplicate endpoint if present. // Arguments: // path = path to process // valid_dim = list of allowed dimensions for the points in the path, e.g. [2,3] to require 2 or 3 dimensional input. If left undefined do not perform this check. Default: undef // closed = set to true if the path is closed, which enables a check for endpoint duplication function check_and_fix_path(path, valid_dim=undef, closed=false) = let( path = is_region(path)? ( assert(len(path)==1,"Region supplied as path does not have exactly one component") path[0] ) : ( assert(is_path(path), "Input is not a path") path ), dim = array_dim(path) ) assert(dim[0]>1,"Path must have at least 2 points") assert(len(dim)==2,"Invalid path: path is either a list of scalars or a list of matrices") assert(is_def(dim[1]), "Invalid path: entries in the path have variable length") let(valid=is_undef(valid_dim) || in_list(dim[1],valid_dim)) assert( valid, str( "The points on the path have length ", dim[1], " but length must be ", len(valid_dim)==1? valid_dim[0] : str("one of ",valid_dim) ) ) closed && approx(path[0],select(path,-1))? slice(path,0,-2) : path; // Function: cleanup_region() // Usage: // cleanup_region(region); // Description: // For all paths in the given region, if the last point coincides with the first point, removes the last point. // Arguments: // region = The region to clean up. Given as a list of polygon paths. // eps = Acceptable variance. Default: `EPSILON` (1e-9) function cleanup_region(region, eps=EPSILON) = [for (path=region) cleanup_path(path, eps=eps)]; // Function: point_in_region() // Usage: // point_in_region(point, region); // Description: // Tests if a point is inside, outside, or on the border of a region. // Returns -1 if the point is outside the region. // Returns 0 if the point is on the boundary. // Returns 1 if the point lies inside the region. // Arguments: // point = The point to test. // region = The region to test against. Given as a list of polygon paths. // eps = Acceptable variance. Default: `EPSILON` (1e-9) function point_in_region(point, region, eps=EPSILON, _i=0, _cnt=0) = (_i >= len(region))? ((_cnt%2==1)? 1 : -1) : let( pip = point_in_polygon(point, region[_i], eps=eps) ) pip==0? 0 : point_in_region(point, region, eps=eps, _i=_i+1, _cnt = _cnt + (pip>0? 1 : 0)); // Function: region_path_crossings() // Usage: // region_path_crossings(path, region); // Description: // Returns a sorted list of [SEGMENT, U] that describe where a given path is crossed by a second path. // Arguments: // path = The path to find crossings on. // region = Region to test for crossings of. // closed = If true, treat path as a closed polygon. Default: true // eps = Acceptable variance. Default: `EPSILON` (1e-9) function region_path_crossings(path, region, closed=true, eps=EPSILON) = sort([ let( segs = pair(closed? close_path(path) : cleanup_path(path)) ) for ( si = idx(segs), p = close_region(region), s2 = pair(p) ) let ( isect = _general_line_intersection(segs[si], s2, eps=eps) ) if ( !is_undef(isect) && isect[1] >= 0-eps && isect[1] < 1+eps && isect[2] >= 0-eps && isect[2] < 1+eps ) [si, isect[1]] ]); function _offset_chamfer(center, points, delta) = let( dist = sign(delta)*norm(center-line_intersection(select(points,[0,2]), [center, points[1]])), endline = _shift_segment(select(points,[0,2]), delta-dist) ) [ line_intersection(endline, select(points,[0,1])), line_intersection(endline, select(points,[1,2])) ]; function _shift_segment(segment, d) = move(d*line_normal(segment),segment); // Extend to segments to their intersection point. First check if the segments already have a point in common, // which can happen if two colinear segments are input to the path variant of `offset()` function _segment_extension(s1,s2) = norm(s1[1]-s2[0])<1e-6 ? s1[1] : line_intersection(s1,s2); function _makefaces(direction, startind, good, pointcount, closed) = let( lenlist = list_bset(good, pointcount), numfirst = len(lenlist), numsecond = sum(lenlist), prelim_faces = _makefaces_recurse(startind, startind+len(lenlist), numfirst, numsecond, lenlist, closed) ) direction? [for(entry=prelim_faces) reverse(entry)] : prelim_faces; function _makefaces_recurse(startind1, startind2, numfirst, numsecond, lenlist, closed, firstind=0, secondind=0, faces=[]) = // We are done if *both* firstind and secondind reach their max value, which is the last point if !closed or one past // the last point if closed (wrapping around). If you don't check both you can leave a triangular gap in the output. ((firstind == numfirst - (closed?0:1)) && (secondind == numsecond - (closed?0:1)))? faces : _makefaces_recurse( startind1, startind2, numfirst, numsecond, lenlist, closed, firstind+1, secondind+lenlist[firstind], lenlist[firstind]==0? ( // point in original path has been deleted in offset path, so it has no match. We therefore // make a triangular face using the current point from the offset (second) path // (The current point in the second path can be equal to numsecond if firstind is the last point) concat(faces,[[secondind%numsecond+startind2, firstind+startind1, (firstind+1)%numfirst+startind1]]) // in this case a point or points exist in the offset path corresponding to the original path ) : ( concat(faces, // First generate triangular faces for all of the extra points (if there are any---loop may be empty) [for(i=[0:1:lenlist[firstind]-2]) [firstind+startind1, secondind+i+1+startind2, secondind+i+startind2]], // Finish (unconditionally) with a quadrilateral face [ [ firstind+startind1, (firstind+1)%numfirst+startind1, (secondind+lenlist[firstind])%numsecond+startind2, (secondind+lenlist[firstind]-1)%numsecond+startind2 ] ] ) ) ); // Determine which of the shifted segments are good function _good_segments(path, d, shiftsegs, closed, quality) = let( maxind = len(path)-(closed ? 1 : 2), pathseg = [for(i=[0:maxind]) select(path,i+1)-path[i]], pathseg_len = [for(seg=pathseg) norm(seg)], pathseg_unit = [for(i=[0:maxind]) pathseg[i]/pathseg_len[i]], // Order matters because as soon as a valid point is found, the test stops // This order works better for circular paths because they succeed in the center alpha = concat([for(i=[1:1:quality]) i/(quality+1)],[0,1]) ) [ for (i=[0:len(shiftsegs)-1]) (i>maxind)? true : _segment_good(path,pathseg_unit,pathseg_len, d - 1e-7, shiftsegs[i], alpha) ]; // Determine if a segment is good (approximately) // Input is the path, the path segments normalized to unit length, the length of each path segment // the distance threshold, the segment to test, and the locations on the segment to test (normalized to [0,1]) // The last parameter, index, gives the current alpha index. // // A segment is good if any part of it is farther than distance d from the path. The test is expensive, so // we want to quit as soon as we find a point with distance > d, hence the recursive code structure. // // This test is approximate because it only samples the points listed in alpha. Listing more points // will make the test more accurate, but slower. function _segment_good(path,pathseg_unit,pathseg_len, d, seg,alpha ,index=0) = index == len(alpha) ? false : _point_dist(path,pathseg_unit,pathseg_len, alpha[index]*seg[0]+(1-alpha[index])*seg[1]) > d ? true : _segment_good(path,pathseg_unit,pathseg_len,d,seg,alpha,index+1); // Input is the path, the path segments normalized to unit length, the length of each path segment // and a test point. Computes the (minimum) distance from the path to the point, taking into // account that the minimal distance may be anywhere along a path segment, not just at the ends. function _point_dist(path,pathseg_unit,pathseg_len,pt) = min([ for(i=[0:len(pathseg_unit)-1]) let( v = pt-path[i], projection = v*pathseg_unit[i], segdist = projection < 0? norm(pt-path[i]) : projection > pathseg_len[i]? norm(pt-select(path,i+1)) : norm(v-projection*pathseg_unit[i]) ) segdist ]); function _offset_region( paths, r, delta, chamfer, closed, maxstep, check_valid, quality, return_faces, firstface_index, flip_faces, _acc=[], _i=0 ) = _i>=len(paths)? _acc : _offset_region( paths, _i=_i+1, _acc = (paths[_i].x % 2 == 0)? ( union(_acc, [ offset( paths[_i].y, r=r, delta=delta, chamfer=chamfer, closed=closed, maxstep=maxstep, check_valid=check_valid, quality=quality, return_faces=return_faces, firstface_index=firstface_index, flip_faces=flip_faces ) ]) ) : ( difference(_acc, [ offset( paths[_i].y, r=-r, delta=-delta, chamfer=chamfer, closed=closed, maxstep=maxstep, check_valid=check_valid, quality=quality, return_faces=return_faces, firstface_index=firstface_index, flip_faces=flip_faces ) ]) ), r=r, delta=delta, chamfer=chamfer, closed=closed, maxstep=maxstep, check_valid=check_valid, quality=quality, return_faces=return_faces, firstface_index=firstface_index, flip_faces=flip_faces ); // Function: offset() // // Description: // Takes an input path and returns a path offset by the specified amount. As with the built-in // offset() module, you can use `r` to specify rounded offset and `delta` to specify offset with // corners. Positive offsets shift the path to the left (relative to the direction of the path). // // When offsets shrink the path, segments cross and become invalid. By default `offset()` checks // for this situation. To test validity the code checks that segments have distance larger than (r // or delta) from the input path. This check takes O(N^2) time and may mistakenly eliminate // segments you wanted included in various situations, so you can disable it if you wish by setting // check_valid=false. Another situation is that the test is not sufficiently thorough and some // segments persist that should be eliminated. In this case, increase `quality` to 2 or 3. (This // increases the number of samples on the segment that are checked.) Run time will increase. In // some situations you may be able to decrease run time by setting quality to 0, which causes only // segment ends to be checked. // // For construction of polyhedra `offset()` can also return face lists. These list faces between // the original path and the offset path where the vertices are ordered with the original path // first, starting at `firstface_index` and the offset path vertices appearing afterwords. The // direction of the faces can be flipped using `flip_faces`. When you request faces the return // value is a list: [offset_path, face_list]. // Arguments: // path = the path to process. A list of 2d points. // r = offset radius. Distance to offset. Will round over corners. // delta = offset distance. Distance to offset with pointed corners. // chamfer = chamfer corners when you specify `delta`. Default: false // closed = path is a closed curve. Default: False. // check_valid = perform segment validity check. Default: True. // quality = validity check quality parameter, a small integer. Default: 1. // return_faces = return face list. Default: False. // firstface_index = starting index for face list. Default: 0. // flip_faces = flip face direction. Default: false // Example(2D): // star = star(5, r=100, ir=30); // #stroke(closed=true, star); // stroke(closed=true, offset(star, delta=10, closed=true)); // Example(2D): // star = star(5, r=100, ir=30); // #stroke(closed=true, star); // stroke(closed=true, offset(star, delta=10, chamfer=true, closed=true)); // Example(2D): // star = star(5, r=100, ir=30); // #stroke(closed=true, star); // stroke(closed=true, offset(star, r=10, closed=true)); // Example(2D): // star = star(5, r=100, ir=30); // #stroke(closed=true, star); // stroke(closed=true, offset(star, delta=-10, closed=true)); // Example(2D): // star = star(5, r=100, ir=30); // #stroke(closed=true, star); // stroke(closed=true, offset(star, delta=-10, chamfer=true, closed=true)); // Example(2D): // star = star(5, r=100, ir=30); // #stroke(closed=true, star); // stroke(closed=true, offset(star, r=-10, closed=true)); // Example(2D): This case needs `quality=2` for success // test = [[0,0],[10,0],[10,7],[0,7], [-1,-3]]; // polygon(offset(test,r=-1.9, closed=true, quality=2)); // //polygon(offset(test,r=-1.9, closed=true, quality=1)); // Fails with erroneous 180 deg path error // %down(.1)polygon(test); // Example(2D): This case fails if `check_valid=true` when delta is large enough because segments are too close to the opposite side of the curve. // star = star(5, r=22, ir=13); // stroke(star,width=.2,closed=true); // color("green") // stroke(offset(star, delta=-9, closed=true),width=.2,closed=true); // Works with check_valid=true (the default) // color("red") // stroke(offset(star, delta=-10, closed=true, check_valid=false), // Fails if check_valid=true // width=.2,closed=true); // Example(2D): But if you use rounding with offset then you need `check_valid=true` when `r` is big enough. It works without the validity check as long as the offset shape retains a some of the straight edges at the star tip, but once the shape shrinks smaller than that, it fails. There is no simple way to get a correct result for the case with `r=10`, because as in the previous example, it will fail if you turn on validity checks. // star = star(5, r=22, ir=13); // color("green") // stroke(offset(star, r=-8, closed=true,check_valid=false), width=.1, closed=true); // color("red") // stroke(offset(star, r=-10, closed=true,check_valid=false), width=.1, closed=true); // Example(2D): The extra triangles in this example show that the validity check cannot be skipped // ellipse = scale([20,4], p=circle(r=1,$fn=64)); // stroke(ellipse, closed=true, width=0.3); // stroke(offset(ellipse, r=-3, check_valid=false, closed=true), width=0.3, closed=true); // Example(2D): The triangles are removed by the validity check // ellipse = scale([20,4], p=circle(r=1,$fn=64)); // stroke(ellipse, closed=true, width=0.3); // stroke(offset(ellipse, r=-3, check_valid=true, closed=true), width=0.3, closed=true); // Example(2D): Open path. The path moves from left to right and the positive offset shifts to the left of the initial red path. // sinpath = 2*[for(theta=[-180:5:180]) [theta/4,45*sin(theta)]]; // #stroke(sinpath); // stroke(offset(sinpath, r=17.5)); // Example(2D): Region // rgn = difference(circle(d=100), union(square([20,40], center=true), square([40,20], center=true))); // #linear_extrude(height=1.1) for (p=rgn) stroke(closed=true, width=0.5, p); // region(offset(rgn, r=-5)); function offset( path, r=undef, delta=undef, chamfer=false, maxstep=0.1, closed=false, check_valid=true, quality=1, return_faces=false, firstface_index=0, flip_faces=false ) = is_region(path)? ( assert(!return_faces, "return_faces not supported for regions.") let( path = [for (p=path) polygon_is_clockwise(p)? p : reverse(p)], rgn = exclusive_or([for (p = path) [p]]), pathlist = sort(idx=0,[ for (i=[0:1:len(rgn)-1]) [ sum(concat([0],[ for (j=[0:1:len(rgn)-1]) if (i!=j) point_in_polygon(rgn[i][0],rgn[j])>=0? 1 : 0 ])), rgn[i] ] ]) ) _offset_region( pathlist, r=r, delta=delta, chamfer=chamfer, closed=true, maxstep=maxstep, check_valid=check_valid, quality=quality, return_faces=return_faces, firstface_index=firstface_index, flip_faces=flip_faces ) ) : let(rcount = num_defined([r,delta])) assert(rcount==1,"Must define exactly one of 'delta' and 'r'") let( chamfer = is_def(r) ? false : chamfer, quality = max(0,round(quality)), flip_dir = closed && !polygon_is_clockwise(path)? -1 : 1, d = flip_dir * (is_def(r) ? r : delta), shiftsegs = [for(i=[0:len(path)-1]) _shift_segment(select(path,i,i+1), d)], // good segments are ones where no point on the segment is less than distance d from any point on the path good = check_valid ? _good_segments(path, abs(d), shiftsegs, closed, quality) : replist(true,len(shiftsegs)), goodsegs = bselect(shiftsegs, good), goodpath = bselect(path,good) ) assert(len(goodsegs)>0,"Offset of path is degenerate") let( // Extend the shifted segments to their intersection points sharpcorners = [for(i=[0:len(goodsegs)-1]) _segment_extension(select(goodsegs,i-1), select(goodsegs,i))], // If some segments are parallel then the extended segments are undefined. This case is not handled // Note if !closed the last corner doesn't matter, so exclude it parallelcheck = (len(sharpcorners)==2 && !closed) || all_defined(select(sharpcorners,closed?0:1,-1)) ) assert(parallelcheck, "Path turns back on itself (180 deg turn)") let( // This is a boolean array that indicates whether a corner is an outside or inside corner // For outside corners, the newcorner is an extension (angle 0), for inside corners, it turns backward // If either side turns back it is an inside corner---must check both. // Outside corners can get rounded (if r is specified and there is space to round them) outsidecorner = [ for(i=[0:len(goodsegs)-1]) let( prevseg=select(goodsegs,i-1) ) ( (goodsegs[i][1]-goodsegs[i][0]) * (goodsegs[i][0]-sharpcorners[i]) > 0 ) && ( (prevseg[1]-prevseg[0]) * (sharpcorners[i]-prevseg[1]) > 0 ) ], steps = is_def(delta) ? [] : [ for(i=[0:len(goodsegs)-1]) ceil( abs(r)*vector_angle( select(goodsegs,i-1)[1]-goodpath[i], goodsegs[i][0]-goodpath[i] )*PI/180/maxstep ) ], // If rounding is true then newcorners replaces sharpcorners with rounded arcs where needed // Otherwise it's the same as sharpcorners // If rounding is on then newcorners[i] will be the point list that replaces goodpath[i] and newcorners later // gets flattened. If rounding is off then we set it to [sharpcorners] so we can later flatten it and get // plain sharpcorners back. newcorners = is_def(delta) && !chamfer ? [sharpcorners] : [ for(i=[0:len(goodsegs)-1]) ( (!chamfer && steps[i] <=2) //Chamfer all points but only round if steps is 3 or more || !outsidecorner[i] // Don't round inside corners || (!closed && (i==0 || i==len(goodsegs)-1)) // Don't round ends of an open path )? [sharpcorners[i]] : ( chamfer? _offset_chamfer( goodpath[i], [ select(goodsegs,i-1)[1], sharpcorners[i], goodsegs[i][0] ], d ) : arc( cp=goodpath[i], points=[ select(goodsegs,i-1)[1], goodsegs[i][0] ], N=steps[i] ) ) ], pointcount = (is_def(delta) && !chamfer)? replist(1,len(sharpcorners)) : [for(i=[0:len(goodsegs)-1]) len(newcorners[i])], start = [goodsegs[0][0]], end = [goodsegs[len(goodsegs)-2][1]], edges = closed? flatten(newcorners) : concat(start,slice(flatten(newcorners),1,-2),end), faces = !return_faces? [] : _makefaces( flip_faces, firstface_index, good, pointcount, closed ) ) return_faces? [edges,faces] : edges; // Function: split_path_at_self_crossings() // Usage: // polylines = split_path_at_self_crossings(path, [closed], [eps]); // Description: // Splits a path into polyline sections wherever the path crosses itself. // Splits may occur mid-segment, so new vertices will be created at the intersection points. // Arguments: // path = The path to split up. // closed = If true, treat path as a closed polygon. Default: true // eps = Acceptable variance. Default: `EPSILON` (1e-9) // Example(2D): // path = [ [-100,100], [0,-50], [100,100], [100,-100], [0,50], [-100,-100] ]; // polylines = split_path_at_self_crossings(path); // rainbow(polylines) stroke($item, closed=false, width=2); function split_path_at_self_crossings(path, closed=true, eps=EPSILON) = let( path = cleanup_path(path, eps=eps), isects = deduplicate( eps=eps, concat( [[0, 0]], sort([ for ( a = path_self_intersections(path, closed=closed, eps=eps), ss = [ [a[1],a[2]], [a[3],a[4]] ] ) if (ss[0] != undef) ss ]), [[len(path)-(closed?1:2), 1]] ) ) ) [ for (p = pair(isects)) let( s1 = p[0][0], u1 = p[0][1], s2 = p[1][0], u2 = p[1][1], section = path_subselect(path, s1, u1, s2, u2, closed=closed), outpath = deduplicate(eps=eps, section) ) outpath ]; // Function: split_path_at_region_crossings() // Usage: // polylines = split_path_at_region_crossings(path, region, [eps]); // Description: // Splits a path into polyline sections wherever the path crosses the perimeter of a region. // Splits may occur mid-segment, so new vertices will be created at the intersection points. // Arguments: // path = The path to split up. // region = The region to check for perimeter crossings of. // closed = If true, treat path as a closed polygon. Default: true // eps = Acceptable variance. Default: `EPSILON` (1e-9) // Example(2D): // path = square(50,center=false); // region = [circle(d=80), circle(d=40)]; // polylines = split_path_at_region_crossings(path, region); // color("#aaa") region(region); // rainbow(polylines) stroke($item, closed=false, width=2); function split_path_at_region_crossings(path, region, closed=true, eps=EPSILON) = let( path = deduplicate(path, eps=eps), region = [for (path=region) deduplicate(path, eps=eps)], xings = region_path_crossings(path, region, closed=closed, eps=eps), crossings = deduplicate( concat([[0,0]], xings, [[len(path)-1,1]]), eps=eps ), subpaths = [ for (p = pair(crossings)) deduplicate(eps=eps, path_subselect(path, p[0][0], p[0][1], p[1][0], p[1][1], closed=closed) ) ] ) subpaths; function _tag_subpaths(path, region, eps=EPSILON) = let( subpaths = split_path_at_region_crossings(path, region, eps=eps), tagged = [ for (sub = subpaths) let( subpath = deduplicate(sub) ) if (len(sub)>1) let( midpt = lerp(subpath[0], subpath[1], 0.5), rel = point_in_region(midpt,region,eps=eps) ) rel<0? ["O", subpath] : rel>0? ["I", subpath] : let( vec = normalize(subpath[1]-subpath[0]), perp = rot(90, planar=true, p=vec), sidept = midpt + perp*0.01, rel1 = point_in_polygon(sidept,path,eps=eps)>0, rel2 = point_in_region(sidept,region,eps=eps)>0 ) rel1==rel2? ["S", subpath] : ["U", subpath] ] ) tagged; function _tag_region_subpaths(region1, region2, eps=EPSILON) = [for (path=region1) each _tag_subpaths(path, region2, eps=eps)]; function _tagged_region(region1,region2,keep1,keep2,eps=EPSILON) = let( region1 = close_region(region1, eps=eps), region2 = close_region(region2, eps=eps), tagged1 = _tag_region_subpaths(region1, region2, eps=eps), tagged2 = _tag_region_subpaths(region2, region1, eps=eps), tagged = concat( [for (tagpath = tagged1) if (in_list(tagpath[0], keep1)) tagpath[1]], [for (tagpath = tagged2) if (in_list(tagpath[0], keep2)) tagpath[1]] ), outregion = assemble_path_fragments(tagged, eps=eps) ) outregion; // Function&Module: union() // Usage: // union() {...} // region = union(regions); // region = union(REGION1,REGION2); // region = union(REGION1,REGION2,REGION3); // Description: // When called as a function and given a list of regions, where each region is a list of closed // 2D paths, returns the boolean union of all given regions. Result is a single region. // When called as the built-in module, makes the boolean union of the given children. // Arguments: // regions = List of regions to union. Each region is a list of closed paths. // Example(2D): // shape1 = move([-8,-8,0], p=circle(d=50)); // shape2 = move([ 8, 8,0], p=circle(d=50)); // for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true); // color("green") region(union(shape1,shape2)); function union(regions=[],b=undef,c=undef,eps=EPSILON) = b!=undef? union(concat([regions],[b],c==undef?[]:[c]), eps=eps) : len(regions)<=1? regions[0] : union( let(regions=[for (r=regions) is_path(r)? [r] : r]) concat( [_tagged_region(regions[0],regions[1],["O","S"],["O"], eps=eps)], [for (i=[2:1:len(regions)-1]) regions[i]] ), eps=eps ); // Function&Module: difference() // Usage: // difference() {...} // region = difference(regions); // region = difference(REGION1,REGION2); // region = difference(REGION1,REGION2,REGION3); // Description: // When called as a function, and given a list of regions, where each region is a list of closed // 2D paths, takes the first region and differences away all other regions from it. The resulting // region is returned. // When called as the built-in module, makes the boolean difference of the given children. // Arguments: // regions = List of regions to difference. Each region is a list of closed paths. // Example(2D): // shape1 = move([-8,-8,0], p=circle(d=50)); // shape2 = move([ 8, 8,0], p=circle(d=50)); // for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true); // color("green") region(difference(shape1,shape2)); function difference(regions=[],b=undef,c=undef,eps=EPSILON) = b!=undef? difference(concat([regions],[b],c==undef?[]:[c]), eps=eps) : len(regions)<=1? regions[0] : difference( let(regions=[for (r=regions) is_path(r)? [r] : r]) concat( [_tagged_region(regions[0],regions[1],["O","U"],["I"], eps=eps)], [for (i=[2:1:len(regions)-1]) regions[i]] ), eps=eps ); // Function&Module: intersection() // Usage: // intersection() {...} // region = intersection(regions); // region = intersection(REGION1,REGION2); // region = intersection(REGION1,REGION2,REGION3); // Description: // When called as a function, and given a list of regions, where each region is a list of closed // 2D paths, returns the boolean intersection of all given regions. Result is a single region. // When called as the built-in module, makes the boolean intersection of all the given children. // Arguments: // regions = List of regions to intersection. Each region is a list of closed paths. // Example(2D): // shape1 = move([-8,-8,0], p=circle(d=50)); // shape2 = move([ 8, 8,0], p=circle(d=50)); // for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true); // color("green") region(intersection(shape1,shape2)); function intersection(regions=[],b=undef,c=undef,eps=EPSILON) = b!=undef? intersection(concat([regions],[b],c==undef?[]:[c]),eps=eps) : len(regions)<=1? regions[0] : intersection( let(regions=[for (r=regions) is_path(r)? [r] : r]) concat( [_tagged_region(regions[0],regions[1],["I","S"],["I"],eps=eps)], [for (i=[2:1:len(regions)-1]) regions[i]] ), eps=eps ); // Function&Module: exclusive_or() // Usage: // exclusive_or() {...} // region = exclusive_or(regions); // region = exclusive_or(REGION1,REGION2); // region = exclusive_or(REGION1,REGION2,REGION3); // Description: // When called as a function and given a list of regions, where each region is a list of closed // 2D paths, returns the boolean exclusive_or of all given regions. Result is a single region. // When called as a module, performs a boolean exclusive-or of up to 10 children. // Arguments: // regions = List of regions to exclusive_or. Each region is a list of closed paths. // Example(2D): As Function // shape1 = move([-8,-8,0], p=circle(d=50)); // shape2 = move([ 8, 8,0], p=circle(d=50)); // for (shape = [shape1,shape2]) // color("red") stroke(shape, width=0.5, closed=true); // color("green") region(exclusive_or(shape1,shape2)); // Example(2D): As Module // exclusive_or() { // square(40,center=false); // circle(d=40); // } function exclusive_or(regions=[],b=undef,c=undef,eps=EPSILON) = b!=undef? exclusive_or(concat([regions],[b],c==undef?[]:[c]),eps=eps) : len(regions)<=1? regions[0] : exclusive_or( let(regions=[for (r=regions) is_path(r)? [r] : r]) concat( [union([ difference([regions[0],regions[1]], eps=eps), difference([regions[1],regions[0]], eps=eps) ], eps=eps)], [for (i=[2:1:len(regions)-1]) regions[i]] ), eps=eps ); module exclusive_or() { if ($children==1) { children(); } else if ($children==2) { difference() { children(0); children(1); } difference() { children(1); children(0); } } else if ($children==3) { exclusive_or() { exclusive_or() { children(0); children(1); } children(2); } } else if ($children==4) { exclusive_or() { exclusive_or() { children(0); children(1); } exclusive_or() { children(2); children(3); } } } else if ($children==5) { exclusive_or() { exclusive_or() { children(0); children(1); children(2); children(3); } children(4); } } else if ($children==6) { exclusive_or() { exclusive_or() { children(0); children(1); children(2); children(3); } children(4); children(5); } } else if ($children==7) { exclusive_or() { exclusive_or() { children(0); children(1); children(2); children(3); } children(4); children(5); children(6); } } else if ($children==8) { exclusive_or() { exclusive_or() { children(0); children(1); children(2); children(3); } exclusive_or() { children(4); children(5); children(6); children(7); } } } else if ($children==9) { exclusive_or() { exclusive_or() { children(0); children(1); children(2); children(3); } exclusive_or() { children(4); children(5); children(6); children(7); } children(8); } } else if ($children==10) { exclusive_or() { exclusive_or() { children(0); children(1); children(2); children(3); } exclusive_or() { children(4); children(5); children(6); children(7); } children(8); children(9); } } else { assert($children<=10, "exclusive_or() can only handle up to 10 children."); } } // Module: region() // Usage: // region(r); // Description: // Creates 2D polygons for the given region. The region given is a list of closed 2D paths. // Each path will be effectively exclusive-ORed from all other paths in the region, so if a // path is inside another path, it will be effectively subtracted from it. // Example(2D): // region([circle(d=50), square(25,center=true)]); // Example(2D): // rgn = concat( // [for (d=[50:-10:10]) circle(d=d-5)], // [square([60,10], center=true)] // ); // region(rgn); module region(r) { points = flatten(r); paths = [ for (i=[0:1:len(r)-1]) let( start = default(sum([for (j=[0:1:i-1]) len(r[j])]),0) ) [for (k=[0:1:len(r[i])-1]) start+k] ]; polygon(points=points, paths=paths); } // vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap