////////////////////////////////////////////////////////////////////// // LibFile: bottlecaps_custom.scad // Bottle caps, necks, and threaded adapters for plastic bottles. // Includes: // include // include ////////////////////////////////////////////////////////////////////// include include // Module: custom_neck() // Usage: // custom_neck(, ) // Description: // Creates a bottle neck given specifications. // Arguments: // wall = Wall thickness in mm. // --- // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // neckDiam = Outer diameter of neck without threads // innerDiam = Inner diameter of neck // threadOuterD = Outer diameter of thread // height = Height of neck above support // supportDiam = Outer diameter of support ring. Set to 0 for no support. // threadPitch = Thread pitch // roundLowerSupport = True to round the lower edge of the support ring // wall = distance between ID and any wall that may be below the support // Extra Anchors: // "support-ring" = Centered at the bottom of the support ring. // Example: // custom_neck(); module custom_neck(anchor = "support-ring", spin = 0, orient = UP, neckDiam = 25, innerDiam = 21.4, threadOuterD = 27.2, height = 17, supportDiam = 33.0, threadPitch = 3.2, roundLowerSupport = false, wall) { inner_d = innerDiam; neck_d = neckDiam; support_d = max(neckDiam, supportDiam); thread_pitch = threadPitch; thread_angle = 15; thread_od = threadOuterD; diamMagMult = neckDiam / 26.19; heightMagMult = height / 17.00; sup_r = 0.30 * (heightMagMult > 1 ? heightMagMult : 1); support_r = floor(((support_d == neck_d) ? sup_r : min(sup_r, (support_d - neck_d) / 2)) * 5000) / 10000; support_rad = (wall == undef || !roundLowerSupport) ? support_r : min(support_r, floor((support_d - (inner_d + 2 * wall)) * 5000) / 10000); //Too small of a radius will cause errors with the arc, this limits granularity to .0001mm support_width = 1 * (heightMagMult > 1 ? heightMagMult : 1) * sign(supportDiam); roundover = 0.58 * diamMagMult; lip_roundover_r = (roundover > (neck_d - inner_d) / 2) ? 0 : roundover; h = height + support_width; threadbase_d = neck_d - 0.8 * diamMagMult; $fn = segs(33 / 2); thread_h = (thread_od - threadbase_d) / 2; anchors = [ anchorpt("support-ring", [0, 0, 0 - h / 2]) ]; attachable(anchor, spin, orient, d1 = neck_d, d2 = 0, l = h, anchors = anchors) { down(h / 2) { rotate_extrude(convexity = 10) { polygon(turtle( state = [inner_d / 2, 0], (support_d != neck_d) ? [ "untilx", support_d / 2 - ((roundLowerSupport) ? support_rad : 0), "arcleft", ((roundLowerSupport) ? support_rad : 0), 90, "untily", support_width - support_rad, "arcleft", support_rad, 90, "untilx", neck_d / 2, "right", 90, "untily", h - lip_roundover_r, "arcleft", lip_roundover_r, 90, "untilx", inner_d / 2 ] : [ "untilx", support_d / 2 - ((roundLowerSupport) ? support_rad : 0), "arcleft", ((roundLowerSupport) ? support_rad : 0), 90, "untily", h - lip_roundover_r, "arcleft", lip_roundover_r, 90, "untilx", inner_d / 2 ] )); } up(h - threadPitch / 2 - lip_roundover_r) { difference() { thread_helix( d = threadbase_d - 0.1 * diamMagMult, pitch = thread_pitch, thread_depth = thread_h + 0.1 * diamMagMult, thread_angle = thread_angle, twist = 360 * (height - threadPitch - lip_roundover_r) * .6167 / threadPitch, higbee = thread_h * 2, anchor = TOP ); zrot_copies(rots = [90, 270]) { zrot_copies(rots = [-28, 28], r = threadbase_d / 2) { prismoid([20 * heightMagMult, 1.82 * diamMagMult], [20 * heightMagMult, 1.82 * diamMagMult * .6 + 2 * sin(29) * thread_h], h = thread_h + 0.1 * diamMagMult, anchor = BOT, orient = RIGHT); } } } } } children(); } } function custom_neck(anchor = "support-ring", spin = 0, orient = UP, neckDiam = 25, innerDiam = 21.4, threadOuterD = 27.2, height = 17, supportDiam = 33.0, threadPitch = 3.2, roundLowerSupport = false, wall) = no_function("custom_neck"); // Module: custom_cap() // Usage: // custom_cap(wall, [texture]); // Description: // Creates a basic threaded cap given specifications. // Arguments: // wall = Wall thickness in mm. // texture = The surface texture of the cap. Valid values are "none", "knurled", or "ribbed". Default: "none" // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // height = Interior height of the cap in mm. // threadOuterD = Outer diameter of the threads in mm. // tolerance = Extra space to add to the outer diameter of threads and neck in mm. Applied to radius. // neckOuterD = Outer diameter of neck in mm. // threadAngle = Angle of taper on threads. // threadPitch = Thread pitch in mm. // Extra Anchors: // "inside-top" = Centered on the inside top of the cap. // Examples: // custom_cap(); // custom_cap(texture="knurled"); // custom_cap(texture="ribbed"); module custom_cap(wall = 2, texture = "none", anchor = BOTTOM, spin = 0, orient = UP, height = 11.2, threadOuterD = 28.58, tolerance = .2, neckOuterD = 25.5, threadAngle = 15, threadPitch = 4) { $fn = segs(33 / 2); threadOuterDTol = threadOuterD + 2 * tolerance; w = threadOuterDTol + 2 * wall; h = height + wall; neckOuterDTol = neckOuterD + 2 * tolerance; threadDepth = (threadOuterD - neckOuterD) / 2 + .8; diamMagMult = (w > 32.58) ? w / 32.58 : 1; heightMagMult = (height > 11.2) ? height / 11.2 : 1; anchors = [ anchorpt("inside-top", [0, 0, -(h / 2 - wall)]) ]; attachable(anchor, spin, orient, d = w, l = h, anchors = anchors) { down(h / 2) { difference() { union() {//For the knurled and ribbed caps the PCO caps in BOSL2 cut into the wall thickness so the wall+texture are the specified wall thickness. That seems wrong so this does specified thickness+texture if (texture == "knurled") { knurled_cylinder(d = w + 1.5 * diamMagMult, helix = 45, l = h, anchor = BOTTOM); cyl(d = w, l = h, anchor = BOTTOM); } else if (texture == "ribbed") { zrot_copies(n = 30, r = (w + .2 * diamMagMult) / 2) { cube([1 * diamMagMult, 1 * diamMagMult, h], anchor = BOTTOM); } cyl(d = w, l = h, anchor = BOTTOM); } else { cyl(d = w, l = h, anchor = BOTTOM); } } up(wall) cyl(d = threadOuterDTol, h = h, anchor = BOTTOM); } difference(){ up(wall + threadPitch / 2) { thread_helix(d = neckOuterDTol, pitch = threadPitch, thread_depth = threadDepth, thread_angle = threadAngle, twist = 360 * ((height - threadPitch) / threadPitch), higbee = threadDepth, internal = true, anchor = BOTTOM); } /*up(h*6){ cyl(d=w,h=h*10); //thread overflow cutoff, shouldn't be needed }*/ } } children(); } } function custom_cap(wall = 2, texture = "none", anchor = BOTTOM, spin = 0, orient = UP, height = 11.2, threadOuterD = 28.58, tolerance = .2, neckOuterD = 25.5, threadAngle = 15, threadPitch = 4) = no_function("custom_cap"); // Module: thread_adapter_NC() // Usage: // thread_adapter_NC(wall, [texture]); // Description: // Creates a threaded neck to cap adapter // Arguments: // wall = Thickness of wall between neck and cap when d=0. Leave undefined to have the outside of the tube go from the OD of the neck support ring to the OD of the cap. Default: undef // texture = The surface texture of the cap. Valid values are "none", "knurled", or "ribbed". Default: "none" // capWall = Wall thickness of the cap in mm. // capHeight = Interior height of the cap in mm. // capThreadOD = Outer diameter of cap threads in mm. // tolerance = Extra space to add to the outer diameter of threads and neck in mm. Applied to radius. // capNeckOD = Inner diameter of the cap threads. // capNeckID = Inner diameter of the hole through the cap. // capThreadTaperAngle = Angle of taper on threads. // capThreadPitch = Thread pitch in mm // neckDiam = Outer diameter of neck w/o threads // neckID = Inner diameter of neck // neckThreadOD = 27.2 // neckHeight = Height of neck down to support ring // neckThreadPitch = Thread pitch in mm. // neckSupportOD = Outer diameter of neck support ring. Leave undefined to set equal to OD of cap. Set to 0 for no ring. Default: undef // d = Distance between bottom of neck and top of cap // taperLeadIn = Length to leave straight before tapering on tube between neck and cap if exists. // Examples: // thread_adapter_NC(); module thread_adapter_NC(wall, texture = "none", capWall = 2, capHeight = 11.2, capThreadOD = 28.58, tolerance = .2, capNeckOD = 25.5, capNeckID, capThreadTaperAngle = 15, capThreadPitch = 4, neckDiam = 25, neckID = 21.4, neckThreadOD = 27.2, neckHeight = 17, neckThreadPitch = 3.2, neckSupportOD, d = 0, taperLeadIn = 0){ neckSupportOD = (neckSupportOD == undef || (d == 0 && neckSupportOD < capThreadOD + 2 * tolerance)) ? capThreadOD + 2 * (capWall + tolerance) : neckSupportOD; capNeckID = (capNeckID == undef) ? neckID : capNeckID; wall = (wall == undef) ? neckSupportOD + neckDiam + capThreadOD + neckID : wall; $fn = segs(33 / 2); wallt1 = min(wall, (max(neckSupportOD, neckDiam) - neckID) / 2); wallt2 = min(wall, (capThreadOD + 2 * (capWall + tolerance) - capNeckID) / 2); difference(){ union(){ up(d / 2) { custom_neck(neckDiam = neckDiam, innerDiam = neckID, threadOuterD = neckThreadOD, height = neckHeight, supportDiam = neckSupportOD, threadPitch = neckThreadPitch, roundLowerSupport = ((wallt1 < (neckSupportOD - neckID) / 2) && (d > 0 || neckSupportOD > (capThreadOD + 2 * (capWall + tolerance)))), wall = (d > 0) ? wallt1 : min(wallt1, ((capThreadOD + 2 * (capWall + tolerance) - neckID) / 2)) ); } if (d != 0) { rotate_extrude(){ polygon(points = [ [0, d / 2], [neckID / 2 + wallt1, d / 2], [neckID / 2 + wallt1, d / 2 - taperLeadIn], [capNeckID / 2 + wallt2, taperLeadIn - d / 2], [capNeckID / 2 + wallt2, -d / 2], [0, -d / 2] ]); } } down(d / 2){ custom_cap(wall = capWall, texture = texture, height = capHeight, threadOuterD = capThreadOD, tolerance = tolerance, neckOuterD = capNeckOD, threadAngle = capThreadTaperAngle, orient = DOWN, threadPitch = capThreadPitch ); } } rotate_extrude() { polygon(points = [ [0, d / 2], [neckID / 2, d / 2], [neckID / 2, d / 2 - taperLeadIn], [capNeckID / 2, taperLeadIn - d / 2], [capNeckID / 2, -d / 2 - capWall], [0, -d / 2 - capWall] ]); } } } function thread_adapter_NC(wall, texture = "none", capWall = 2, capHeight = 11.2, capThreadOD = 28.58, tolerance = .2, capNeckOD = 25.5, capNeckId, capThreadTaperAngle = 15, capThreadPitch = 4, neckDiam = 25, neckID = 21.4, neckThreadOD = 7.2, neckHeight = 17, neckThreadPitch = 3.2, neckSupportOD, d = 0, taperLeadIn = 0) = no_fuction("thread_adapter_NC"); // Module: thread_adapter_CC() // Usage: // thread_adapter_CC(wall, [texture]); // Description: // Creates a threaded cap to cap adapter. // Arguments: // wall = Wall thickness in mm. // texture = The surface texture of the cap. Valid values are "none", "knurled", or "ribbed". Default: "none" // capHeight1 = Interior height of top cap. // capThreadOD1 = Outer diameter of threads on top cap. // tolerance = Extra space to add to the outer diameter of threads and neck in mm. Applied to radius. // capNeckOD1 = Inner diameter of threads on top cap. // capThreadPitch1 = Thread pitch of top cap in mm. // capHeight2 = Interior height of bottom cap. Leave undefined to duplicate capHeight1. // capThreadOD2 = Outer diameter of threads on bottom cap. Leave undefined to duplicate capThread1. // capNeckOD2 = Inner diameter of threads on top cap. Leave undefined to duplicate capNeckOD1. // capThreadPitch2 = Thread pitch of bottom cap in mm. Leave undefinced to duplicate capThreadPitch1. // d = Distance between caps. // neckID1 = Inner diameter of cutout in top cap. // neckID2 = Inner diameter of cutout in bottom cap. // Leave one of the neckIDs undefined to duplicate the other or leave both undefined to leave the caps solid. // taperLeadIn = Length to leave straight before tapering on tube between caps if exists. // Examples: // thread_adapter_CC(); module thread_adapter_CC(wall = 2, texture = "none", capHeight1 = 11.2, capThreadOD1 = 28.58, tolerance = .2, capNeckOD1 = 25.5, capThreadPitch1 = 4, capHeight2, capThreadOD2, capNeckOD2, capThreadPitch2, d = 0, neckID1, neckID2, taperLeadIn = 0){ capHeight2 = (capHeight2 == undef) ? capHeight1 : capHeight2; capThreadOD2 = (capThreadOD2 == undef) ? capThreadOD1 : capThreadOD2; capNeckOD2 = (capNeckOD2 == undef) ? capNeckOD1 : capNeckOD2; capThreadPitch2 = (capThreadPitch2 == undef) ? capThreadPitch1 : capThreadPitch2; neckID2 = (neckID2 == undef && neckID1 != undef) ? neckID1 : neckID2; taperLeadIn = (d >= taperLeadIn * 2) ? taperLeadIn : d / 2; $fn = segs(33 / 2); difference(){ union(){ up(d / 2){ custom_cap(orient = UP, wall = wall, texture = texture, height = capHeight1, threadOuterD = capThreadOD1, tolerance = tolerance, neckOuterD = capNeckOD1, threadPitch = capThreadPitch1); } if (d != 0) { rotate_extrude() { polygon(points = [ [0, d / 2], [capThreadOD1 / 2 + (wall + tolerance), d / 2], [capThreadOD1 / 2 + (wall + tolerance), d / 2 - taperLeadIn], [capThreadOD2 / 2 + (wall + tolerance), taperLeadIn - d / 2], [capThreadOD2 / 2 + (wall + tolerance), -d / 2], [0, -d / 2] ]); } } down(d / 2){ custom_cap(orient = DOWN, wall = wall, texture = texture, height = capHeight2, threadOuterD = capThreadOD2, tolerance = tolerance, neckOuterD = capNeckOD2, threadPitch = capThreadPitch2); } } if (neckID1 != undef || neckID2 != undef) { neckID1 = (neckID1 == undef) ? neckID2 : neckID1; neckID2 = (neckID2 == undef) ? neckID1 : neckID2; rotate_extrude() { polygon(points = [ [0, wall + d / 2], [neckID1 / 2, wall + d / 2], [neckID1 / 2, wall + d / 2 - taperLeadIn], [neckID2 / 2, taperLeadIn - d / 2 - wall], [neckID2 / 2, -d / 2 - wall], [0, -d / 2 - wall] ]); } } } } function thread_adapter_CC(wall = 2, texture = "none", capHeight1 = 11.2, capThreadOD1 = 28.58, tolerance = .2, capNeckOD1 = 25.5, capThreadPitch1 = 4, capHeight2, capThreadOD2, capNeckOD2, capThreadPitch2, d = 0, neckID1, neckID2, taperLeadIn = 0) = no_function("thread_adapter_CC"); // Module: thread_adapter_NN() // Usage: // thread_adapter_NN(); // Description: // Creates a threaded neck to neck adapter. // Arguments: // d = Distance between bottoms of necks // neckOD1 = Outer diameter of top neck w/o threads // neckID1 = Inner diameter of top neck // threadOD1 = Outer diameter of threads on top neck // height1 = Height of top neck above support ring. // supportOD1 = Outer diameter of the support ring on the top neck. Set to 0 for no ring. // threadPitch1 = Thread pitch of top neck. // neckOD2 = Outer diameter of bottom neck w/o threads. Leave undefined to duplicate neckOD1 // neckID2 = Inner diameter of bottom neck. Leave undefined to duplicate neckID1 // threadOD2 = Outer diameter of threads on bottom neck. Leave undefined to duplicate threadOD1 // height2 = Height of bottom neck above support ring. Leave undefined to duplicate height1 // supportOD2 = Outer diameter of the support ring on bottom neck. Set to 0 for no ring. Leave undefined to duplicate supportOD1 // threadPitch2 = Thread pitch of bottom neck. Leave undefined to duplicate threadPitch1 // taperLeadIn = Length to leave straight before tapering on tube between necks if exists. // wall = Thickness of tube wall between necks. Leave undefined to match outer diameters with the neckODs/supportODs. // Examples: // thread_adapter_NN(); module thread_adapter_NN(d = 0, neckOD1 = 25, neckID1 = 21.4, threadOD1 = 27.2, height1 = 17, supportOD1 = 33.0, threadPitch1 = 3.2, neckOD2, neckID2, threadOD2, height2, supportOD2, threadPitch2, taperLeadIn = 0, wall){ neckOD2 = (neckOD2 == undef) ? neckOD1 : neckOD2; neckID2 = (neckID2 == undef) ? neckID1 : neckID2; threadOD2 = (threadOD2 == undef) ? threadOD1 : threadOD2; height2 = (height2 == undef) ? height1 : height2; supportOD2 = (supportOD2 == undef) ? supportOD1 : supportOD2; threadPitch2 = (threadPitch2 == undef) ? threadPitch1 : threadPitch2; wall = (wall == undef) ? supportOD1 + supportOD2 + neckID1 + neckID2 : wall; supprtOD2 = (d == 0 && supportOD2 != 0) ? max(neckOD1, supportOD2) : supportOD2; supprtOD1 = (d == 0 && supportOD1 != 0) ? max(neckOD2, supportOD1) : supportOD1; $fn = segs(33 / 2); wallt1 = min(wall, (max(supprtOD1, neckOD1) - neckID1) / 2); wallt2 = min(wall, (max(supprtOD2, neckOD2) - neckID2) / 2); taperLeadIn = (d >= taperLeadIn * 2) ? taperLeadIn : d / 2; difference(){ union(){ up(d / 2){ custom_neck(orient = UP, neckDiam = neckOD1, innerDiam = neckID1, threadOuterD = threadOD1, height = height1, supportDiam = supprtOD1, threadPitch = threadPitch1, roundLowerSupport = ((wallt1 < (supprtOD1 - neckID1) / 2) || (supportOD1 > max(neckOD2, supportOD2) && d == 0)), wall = (d > 0) ? wallt1 : min(wallt1, ((max(neckOD2, supportOD2)) - neckID1) / 2) ); } if (d != 0) { rotate_extrude() { polygon(points = [ [0, d / 2], [neckID1 / 2 + wallt1, d / 2], [neckID1 / 2 + wallt1, d / 2 - taperLeadIn], [neckID2 / 2 + wallt2, taperLeadIn - d / 2], [neckID2 / 2 + wallt2, -d / 2], [0, -d / 2] ]); } } down(d / 2){ custom_neck(orient = DOWN, neckDiam = neckOD2, innerDiam = neckID2, threadOuterD = threadOD2, height = height2, supportDiam = supprtOD2, threadPitch = threadPitch2, roundLowerSupport = ((wallt2 < (supprtOD2 - neckID2) / 2) || (supportOD2 > max(neckOD1, supportOD1) && d == 0)), wall = (d > 0) ? wallt2 : min(wallt2, ((max(neckOD1, supportOD1)) - neckID2) / 2) ); } } if (neckID1 != undef || neckID2 != undef) { neckID1 = (neckID1 == undef) ? neckID2 : neckID1; neckID2 = (neckID2 == undef) ? neckID1 : neckID2; rotate_extrude() { polygon(points = [ [0, d / 2], [neckID1 / 2, d / 2], [neckID1 / 2, d / 2 - taperLeadIn], [neckID2 / 2, taperLeadIn - d / 2], [neckID2 / 2, -d / 2], [0, -d / 2] ]); } } } } function thread_adapter_NN(d = 0, neckOD1 = 25, neckID1 = 21.4, threadOD1 = 27.2, height1 = 17, supportOD1 = 33.0, threadPitch1 = 3.2, neckOD2, neckID2, threadOD2, height2, supportOD2, threadPitch2, taperLeadIn = 0, wall) = no_fuction("thread_adapter_NN");