////////////////////////////////////////////////////////////////////// // LibFile: shapes2d.scad // This file includes redefinitions of the core modules to // work with attachment. You can also create regular polygons // with optional rounded corners and alignment features not // available with circle(). The file also provides teardrop2d, // which is useful for 3d printable holes. Lastly you can use the // masks to produce edge treatments common in furniture from the // simple roundover or cove molding to the more elaborate ogee. // Many of the commands have module forms that produce geometry and // function forms that produce a path. This file defines function // forms of the core OpenSCAD modules that produce paths. // Includes: // include ////////////////////////////////////////////////////////////////////// use // Section: 2D Primitives // Function&Module: square() // Topics: Shapes (2D), Path Generators (2D) // Usage: As a Module // square(size, [center], ...); // Usage: With Attachments // square(size, [center], ...) { attachables } // Usage: As a Function // path = square(size, [center], ...); // See Also: rect() // Description: // When called as the builtin module, creates a 2D square or rectangle of the given size. // When called as a function, returns a 2D path/list of points for a square/rectangle of the given size. // Arguments: // size = The size of the square to create. If given as a scalar, both X and Y will be the same size. // center = If given and true, overrides `anchor` to be `CENTER`. If given and false, overrides `anchor` to be `FRONT+LEFT`. // --- // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // Example(2D): // square(40); // Example(2D): Centered // square([40,30], center=true); // Example(2D): Called as Function // path = square([40,30], anchor=FRONT, spin=30); // stroke(path, closed=true); // move_copies(path) color("blue") circle(d=2,$fn=8); function square(size=1, center, anchor, spin=0) = let( anchor = get_anchor(anchor, center, [-1,-1], [-1,-1]), size = is_num(size)? [size,size] : point2d(size), path = [ [ size.x,-size.y], [-size.x,-size.y], [-size.x, size.y], [ size.x, size.y] ] / 2 ) reorient(anchor,spin, two_d=true, size=size, p=path); module square(size=1, center, anchor, spin) { anchor = get_anchor(anchor, center, [-1,-1], [-1,-1]); size = is_num(size)? [size,size] : point2d(size); attachable(anchor,spin, two_d=true, size=size) { _square(size, center=true); children(); } } // Function&Module: rect() // Usage: As Module // rect(size, [center], [rounding], [chamfer], ...); // Usage: With Attachments // rect(size, [center], ...) { attachables } // Usage: As Function // path = rect(size, [center], [rounding], [chamfer], ...); // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: square() // Description: // When called as a module, creates a 2D rectangle of the given size, with optional rounding or chamfering. // When called as a function, returns a 2D path/list of points for a square/rectangle of the given size. // Arguments: // size = The size of the rectangle to create. If given as a scalar, both X and Y will be the same size. // rounding = The rounding radius for the corners. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no rounding) // chamfer = The chamfer size for the corners. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no chamfer) // center = If given and true, overrides `anchor` to be `CENTER`. If given and false, overrides `anchor` to be `FRONT+LEFT`. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // Example(2D): // rect(40); // Example(2D): Centered // rect([40,30], center=true); // Example(2D): Anchored // rect([40,30], anchor=FRONT); // Example(2D): Spun // rect([40,30], anchor=FRONT, spin=30); // Example(2D): Chamferred Rect // rect([40,30], chamfer=5, center=true); // Example(2D): Rounded Rect // rect([40,30], rounding=5, center=true); // Example(2D): Mixed Chamferring and Rounding // rect([40,30],center=true,rounding=[5,0,10,0],chamfer=[0,8,0,15],$fa=1,$fs=1); // Example(2D): Called as Function // path = rect([40,30], chamfer=5, anchor=FRONT, spin=30); // stroke(path, closed=true); // move_copies(path) color("blue") circle(d=2,$fn=8); module rect(size=1, center, rounding=0, chamfer=0, anchor, spin=0) { size = is_num(size)? [size,size] : point2d(size); anchor = get_anchor(anchor, center, FRONT+LEFT, FRONT+LEFT); if (rounding==0 && chamfer==0) { attachable(anchor,spin, two_d=true, size=size) { square(size, center=true); children(); } } else { pts = rect(size=size, rounding=rounding, chamfer=chamfer, center=true); attachable(anchor,spin, two_d=true, path=pts) { polygon(pts); children(); } } } function rect(size=1, center, rounding=0, chamfer=0, anchor, spin=0) = assert(is_num(size) || is_vector(size)) assert(is_num(chamfer) || len(chamfer)==4) assert(is_num(rounding) || len(rounding)==4) let( size = is_num(size)? [size,size] : point2d(size), anchor = point2d(get_anchor(anchor, center, FRONT+LEFT, FRONT+LEFT)), complex = rounding!=0 || chamfer!=0 ) (rounding==0 && chamfer==0)? let( path = [ [ size.x/2, -size.y/2], [-size.x/2, -size.y/2], [-size.x/2, size.y/2], [ size.x/2, size.y/2] ] ) rot(spin, p=move(-v_mul(anchor,size/2), p=path)) : let( chamfer = is_list(chamfer)? chamfer : [for (i=[0:3]) chamfer], rounding = is_list(rounding)? rounding : [for (i=[0:3]) rounding], quadorder = [3,2,1,0], quadpos = [[1,1],[-1,1],[-1,-1],[1,-1]], insets = [for (i=[0:3]) chamfer[i]>0? chamfer[i] : rounding[i]>0? rounding[i] : 0], insets_x = max(insets[0]+insets[1],insets[2]+insets[3]), insets_y = max(insets[0]+insets[3],insets[1]+insets[2]) ) assert(insets_x <= size.x, "Requested roundings and/or chamfers exceed the rect width.") assert(insets_y <= size.y, "Requested roundings and/or chamfers exceed the rect height.") let( path = [ for(i = [0:3]) let( quad = quadorder[i], inset = insets[quad], cverts = quant(segs(inset),4)/4, cp = v_mul(size/2-[inset,inset], quadpos[quad]), step = 90/cverts, angs = chamfer[quad] > 0? [0,-90]-90*[i,i] : rounding[quad] > 0? [for (j=[0:1:cverts]) 360-j*step-i*90] : [0] ) each [for (a = angs) cp + inset*[cos(a),sin(a)]] ] ) complex? reorient(anchor,spin, two_d=true, path=path, p=path) : reorient(anchor,spin, two_d=true, size=size, p=path); // Function&Module: circle() // Topics: Shapes (2D), Path Generators (2D) // Usage: As a Module // circle(r|d=, ...); // Usage: With Attachments // circle(r|d=, ...) { attachables } // Usage: As a Function // path = circle(r|d=, ...); // See Also: oval() // Description: // When called as the builtin module, creates a 2D polygon that approximates a circle of the given size. // When called as a function, returns a 2D list of points (path) for a polygon that approximates a circle of the given size. // Arguments: // r = The radius of the circle to create. // d = The diameter of the circle to create. // --- // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // Example(2D): By Radius // circle(r=25); // Example(2D): By Diameter // circle(d=50); // Example(NORENDER): Called as Function // path = circle(d=50, anchor=FRONT, spin=45); function circle(r, d, anchor=CENTER, spin=0) = let( r = get_radius(r=r, d=d, dflt=1), sides = segs(r), path = [for (i=[0:1:sides-1]) let(a=360-i*360/sides) r*[cos(a),sin(a)]] ) reorient(anchor,spin, two_d=true, r=r, p=path); module circle(r, d, anchor=CENTER, spin=0) { r = get_radius(r=r, d=d, dflt=1); attachable(anchor,spin, two_d=true, r=r) { _circle(r=r); children(); } } // Function&Module: oval() // Usage: As a Module // oval(r|d=, [realign=], [circum=], ...); // Usage: With Attachments // oval(r|d=, [realign=], [circum=], ...) { attachables } // Usage: As a Function // path = oval(r|d=, [realign=], [circum=], ...); // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: circle() // Description: // When called as a module, creates a 2D polygon that approximates a circle of the given size. // When called as a function, returns a 2D list of points (path) for a polygon that approximates a circle of the given size. // Arguments: // r = Radius of the circle/oval to create. Can be a scalar, or a list of sizes per axis. // --- // d = Diameter of the circle/oval to create. Can be a scalar, or a list of sizes per axis. // realign = If true, rotates the polygon that approximates the circle/oval by half of one size. // circum = If true, the polygon that approximates the circle will be upsized slightly to circumscribe the theoretical circle. If false, it inscribes the theoretical circle. Default: false // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // Example(2D): By Radius // oval(r=25); // Example(2D): By Diameter // oval(d=50); // Example(2D): Anchoring // oval(d=50, anchor=FRONT); // Example(2D): Spin // oval(d=50, anchor=FRONT, spin=45); // Example(NORENDER): Called as Function // path = oval(d=50, anchor=FRONT, spin=45); module oval(r, d, realign=false, circum=false, anchor=CENTER, spin=0) { r = get_radius(r=r, d=d, dflt=1); sides = segs(max(r)); sc = circum? (1 / cos(180/sides)) : 1; rx = default(r[0],r) * sc; ry = default(r[1],r) * sc; attachable(anchor,spin, two_d=true, r=[rx,ry]) { if (rx < ry) { xscale(rx/ry) { zrot(realign? 180/sides : 0) { circle(r=ry, $fn=sides); } } } else { yscale(ry/rx) { zrot(realign? 180/sides : 0) { circle(r=rx, $fn=sides); } } } children(); } } function oval(r, d, realign=false, circum=false, anchor=CENTER, spin=0) = let( r = get_radius(r=r, d=d, dflt=1), sides = segs(max(r)), offset = realign? 180/sides : 0, sc = circum? (1 / cos(180/sides)) : 1, rx = default(r[0],r) * sc, ry = default(r[1],r) * sc, pts = [for (i=[0:1:sides-1]) let(a=360-offset-i*360/sides) [rx*cos(a), ry*sin(a)]] ) reorient(anchor,spin, two_d=true, r=[rx,ry], p=pts); // Section: Polygons // Function&Module: regular_ngon() // Usage: // regular_ngon(n, r/d=/or=/od=, [realign=]); // regular_ngon(n, ir=/id=, [realign=]); // regular_ngon(n, side=, [realign=]); // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: circle(), pentagon(), hexagon(), octagon(), oval(), star() // Description: // When called as a function, returns a 2D path for a regular N-sided polygon. // When called as a module, creates a 2D regular N-sided polygon. // Arguments: // n = The number of sides. // r/or = Outside radius, at points. // --- // d/od = Outside diameter, at points. // ir = Inside radius, at center of sides. // id = Inside diameter, at center of sides. // side = Length of each side. // rounding = Radius of rounding for the tips of the polygon. Default: 0 (no rounding) // realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false // align_tip = If given as a 2D vector, rotates the whole shape so that the first vertex points in that direction. This occurs before spin. // align_side = If given as a 2D vector, rotates the whole shape so that the normal of side0 points in that direction. This occurs before spin. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // Extra Anchors: // "tip0", "tip1", etc. = Each tip has an anchor, pointing outwards. // "side0", "side1", etc. = The center of each side has an anchor, pointing outwards. // Example(2D): by Outer Size // regular_ngon(n=5, or=30); // regular_ngon(n=5, od=60); // Example(2D): by Inner Size // regular_ngon(n=5, ir=30); // regular_ngon(n=5, id=60); // Example(2D): by Side Length // regular_ngon(n=8, side=20); // Example(2D): Realigned // regular_ngon(n=8, side=20, realign=true); // Example(2D): Alignment by Tip // regular_ngon(n=5, r=30, align_tip=BACK+RIGHT) // attach("tip0", FWD) color("blue") // stroke([[0,0],[0,7]], endcap2="arrow2"); // Example(2D): Alignment by Side // regular_ngon(n=5, r=30, align_side=BACK+RIGHT) // attach("side0", FWD) color("blue") // stroke([[0,0],[0,7]], endcap2="arrow2"); // Example(2D): Rounded // regular_ngon(n=5, od=100, rounding=20, $fn=20); // Example(2D): Called as Function // stroke(closed=true, regular_ngon(n=6, or=30)); function regular_ngon(n=6, r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0, _mat, _anchs) = assert(is_undef(align_tip) || is_vector(align_tip)) assert(is_undef(align_side) || is_vector(align_side)) assert(is_undef(align_tip) || is_undef(align_side), "Can only specify one of align_tip and align-side") let( sc = 1/cos(180/n), ir = is_finite(ir)? ir*sc : undef, id = is_finite(id)? id*sc : undef, side = is_finite(side)? side/2/sin(180/n) : undef, r = get_radius(r1=ir, r2=or, r=r, d1=id, d2=od, d=d, dflt=side) ) assert(!is_undef(r), "regular_ngon(): need to specify one of r, d, or, od, ir, id, side.") let( inset = opp_ang_to_hyp(rounding, (180-360/n)/2), mat = !is_undef(_mat) ? _mat : ( realign? rot(-180/n, planar=true) : affine2d_identity() ) * ( !is_undef(align_tip)? rot(from=RIGHT, to=point2d(align_tip), planar=true) : !is_undef(align_side)? rot(from=RIGHT, to=point2d(align_side), planar=true) * rot(180/n, planar=true) : affine2d_identity() ), path4 = rounding==0? oval(r=r, $fn=n) : ( let( steps = floor(segs(r)/n), step = 360/n/steps, path2 = [ for (i = [0:1:n-1]) let( a = 360 - i*360/n, p = polar_to_xy(r-inset, a) ) each arc(N=steps, cp=p, r=rounding, start=a+180/n, angle=-360/n) ], maxx_idx = max_index(columns(path2,0)), path3 = polygon_shift(path2,maxx_idx) ) path3 ), path = apply(mat, path4), anchors = !is_undef(_anchs) ? _anchs : !is_string(anchor)? [] : [ for (i = [0:1:n-1]) let( a1 = 360 - i*360/n, a2 = a1 - 360/n, p1 = apply(mat, polar_to_xy(r,a1)), p2 = apply(mat, polar_to_xy(r,a2)), tipp = apply(mat, polar_to_xy(r-inset+rounding,a1)), pos = (p1+p2)/2 ) each [ named_anchor(str("tip",i), tipp, unit(tipp,BACK), 0), named_anchor(str("side",i), pos, unit(pos,BACK), 0), ] ] ) reorient(anchor,spin, two_d=true, path=path, extent=false, p=path, anchors=anchors); module regular_ngon(n=6, r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0) { sc = 1/cos(180/n); ir = is_finite(ir)? ir*sc : undef; id = is_finite(id)? id*sc : undef; side = is_finite(side)? side/2/sin(180/n) : undef; r = get_radius(r1=ir, r2=or, r=r, d1=id, d2=od, d=d, dflt=side); assert(!is_undef(r), "regular_ngon(): need to specify one of r, d, or, od, ir, id, side."); mat = ( realign? rot(-180/n, planar=true) : affine2d_identity() ) * ( !is_undef(align_tip)? rot(from=RIGHT, to=point2d(align_tip), planar=true) : !is_undef(align_side)? rot(from=RIGHT, to=point2d(align_side), planar=true) * rot(180/n, planar=true) : affine2d_identity() ); inset = opp_ang_to_hyp(rounding, (180-360/n)/2); anchors = [ for (i = [0:1:n-1]) let( a1 = 360 - i*360/n, a2 = a1 - 360/n, p1 = apply(mat, polar_to_xy(r,a1)), p2 = apply(mat, polar_to_xy(r,a2)), tipp = apply(mat, polar_to_xy(r-inset+rounding,a1)), pos = (p1+p2)/2 ) each [ named_anchor(str("tip",i), tipp, unit(tipp,BACK), 0), named_anchor(str("side",i), pos, unit(pos,BACK), 0), ] ]; path = regular_ngon(n=n, r=r, rounding=rounding, _mat=mat, _anchs=anchors); attachable(anchor,spin, two_d=true, path=path, extent=false, anchors=anchors) { polygon(path); children(); } } // Function&Module: pentagon() // Usage: // pentagon(or|od=, [realign=]); // pentagon(ir=|id=, [realign=]); // pentagon(side=, [realign=]); // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: circle(), regular_ngon(), hexagon(), octagon(), oval(), star() // Description: // When called as a function, returns a 2D path for a regular pentagon. // When called as a module, creates a 2D regular pentagon. // Arguments: // r/or = Outside radius, at points. // --- // d/od = Outside diameter, at points. // ir = Inside radius, at center of sides. // id = Inside diameter, at center of sides. // side = Length of each side. // rounding = Radius of rounding for the tips of the polygon. Default: 0 (no rounding) // realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false // align_tip = If given as a 2D vector, rotates the whole shape so that the first vertex points in that direction. This occurs before spin. // align_side = If given as a 2D vector, rotates the whole shape so that the normal of side0 points in that direction. This occurs before spin. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // Extra Anchors: // "tip0" ... "tip4" = Each tip has an anchor, pointing outwards. // "side0" ... "side4" = The center of each side has an anchor, pointing outwards. // Example(2D): by Outer Size // pentagon(or=30); // pentagon(od=60); // Example(2D): by Inner Size // pentagon(ir=30); // pentagon(id=60); // Example(2D): by Side Length // pentagon(side=20); // Example(2D): Realigned // pentagon(side=20, realign=true); // Example(2D): Alignment by Tip // pentagon(r=30, align_tip=BACK+RIGHT) // attach("tip0", FWD) color("blue") // stroke([[0,0],[0,7]], endcap2="arrow2"); // Example(2D): Alignment by Side // pentagon(r=30, align_side=BACK+RIGHT) // attach("side0", FWD) color("blue") // stroke([[0,0],[0,7]], endcap2="arrow2"); // Example(2D): Rounded // pentagon(od=100, rounding=20, $fn=20); // Example(2D): Called as Function // stroke(closed=true, pentagon(or=30)); function pentagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0) = regular_ngon(n=5, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, align_tip=align_tip, align_side=align_side, anchor=anchor, spin=spin); module pentagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0) regular_ngon(n=5, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, align_tip=align_tip, align_side=align_side, anchor=anchor, spin=spin) children(); // Function&Module: hexagon() // Usage: As Module // hexagon(r/or, [realign=], , [rounding=], ...); // hexagon(d=/od=, ...); // hexagon(ir=/id=, ...); // hexagon(side=, ...); // Usage: With Attachments // hexagon(r/or, ...) { attachments } // Usage: As Function // path = hexagon(r/or, ...); // path = hexagon(d=/od=, ...); // path = hexagon(ir=/id=, ...); // path = hexagon(side=, ...); // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: circle(), regular_ngon(), pentagon(), octagon(), oval(), star() // Description: // When called as a function, returns a 2D path for a regular hexagon. // When called as a module, creates a 2D regular hexagon. // Arguments: // r/or = Outside radius, at points. // --- // d/od = Outside diameter, at points. // ir = Inside radius, at center of sides. // id = Inside diameter, at center of sides. // side = Length of each side. // rounding = Radius of rounding for the tips of the polygon. Default: 0 (no rounding) // realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false // align_tip = If given as a 2D vector, rotates the whole shape so that the first vertex points in that direction. This occurs before spin. // align_side = If given as a 2D vector, rotates the whole shape so that the normal of side0 points in that direction. This occurs before spin. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // Extra Anchors: // "tip0" ... "tip5" = Each tip has an anchor, pointing outwards. // "side0" ... "side5" = The center of each side has an anchor, pointing outwards. // Example(2D): by Outer Size // hexagon(or=30); // hexagon(od=60); // Example(2D): by Inner Size // hexagon(ir=30); // hexagon(id=60); // Example(2D): by Side Length // hexagon(side=20); // Example(2D): Realigned // hexagon(side=20, realign=true); // Example(2D): Alignment by Tip // hexagon(r=30, align_tip=BACK+RIGHT) // attach("tip0", FWD) color("blue") // stroke([[0,0],[0,7]], endcap2="arrow2"); // Example(2D): Alignment by Side // hexagon(r=30, align_side=BACK+RIGHT) // attach("side0", FWD) color("blue") // stroke([[0,0],[0,7]], endcap2="arrow2"); // Example(2D): Rounded // hexagon(od=100, rounding=20, $fn=20); // Example(2D): Called as Function // stroke(closed=true, hexagon(or=30)); function hexagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0) = regular_ngon(n=6, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, align_tip=align_tip, align_side=align_side, anchor=anchor, spin=spin); module hexagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0) regular_ngon(n=6, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, align_tip=align_tip, align_side=align_side, anchor=anchor, spin=spin) children(); // Function&Module: octagon() // Usage: As Module // octagon(r/or, [realign=], , [rounding=], ...); // octagon(d=/od=, ...); // octagon(ir=/id=, ...); // octagon(side=, ...); // Usage: With Attachments // octagon(r/or, ...) { attachments } // Usage: As Function // path = octagon(r/or, ...); // path = octagon(d=/od=, ...); // path = octagon(ir=/id=, ...); // path = octagon(side=, ...); // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: circle(), regular_ngon(), pentagon(), hexagon(), oval(), star() // Description: // When called as a function, returns a 2D path for a regular octagon. // When called as a module, creates a 2D regular octagon. // Arguments: // r/or = Outside radius, at points. // d/od = Outside diameter, at points. // ir = Inside radius, at center of sides. // id = Inside diameter, at center of sides. // side = Length of each side. // rounding = Radius of rounding for the tips of the polygon. Default: 0 (no rounding) // realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false // align_tip = If given as a 2D vector, rotates the whole shape so that the first vertex points in that direction. This occurs before spin. // align_side = If given as a 2D vector, rotates the whole shape so that the normal of side0 points in that direction. This occurs before spin. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // Extra Anchors: // "tip0" ... "tip7" = Each tip has an anchor, pointing outwards. // "side0" ... "side7" = The center of each side has an anchor, pointing outwards. // Example(2D): by Outer Size // octagon(or=30); // octagon(od=60); // Example(2D): by Inner Size // octagon(ir=30); // octagon(id=60); // Example(2D): by Side Length // octagon(side=20); // Example(2D): Realigned // octagon(side=20, realign=true); // Example(2D): Alignment by Tip // octagon(r=30, align_tip=BACK+RIGHT) // attach("tip0", FWD) color("blue") // stroke([[0,0],[0,7]], endcap2="arrow2"); // Example(2D): Alignment by Side // octagon(r=30, align_side=BACK+RIGHT) // attach("side0", FWD) color("blue") // stroke([[0,0],[0,7]], endcap2="arrow2"); // Example(2D): Rounded // octagon(od=100, rounding=20, $fn=20); // Example(2D): Called as Function // stroke(closed=true, octagon(or=30)); function octagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0) = regular_ngon(n=8, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, align_tip=align_tip, align_side=align_side, anchor=anchor, spin=spin); module octagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0) regular_ngon(n=8, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, align_tip=align_tip, align_side=align_side, anchor=anchor, spin=spin) children(); // Function&Module: trapezoid() // Usage: As Module // trapezoid(h, w1, w2, [shift=], [rounding=], [chamfer=], ...); // trapezoid(h, w1, angle=, ...); // trapezoid(h, w2, angle=, ...); // trapezoid(w1, w2, angle=, ...); // Usage: With Attachments // trapezoid(h, w1, w2, ...) { attachments } // Usage: As Function // path = trapezoid(h, w1, w2, ...); // path = trapezoid(h, w1, angle=, ...); // path = trapezoid(h, w2=, angle=, ...); // path = trapezoid(w1=, w2=, angle=, ...); // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: rect(), square() // Description: // When called as a function, returns a 2D path for a trapezoid with parallel front and back sides. // When called as a module, creates a 2D trapezoid with parallel front and back sides. // Arguments: // h = The Y axis height of the trapezoid. // w1 = The X axis width of the front end of the trapezoid. // w2 = The X axis width of the back end of the trapezoid. // --- // angle = If given in place of `h`, `w1`, or `w2`, then the missing value is calculated such that the right side has that angle away from the Y axis. // shift = Scalar value to shift the back of the trapezoid along the X axis by. Default: 0 // rounding = The rounding radius for the corners. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no rounding) // chamfer = The Length of the chamfer faces at the corners. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no chamfer) // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // Examples(2D): // trapezoid(h=30, w1=40, w2=20); // trapezoid(h=25, w1=20, w2=35); // trapezoid(h=20, w1=40, w2=0); // trapezoid(h=20, w1=30, angle=30); // trapezoid(h=20, w1=20, angle=-30); // trapezoid(h=20, w2=10, angle=30); // trapezoid(h=20, w2=30, angle=-30); // trapezoid(w1=30, w2=10, angle=30); // Example(2D): Chamferred Trapezoid // trapezoid(h=30, w1=60, w2=40, chamfer=5); // Example(2D): Rounded Trapezoid // trapezoid(h=30, w1=60, w2=40, rounding=5); // Example(2D): Mixed Chamfering and Rounding // trapezoid(h=30, w1=60, w2=40, rounding=[5,0,10,0],chamfer=[0,8,0,15],$fa=1,$fs=1); // Example(2D): Called as Function // stroke(closed=true, trapezoid(h=30, w1=40, w2=20)); function trapezoid(h, w1, w2, angle, shift=0, chamfer=0, rounding=0, anchor=CENTER, spin=0) = assert(is_undef(h) || is_finite(h)) assert(is_undef(w1) || is_finite(w1)) assert(is_undef(w2) || is_finite(w2)) assert(is_undef(angle) || is_finite(angle)) assert(num_defined([h, w1, w2, angle]) == 3, "Must give exactly 3 of the arguments h, w1, w2, and angle.") assert(is_finite(shift)) assert(is_finite(chamfer) || is_vector(chamfer,4)) assert(is_finite(rounding) || is_vector(rounding,4)) let( simple = chamfer==0 && rounding==0, h = !is_undef(h)? h : opp_ang_to_adj(abs(w2-w1)/2, abs(angle)), w1 = !is_undef(w1)? w1 : w2 + 2*(adj_ang_to_opp(h, angle) + shift), w2 = !is_undef(w2)? w2 : w1 - 2*(adj_ang_to_opp(h, angle) + shift) ) assert(w1>=0 && w2>=0 && h>0, "Degenerate trapezoid geometry.") assert(w1+w2>0, "Degenerate trapezoid geometry.") let( base_path = [ [w2/2+shift,h/2], [-w2/2+shift,h/2], [-w1/2,-h/2], [w1/2,-h/2], ], cpath = simple? base_path : path_chamfer_and_rounding( base_path, closed=true, chamfer=chamfer, rounding=rounding ), path = reverse(cpath) ) simple ? reorient(anchor,spin, two_d=true, size=[w1,h], size2=w2, shift=shift, p=path) : reorient(anchor,spin, two_d=true, path=path, p=path); module trapezoid(h, w1, w2, angle, shift=0, chamfer=0, rounding=0, anchor=CENTER, spin=0) { path = trapezoid(h=h, w1=w1, w2=w2, angle=angle, shift=shift, chamfer=chamfer, rounding=rounding); union() { simple = chamfer==0 && rounding==0; h = !is_undef(h)? h : opp_ang_to_adj(abs(w2-w1)/2, abs(angle)); w1 = !is_undef(w1)? w1 : w2 + 2*(adj_ang_to_opp(h, angle) + shift); w2 = !is_undef(w2)? w2 : w1 - 2*(adj_ang_to_opp(h, angle) + shift); if (simple) { attachable(anchor,spin, two_d=true, size=[w1,h], size2=w2, shift=shift) { polygon(path); children(); } } else { attachable(anchor,spin, two_d=true, path=path) { polygon(path); children(); } } } } // Function&Module: star() // Usage: As Module // star(n, r/or, ir, [realign=], [align_tip=], [align_pit=], ...); // star(n, r/or, step=, ...); // Usage: With Attachments // star(n, r/or, ir, ...) { attachments } // Usage: As Function // path = star(n, r/or, ir, [realign=], [align_tip=], [align_pit=], ...); // path = star(n, r/or, step=, ...); // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: circle(), oval() // Description: // When called as a function, returns the path needed to create a star polygon with N points. // When called as a module, creates a star polygon with N points. // Arguments: // n = The number of stellate tips on the star. // r/or = The radius to the tips of the star. // ir = The radius to the inner corners of the star. // --- // d/od = The diameter to the tips of the star. // id = The diameter to the inner corners of the star. // step = Calculates the radius of the inner star corners by virtually drawing a straight line `step` tips around the star. 2 <= step < n/2 // realign = If false, a tip is aligned with the Y+ axis. If true, an inner corner is aligned with the Y+ axis. Default: false // align_tip = If given as a 2D vector, rotates the whole shape so that the first star tip points in that direction. This occurs before spin. // align_pit = If given as a 2D vector, rotates the whole shape so that the first inner corner is pointed towards that direction. This occurs before spin. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // Extra Anchors: // "tip0" ... "tip4" = Each tip has an anchor, pointing outwards. // "pit0" ... "pit4" = The inside corner between each tip has an anchor, pointing outwards. // "midpt0" ... "midpt4" = The center-point between each pair of tips has an anchor, pointing outwards. // Examples(2D): // star(n=5, r=50, ir=25); // star(n=5, r=50, step=2); // star(n=7, r=50, step=2); // star(n=7, r=50, step=3); // Example(2D): Realigned // star(n=7, r=50, step=3, realign=true); // Example(2D): Alignment by Tip // star(n=5, ir=15, or=30, align_tip=BACK+RIGHT) // attach("tip0", FWD) color("blue") // stroke([[0,0],[0,7]], endcap2="arrow2"); // Example(2D): Alignment by Pit // star(n=5, ir=15, or=30, align_pit=BACK+RIGHT) // attach("pit0", FWD) color("blue") // stroke([[0,0],[0,7]], endcap2="arrow2"); // Example(2D): Called as Function // stroke(closed=true, star(n=5, r=50, ir=25)); function star(n, r, ir, d, or, od, id, step, realign=false, align_tip, align_pit, anchor=CENTER, spin=0, _mat, _anchs) = assert(is_undef(align_tip) || is_vector(align_tip)) assert(is_undef(align_pit) || is_vector(align_pit)) assert(is_undef(align_tip) || is_undef(align_pit), "Can only specify one of align_tip and align_pit") assert(is_def(n), "Must specify number of points, n") let( r = get_radius(r1=or, d1=od, r=r, d=d), count = num_defined([ir,id,step]), stepOK = is_undef(step) || (step>1 && step= cap_h ? hyp_opp_to_adj(r, cap_h) : adj_ang_to_opp(tip_y-cap_h, ang), ang2 = min(ang,atan2(cap_h,cap_w)), sa = 180 - ang2, ea = 360 + ang2, steps = ceil(segs(r)*(ea-sa)/360), path = deduplicate( [ [ cap_w,cap_h], for (a=lerpn(ea,sa,steps+1)) r*[cos(a),sin(a)], [-cap_w,cap_h] ], closed=true ), maxx_idx = max_index(columns(path,0)), path2 = polygon_shift(path,maxx_idx) ) reorient(anchor,spin, two_d=true, path=path2, p=path2); // Function&Module: glued_circles() // Usage: As Module // glued_circles(r/d=, [spread=], [tangent=], ...); // Usage: With Attachments // glued_circles(r/d=, [spread=], [tangent=], ...) { attachments } // Usage: As Function // path = glued_circles(r/d=, [spread=], [tangent=], ...); // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: circle(), oval() // Description: // When called as a function, returns a 2D path forming a shape of two circles joined by curved waist. // When called as a module, creates a 2D shape of two circles joined by curved waist. // Arguments: // r = The radius of the end circles. // spread = The distance between the centers of the end circles. Default: 10 // tangent = The angle in degrees of the tangent point for the joining arcs, measured away from the Y axis. Default: 30 // --- // d = The diameter of the end circles. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // Examples(2D): // glued_circles(r=15, spread=40, tangent=45); // glued_circles(d=30, spread=30, tangent=30); // glued_circles(d=30, spread=30, tangent=15); // glued_circles(d=30, spread=30, tangent=-30); // Example(2D): Called as Function // stroke(closed=true, glued_circles(r=15, spread=40, tangent=45)); function glued_circles(r, spread=10, tangent=30, d, anchor=CENTER, spin=0) = let( r = get_radius(r=r, d=d, dflt=10), r2 = (spread/2 / sin(tangent)) - r, cp1 = [spread/2, 0], cp2 = [0, (r+r2)*cos(tangent)], sa1 = 90-tangent, ea1 = 270+tangent, lobearc = ea1-sa1, lobesegs = ceil(segs(r)*lobearc/360), lobestep = lobearc / lobesegs, sa2 = 270-tangent, ea2 = 270+tangent, subarc = ea2-sa2, arcsegs = ceil(segs(r2)*abs(subarc)/360), arcstep = subarc / arcsegs, path = concat( [for (i=[0:1:lobesegs]) let(a=sa1+i*lobestep) r * [cos(a),sin(a)] - cp1], tangent==0? [] : [for (i=[0:1:arcsegs]) let(a=ea2-i*arcstep+180) r2 * [cos(a),sin(a)] - cp2], [for (i=[0:1:lobesegs]) let(a=sa1+i*lobestep+180) r * [cos(a),sin(a)] + cp1], tangent==0? [] : [for (i=[0:1:arcsegs]) let(a=ea2-i*arcstep) r2 * [cos(a),sin(a)] + cp2] ), maxx_idx = max_index(columns(path,0)), path2 = reverse_polygon(polygon_shift(path,maxx_idx)) ) reorient(anchor,spin, two_d=true, path=path2, extent=true, p=path2); module glued_circles(r, spread=10, tangent=30, d, anchor=CENTER, spin=0) { path = glued_circles(r=r, d=d, spread=spread, tangent=tangent); attachable(anchor,spin, two_d=true, path=path, extent=true) { polygon(path); children(); } } function _superformula(theta,m1,m2,n1,n2=1,n3=1,a=1,b=1) = pow(pow(abs(cos(m1*theta/4)/a),n2)+pow(abs(sin(m2*theta/4)/b),n3),-1/n1); // Function&Module: supershape() // Usage: As Module // supershape(step, [m1=], [m2=], [n1=], [n2=], [n3=], [a=], [b=], ); // Usage: With Attachments // supershape(step, [m1=], [m2=], [n1=], [n2=], [n3=], [a=], [b=], ) { attachments } // Usage: As Function // path = supershape(step, [m1=], [m2=], [n1=], [n2=], [n3=], [a=], [b=], ); // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: circle(), oval() // Description: // When called as a function, returns a 2D path for the outline of the [Superformula](https://en.wikipedia.org/wiki/Superformula) shape. // When called as a module, creates a 2D [Superformula](https://en.wikipedia.org/wiki/Superformula) shape. // Arguments: // step = The angle step size for sampling the superformula shape. Smaller steps are slower but more accurate. // m1 = The m1 argument for the superformula. Default: 4. // m2 = The m2 argument for the superformula. Default: m1. // n1 = The n1 argument for the superformula. Default: 1. // n2 = The n2 argument for the superformula. Default: n1. // n3 = The n3 argument for the superformula. Default: n2. // a = The a argument for the superformula. Default: 1. // b = The b argument for the superformula. Default: a. // r = Radius of the shape. Scale shape to fit in a circle of radius r. // --- // d = Diameter of the shape. Scale shape to fit in a circle of diameter d. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // Example(2D): // supershape(step=0.5,m1=16,m2=16,n1=0.5,n2=0.5,n3=16,r=50); // Example(2D): Called as Function // stroke(closed=true, supershape(step=0.5,m1=16,m2=16,n1=0.5,n2=0.5,n3=16,d=100)); // Examples(2D,Med): // for(n=[2:5]) right(2.5*(n-2)) supershape(m1=4,m2=4,n1=n,a=1,b=2); // Superellipses // m=[2,3,5,7]; for(i=[0:3]) right(2.5*i) supershape(.5,m1=m[i],n1=1); // m=[6,8,10,12]; for(i=[0:3]) right(2.7*i) supershape(.5,m1=m[i],n1=1,b=1.5); // m should be even // m=[1,2,3,5]; for(i=[0:3]) fwd(1.5*i) supershape(m1=m[i],n1=0.4); // supershape(m1=5, n1=4, n2=1); right(2.5) supershape(m1=5, n1=40, n2=10); // m=[2,3,5,7]; for(i=[0:3]) right(2.5*i) supershape(m1=m[i], n1=60, n2=55, n3=30); // n=[0.5,0.2,0.1,0.02]; for(i=[0:3]) right(2.5*i) supershape(m1=5,n1=n[i], n2=1.7); // supershape(m1=2, n1=1, n2=4, n3=8); // supershape(m1=7, n1=2, n2=8, n3=4); // supershape(m1=7, n1=3, n2=4, n3=17); // supershape(m1=4, n1=1/2, n2=1/2, n3=4); // supershape(m1=4, n1=4.0,n2=16, n3=1.5, a=0.9, b=9); // for(i=[1:4]) right(3*i) supershape(m1=i, m2=3*i, n1=2); // m=[4,6,10]; for(i=[0:2]) right(i*5) supershape(m1=m[i], n1=12, n2=8, n3=5, a=2.7); // for(i=[-1.5:3:1.5]) right(i*1.5) supershape(m1=2,m2=10,n1=i,n2=1); // for(i=[1:3],j=[-1,1]) translate([3.5*i,1.5*j])supershape(m1=4,m2=6,n1=i*j,n2=1); // for(i=[1:3]) right(2.5*i)supershape(step=.5,m1=88, m2=64, n1=-i*i,n2=1,r=1); // Examples: // linear_extrude(height=0.3, scale=0) supershape(step=1, m1=6, n1=0.4, n2=0, n3=6); // linear_extrude(height=5, scale=0) supershape(step=1, b=3, m1=6, n1=3.8, n2=16, n3=10); function supershape(step=0.5, m1=4, m2, n1=1, n2, n3, a=1, b, r, d,anchor=CENTER, spin=0) = let( r = get_radius(r=r, d=d, dflt=undef), m2 = is_def(m2) ? m2 : m1, n2 = is_def(n2) ? n2 : n1, n3 = is_def(n3) ? n3 : n2, b = is_def(b) ? b : a, steps = ceil(360/step), step = 360/steps, angs = [for (i = [0:steps]) step*i], rads = [for (theta = angs) _superformula(theta=theta,m1=m1,m2=m2,n1=n1,n2=n2,n3=n3,a=a,b=b)], scale = is_def(r) ? r/max(rads) : 1, path = [for (i = [steps:-1:1]) let(a=angs[i]) scale*rads[i]*[cos(a), sin(a)]] ) reorient(anchor,spin, two_d=true, path=path, p=path); module supershape(step=0.5,m1=4,m2=undef,n1,n2=undef,n3=undef,a=1,b=undef, r=undef, d=undef, anchor=CENTER, spin=0) { path = supershape(step=step,m1=m1,m2=m2,n1=n1,n2=n2,n3=n3,a=a,b=b,r=r,d=d); attachable(anchor,spin, two_d=true, path=path) { polygon(path); children(); } } // Function&Module: reuleaux_polygon() // Usage: As Module // reuleaux_polygon(N, r|d, ...); // Usage: As Function // path = reuleaux_polygon(N, r|d, ...); // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable // See Also: regular_ngon(), pentagon(), hexagon(), octagon() // Description: // Creates a 2D Reuleaux Polygon; a constant width shape that is not circular. // Arguments: // N = Number of "sides" to the Reuleaux Polygon. Must be an odd positive number. Default: 3 // r = Radius of the shape. Scale shape to fit in a circle of radius r. // --- // d = Diameter of the shape. Scale shape to fit in a circle of diameter d. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // Extra Anchors: // "tip0", "tip1", etc. = Each tip has an anchor, pointing outwards. // Examples(2D): // reuleaux_polygon(N=3, r=50); // reuleaux_polygon(N=5, d=100); // Examples(2D): Standard vector anchors are based on extents // reuleaux_polygon(N=3, d=50) show_anchors(custom=false); // Examples(2D): Named anchors exist for the tips // reuleaux_polygon(N=3, d=50) show_anchors(std=false); module reuleaux_polygon(N=3, r, d, anchor=CENTER, spin=0) { assert(N>=3 && (N%2)==1); r = get_radius(r=r, d=d, dflt=1); path = reuleaux_polygon(N=N, r=r); anchors = [ for (i = [0:1:N-1]) let( ca = 360 - i * 360/N, cp = polar_to_xy(r, ca) ) named_anchor(str("tip",i), cp, unit(cp,BACK), 0), ]; attachable(anchor,spin, two_d=true, path=path, anchors=anchors) { polygon(path); children(); } } function reuleaux_polygon(N=3, r, d, anchor=CENTER, spin=0) = assert(N>=3 && (N%2)==1) let( r = get_radius(r=r, d=d, dflt=1), ssegs = max(3,ceil(segs(r)/N)), slen = norm(polar_to_xy(r,0)-polar_to_xy(r,180-180/N)), path = [ for (i = [0:1:N-1]) let( ca = 180 - (i+0.5) * 360/N, sa = ca + 180 + (90/N), ea = ca + 180 - (90/N), cp = polar_to_xy(r, ca) ) each arc(N=ssegs-1, r=slen, cp=cp, angle=[sa,ea], endpoint=false) ], anchors = [ for (i = [0:1:N-1]) let( ca = 360 - i * 360/N, cp = polar_to_xy(r, ca) ) named_anchor(str("tip",i), cp, unit(cp,BACK), 0), ] ) reorient(anchor,spin, two_d=true, path=path, anchors=anchors, p=path); // Section: 2D Masking Shapes // Function&Module: mask2d_roundover() // Usage: As Module // mask2d_roundover(r|d, [inset], [excess]); // Usage: With Attachments // mask2d_roundover(r|d, [inset], [excess]) { attachments } // Usage: As Module // path = mask2d_roundover(r|d, [inset], [excess]); // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable, Masks (2D) // See Also: corner_profile(), edge_profile(), face_profile() // Description: // Creates a 2D roundover/bead mask shape that is useful for extruding into a 3D mask for a 90º edge. // This 2D mask is designed to be differenced away from the edge of a shape that is in the first (X+Y+) quadrant. // If called as a function, this just returns a 2D path of the outline of the mask shape. // Arguments: // r = Radius of the roundover. // inset = Optional bead inset size. Default: 0 // excess = Extra amount of mask shape to creates on the X- and Y- sides of the shape. Default: 0.01 // --- // d = Diameter of the roundover. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // Example(2D): 2D Roundover Mask // mask2d_roundover(r=10); // Example(2D): 2D Bead Mask // mask2d_roundover(r=10,inset=2); // Example: Masking by Edge Attachment // diff("mask") // cube([50,60,70],center=true) // edge_profile([TOP,"Z"],except=[BACK,TOP+LEFT]) // mask2d_roundover(r=10, inset=2); module mask2d_roundover(r, inset=0, excess=0.01, d, anchor=CENTER,spin=0) { path = mask2d_roundover(r=r,d=d,excess=excess,inset=inset); attachable(anchor,spin, two_d=true, path=path) { polygon(path); children(); } } function mask2d_roundover(r, inset=0, excess=0.01, d, anchor=CENTER,spin=0) = assert(is_num(r)||is_num(d)) assert(is_undef(excess)||is_num(excess)) assert(is_num(inset)||(is_vector(inset)&&len(inset)==2)) let( inset = is_list(inset)? inset : [inset,inset], excess = default(excess,$overlap), r = get_radius(r=r,d=d,dflt=1), steps = quantup(segs(r),4)/4, step = 90/steps, path = [ [r+inset.x,-excess], [-excess,-excess], [-excess, r+inset.y], for (i=[0:1:steps]) [r,r] + inset + polar_to_xy(r,180+i*step) ] ) reorient(anchor,spin, two_d=true, path=path, extent=false, p=path); // Function&Module: mask2d_cove() // Usage: As Module // mask2d_cove(r|d, [inset], [excess]); // Usage: With Attachments // mask2d_cove(r|d, [inset], [excess]) { attachments } // Usage: As Function // path = mask2d_cove(r|d, [inset], [excess]); // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable, Masks (2D) // See Also: corner_profile(), edge_profile(), face_profile() // Description: // Creates a 2D cove mask shape that is useful for extruding into a 3D mask for a 90º edge. // This 2D mask is designed to be differenced away from the edge of a shape that is in the first (X+Y+) quadrant. // If called as a function, this just returns a 2D path of the outline of the mask shape. // Arguments: // r = Radius of the cove. // inset = Optional amount to inset code from corner. Default: 0 // excess = Extra amount of mask shape to creates on the X- and Y- sides of the shape. Default: 0.01 // --- // d = Diameter of the cove. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // Example(2D): 2D Cove Mask // mask2d_cove(r=10); // Example(2D): 2D Inset Cove Mask // mask2d_cove(r=10,inset=3); // Example: Masking by Edge Attachment // diff("mask") // cube([50,60,70],center=true) // edge_profile([TOP,"Z"],except=[BACK,TOP+LEFT]) // mask2d_cove(r=10, inset=2); module mask2d_cove(r, inset=0, excess=0.01, d, anchor=CENTER,spin=0) { path = mask2d_cove(r=r,d=d,excess=excess,inset=inset); attachable(anchor,spin, two_d=true, path=path) { polygon(path); children(); } } function mask2d_cove(r, inset=0, excess=0.01, d, anchor=CENTER,spin=0) = assert(is_num(r)||is_num(d)) assert(is_undef(excess)||is_num(excess)) assert(is_num(inset)||(is_vector(inset)&&len(inset)==2)) let( inset = is_list(inset)? inset : [inset,inset], excess = default(excess,$overlap), r = get_radius(r=r,d=d,dflt=1), steps = quantup(segs(r),4)/4, step = 90/steps, path = [ [r+inset.x,-excess], [-excess,-excess], [-excess, r+inset.y], for (i=[0:1:steps]) inset + polar_to_xy(r,90-i*step) ] ) reorient(anchor,spin, two_d=true, path=path, p=path); // Function&Module: mask2d_chamfer() // Usage: As Module // mask2d_chamfer(edge, [angle], [inset], [excess]); // mask2d_chamfer(y, [angle], [inset], [excess]); // mask2d_chamfer(x, [angle], [inset], [excess]); // Usage: With Attachments // mask2d_chamfer(edge, [angle], [inset], [excess]) { attachments } // Usage: As Function // path = mask2d_chamfer(edge, [angle], [inset], [excess]); // path = mask2d_chamfer(y, [angle], [inset], [excess]); // path = mask2d_chamfer(x, [angle], [inset], [excess]); // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable, Masks (2D) // See Also: corner_profile(), edge_profile(), face_profile() // Description: // Creates a 2D chamfer mask shape that is useful for extruding into a 3D mask for a 90º edge. // This 2D mask is designed to be differenced away from the edge of a shape that is in the first (X+Y+) quadrant. // If called as a function, this just returns a 2D path of the outline of the mask shape. // Arguments: // edge = The length of the edge of the chamfer. // angle = The angle of the chamfer edge, away from vertical. Default: 45. // inset = Optional amount to inset code from corner. Default: 0 // excess = Extra amount of mask shape to creates on the X- and Y- sides of the shape. Default: 0.01 // --- // x = The width of the chamfer. // y = The height of the chamfer. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // Example(2D): 2D Chamfer Mask // mask2d_chamfer(x=10); // Example(2D): 2D Chamfer Mask by Width. // mask2d_chamfer(x=10, angle=30); // Example(2D): 2D Chamfer Mask by Height. // mask2d_chamfer(y=10, angle=30); // Example(2D): 2D Inset Chamfer Mask // mask2d_chamfer(x=10, inset=2); // Example: Masking by Edge Attachment // diff("mask") // cube([50,60,70],center=true) // edge_profile([TOP,"Z"],except=[BACK,TOP+LEFT]) // mask2d_chamfer(x=10, inset=2); module mask2d_chamfer(edge, angle=45, inset=0, excess=0.01, x, y, anchor=CENTER,spin=0) { path = mask2d_chamfer(x=x, y=y, edge=edge, angle=angle, excess=excess, inset=inset); attachable(anchor,spin, two_d=true, path=path, extent=true) { polygon(path); children(); } } function mask2d_chamfer(edge, angle=45, inset=0, excess=0.01, x, y, anchor=CENTER,spin=0) = assert(num_defined([x,y,edge])==1) assert(is_num(first_defined([x,y,edge]))) assert(is_num(angle)) assert(is_undef(excess)||is_num(excess)) assert(is_num(inset)||(is_vector(inset)&&len(inset)==2)) let( inset = is_list(inset)? inset : [inset,inset], excess = default(excess,$overlap), x = !is_undef(x)? x : !is_undef(y)? adj_ang_to_opp(adj=y,ang=angle) : hyp_ang_to_opp(hyp=edge,ang=angle), y = opp_ang_to_adj(opp=x,ang=angle), path = [ [x+inset.x, -excess], [-excess, -excess], [-excess, y+inset.y], [inset.x, y+inset.y], [x+inset.x, inset.y] ] ) reorient(anchor,spin, two_d=true, path=path, extent=true, p=path); // Function&Module: mask2d_rabbet() // Usage: As Module // mask2d_rabbet(size, [excess]); // Usage: With Attachments // mask2d_rabbet(size, [excess]) { attachments } // Usage: As Function // path = mask2d_rabbet(size, [excess]); // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable, Masks (2D) // See Also: corner_profile(), edge_profile(), face_profile() // Description: // Creates a 2D rabbet mask shape that is useful for extruding into a 3D mask for a 90º edge. // This 2D mask is designed to be differenced away from the edge of a shape that is in the first (X+Y+) quadrant. // If called as a function, this just returns a 2D path of the outline of the mask shape. // Arguments: // size = The size of the rabbet, either as a scalar or an [X,Y] list. // excess = Extra amount of mask shape to creates on the X- and Y- sides of the shape. Default: 0.01 // --- // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // Example(2D): 2D Rabbet Mask // mask2d_rabbet(size=10); // Example(2D): 2D Asymmetrical Rabbet Mask // mask2d_rabbet(size=[5,10]); // Example: Masking by Edge Attachment // diff("mask") // cube([50,60,70],center=true) // edge_profile([TOP,"Z"],except=[BACK,TOP+LEFT]) // mask2d_rabbet(size=10); module mask2d_rabbet(size, excess=0.01, anchor=CENTER,spin=0) { path = mask2d_rabbet(size=size, excess=excess); attachable(anchor,spin, two_d=true, path=path, extent=false) { polygon(path); children(); } } function mask2d_rabbet(size, excess=0.01, anchor=CENTER,spin=0) = assert(is_num(size)||(is_vector(size)&&len(size)==2)) assert(is_undef(excess)||is_num(excess)) let( excess = default(excess,$overlap), size = is_list(size)? size : [size,size], path = [ [size.x, -excess], [-excess, -excess], [-excess, size.y], size ] ) reorient(anchor,spin, two_d=true, path=path, extent=false, p=path); // Function&Module: mask2d_dovetail() // Usage: As Module // mask2d_dovetail(edge, [angle], [inset], [shelf], [excess], ...); // mask2d_dovetail(x=, [angle=], [inset=], [shelf=], [excess=], ...); // mask2d_dovetail(y=, [angle=], [inset=], [shelf=], [excess=], ...); // Usage: With Attachments // mask2d_dovetail(edge, [angle], [inset], [shelf], ...) { attachments } // Usage: As Function // path = mask2d_dovetail(edge, [angle], [inset], [shelf], [excess]); // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable, Masks (2D) // See Also: corner_profile(), edge_profile(), face_profile() // Description: // Creates a 2D dovetail mask shape that is useful for extruding into a 3D mask for a 90º edge. // This 2D mask is designed to be differenced away from the edge of a shape that is in the first (X+Y+) quadrant. // If called as a function, this just returns a 2D path of the outline of the mask shape. // Arguments: // edge = The length of the edge of the dovetail. // angle = The angle of the chamfer edge, away from vertical. Default: 30. // inset = Optional amount to inset code from corner. Default: 0 // shelf = The extra height to add to the inside corner of the dovetail. Default: 0 // excess = Extra amount of mask shape to creates on the X- and Y- sides of the shape. Default: 0.01 // --- // x = The width of the dovetail. // y = The height of the dovetail. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // Example(2D): 2D Dovetail Mask // mask2d_dovetail(x=10); // Example(2D): 2D Dovetail Mask by Width. // mask2d_dovetail(x=10, angle=30); // Example(2D): 2D Dovetail Mask by Height. // mask2d_dovetail(y=10, angle=30); // Example(2D): 2D Inset Dovetail Mask // mask2d_dovetail(x=10, inset=2); // Example: Masking by Edge Attachment // diff("mask") // cube([50,60,70],center=true) // edge_profile([TOP,"Z"],except=[BACK,TOP+LEFT]) // mask2d_dovetail(x=10, inset=2); module mask2d_dovetail(edge, angle=30, inset=0, shelf=0, excess=0.01, x, y, anchor=CENTER, spin=0) { path = mask2d_dovetail(x=x, y=y, edge=edge, angle=angle, inset=inset, shelf=shelf, excess=excess); attachable(anchor,spin, two_d=true, path=path) { polygon(path); children(); } } function mask2d_dovetail(edge, angle=30, inset=0, shelf=0, excess=0.01, x, y, anchor=CENTER, spin=0) = assert(num_defined([x,y,edge])==1) assert(is_num(first_defined([x,y,edge]))) assert(is_num(angle)) assert(is_undef(excess)||is_num(excess)) assert(is_num(inset)||(is_vector(inset)&&len(inset)==2)) let( inset = is_list(inset)? inset : [inset,inset], excess = default(excess,$overlap), x = !is_undef(x)? x : !is_undef(y)? adj_ang_to_opp(adj=y,ang=angle) : hyp_ang_to_opp(hyp=edge,ang=angle), y = opp_ang_to_adj(opp=x,ang=angle), path = [ [inset.x,0], [-excess, 0], [-excess, y+inset.y+shelf], inset+[x,y+shelf], inset+[x,y], inset ] ) reorient(anchor,spin, two_d=true, path=path, p=path); // Function&Module: mask2d_teardrop() // Usage: As Module // mask2d_teardrop(r|d, [angle], [excess]); // Usage: With Attachments // mask2d_teardrop(r|d, [angle], [excess]) { attachments } // Usage: As Function // path = mask2d_teardrop(r|d, [angle], [excess]); // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable, Masks (2D) // See Also: corner_profile(), edge_profile(), face_profile() // Description: // Creates a 2D teardrop mask shape that is useful for extruding into a 3D mask for a 90º edge. // This 2D mask is designed to be differenced away from the edge of a shape that is in the first (X+Y+) quadrant. // If called as a function, this just returns a 2D path of the outline of the mask shape. // This is particularly useful to make partially rounded bottoms, that don't need support to print. // Arguments: // r = Radius of the rounding. // angle = The maximum angle from vertical. // excess = Extra amount of mask shape to creates on the X- and Y- sides of the shape. Default: 0.01 // --- // d = Diameter of the rounding. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // Example(2D): 2D Teardrop Mask // mask2d_teardrop(r=10); // Example(2D): Using a Custom Angle // mask2d_teardrop(r=10,angle=30); // Example: Masking by Edge Attachment // diff("mask") // cube([50,60,70],center=true) // edge_profile(BOT) // mask2d_teardrop(r=10, angle=40); function mask2d_teardrop(r, angle=45, excess=0.01, d, anchor=CENTER, spin=0) = assert(is_num(angle)) assert(angle>0 && angle<90) assert(is_num(excess)) let( r = get_radius(r=r, d=d, dflt=1), n = ceil(segs(r) * angle/360), cp = [r,r], tp = cp + polar_to_xy(r,180+angle), bp = [tp.x+adj_ang_to_opp(tp.y,angle), 0], step = angle/n, path = [ bp, bp-[0,excess], [-excess,-excess], [-excess,r], for (i=[0:1:n]) cp+polar_to_xy(r,180+i*step) ] ) reorient(anchor,spin, two_d=true, path=path, p=path); module mask2d_teardrop(r, angle=45, excess=0.01, d, anchor=CENTER, spin=0) { path = mask2d_teardrop(r=r, d=d, angle=angle, excess=excess); attachable(anchor,spin, two_d=true, path=path) { polygon(path); children(); } } // Function&Module: mask2d_ogee() // Usage: As Module // mask2d_ogee(pattern, [excess], ...); // Usage: With Attachments // mask2d_ogee(pattern, [excess], ...) { attachments } // Usage: As Function // path = mask2d_ogee(pattern, [excess], ...); // Topics: Shapes (2D), Paths (2D), Path Generators, Attachable, Masks (2D) // See Also: corner_profile(), edge_profile(), face_profile() // // Description: // Creates a 2D Ogee mask shape that is useful for extruding into a 3D mask for a 90º edge. // This 2D mask is designed to be `difference()`d away from the edge of a shape that is in the first (X+Y+) quadrant. // Since there are a number of shapes that fall under the name ogee, the shape of this mask is given as a pattern. // Patterns are given as TYPE, VALUE pairs. ie: `["fillet",10, "xstep",2, "step",[5,5], ...]`. See Patterns below. // If called as a function, this just returns a 2D path of the outline of the mask shape. // . // ### Patterns // . // Type | Argument | Description // -------- | --------- | ---------------- // "step" | [x,y] | Makes a line to a point `x` right and `y` down. // "xstep" | dist | Makes a `dist` length line towards X+. // "ystep" | dist | Makes a `dist` length line towards Y-. // "round" | radius | Makes an arc that will mask a roundover. // "fillet" | radius | Makes an arc that will mask a fillet. // // Arguments: // pattern = A list of pattern pieces to describe the Ogee. // excess = Extra amount of mask shape to creates on the X- and Y- sides of the shape. Default: 0.01 // --- // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // // Example(2D): 2D Ogee Mask // mask2d_ogee([ // "xstep",1, "ystep",1, // Starting shoulder. // "fillet",5, "round",5, // S-curve. // "ystep",1, "xstep",1 // Ending shoulder. // ]); // Example: Masking by Edge Attachment // diff("mask") // cube([50,60,70],center=true) // edge_profile(TOP) // mask2d_ogee([ // "xstep",1, "ystep",1, // Starting shoulder. // "fillet",5, "round",5, // S-curve. // "ystep",1, "xstep",1 // Ending shoulder. // ]); module mask2d_ogee(pattern, excess=0.01, anchor=CENTER,spin=0) { path = mask2d_ogee(pattern, excess=excess); attachable(anchor,spin, two_d=true, path=path) { polygon(path); children(); } } function mask2d_ogee(pattern, excess=0.01, anchor=CENTER, spin=0) = assert(is_list(pattern)) assert(len(pattern)>0) assert(len(pattern)%2==0,"pattern must be a list of TYPE, VAL pairs.") assert(all([for (i = idx(pattern,step=2)) in_list(pattern[i],["step","xstep","ystep","round","fillet"])])) let( excess = default(excess,$overlap), x = concat([0], cumsum([ for (i=idx(pattern,step=2)) let( type = pattern[i], val = pattern[i+1] ) ( type=="step"? val.x : type=="xstep"? val : type=="round"? val : type=="fillet"? val : 0 ) ])), y = concat([0], cumsum([ for (i=idx(pattern,step=2)) let( type = pattern[i], val = pattern[i+1] ) ( type=="step"? val.y : type=="ystep"? val : type=="round"? val : type=="fillet"? val : 0 ) ])), tot_x = last(x), tot_y = last(y), data = [ for (i=idx(pattern,step=2)) let( type = pattern[i], val = pattern[i+1], pt = [x[i/2], tot_y-y[i/2]] + ( type=="step"? [val.x,-val.y] : type=="xstep"? [val,0] : type=="ystep"? [0,-val] : type=="round"? [val,0] : type=="fillet"? [0,-val] : [0,0] ) ) [type, val, pt] ], path = [ [tot_x,-excess], [-excess,-excess], [-excess,tot_y], for (pat = data) each pat[0]=="step"? [pat[2]] : pat[0]=="xstep"? [pat[2]] : pat[0]=="ystep"? [pat[2]] : let( r = pat[1], steps = segs(abs(r)), step = 90/steps ) [ for (i=[0:1:steps]) let( a = pat[0]=="round"? (180+i*step) : (90-i*step) ) pat[2] + abs(r)*[cos(a),sin(a)] ] ], path2 = deduplicate(path) ) reorient(anchor,spin, two_d=true, path=path2, p=path2); // Section: Debugging polygons // Module: debug_polygon() // Usage: // debug_polygon(points, paths, [convexity=], [size=]); // Description: // A drop-in replacement for `polygon()` that renders and labels the path points. // Arguments: // points = The array of 2D polygon vertices. // paths = The path connections between the vertices. // --- // convexity = The max number of walls a ray can pass through the given polygon paths. // size = The base size of the line and labels. // Example(Big2D): // debug_polygon( // points=concat( // regular_ngon(or=10, n=8), // regular_ngon(or=8, n=8) // ), // paths=[ // [for (i=[0:7]) i], // [for (i=[15:-1:8]) i] // ] // ); module debug_polygon(points, paths, convexity=2, size=1) { paths = is_undef(paths)? [[for (i=[0:1:len(points)-1]) i]] : is_num(paths[0])? [paths] : paths; echo(points=points); echo(paths=paths); linear_extrude(height=0.01, convexity=convexity, center=true) { polygon(points=points, paths=paths, convexity=convexity); } for (i = [0:1:len(points)-1]) { color("red") { up(0.2) { translate(points[i]) { linear_extrude(height=0.1, convexity=10, center=true) { text(text=str(i), size=size, halign="center", valign="center"); } } } } } for (j = [0:1:len(paths)-1]) { path = paths[j]; translate(points[path[0]]) { color("cyan") up(0.1) cylinder(d=size*1.5, h=0.01, center=false, $fn=12); } translate(points[path[len(path)-1]]) { color("pink") up(0.11) cylinder(d=size*1.5, h=0.01, center=false, $fn=4); } for (i = [0:1:len(path)-1]) { midpt = (points[path[i]] + points[path[(i+1)%len(path)]])/2; color("blue") { up(0.2) { translate(midpt) { linear_extrude(height=0.1, convexity=10, center=true) { text(text=str(chr(65+j),i), size=size/2, halign="center", valign="center"); } } } } } } } // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap