////////////////////////////////////////////////////////////////////// // LibFile: paths.scad // Polylines, polygons and paths. // To use, add the following lines to the beginning of your file: // ``` // include // ``` ////////////////////////////////////////////////////////////////////// include // Section: Functions // Function: simplify2d_path() // Description: // Takes a 2D polyline and removes unnecessary collinear points. // Usage: // simplify2d_path(path, [eps]) // Arguments: // path = A list of 2D path points. // eps = Largest angle delta between segments to count as colinear. Default: 1e-6 function simplify2d_path(path, eps=1e-6) = simplify_path(path, eps=eps); // Function: simplify3d_path() // Description: // Takes a 3D polyline and removes unnecessary collinear points. // Usage: // simplify3d_path(path, [eps]) // Arguments: // path = A list of 3D path points. // eps = Largest angle delta between segments to count as colinear. Default: 1e-6 function simplify3d_path(path, eps=1e-6) = simplify_path(path, eps=eps); // Function: path_length() // Usage: // path_length(path,[closed]) // Description: // Returns the length of the path. // Arguments: // path = The list of points of the path to measure. // closed = true if the path is closed. Default: false // Example: // path = [[0,0], [5,35], [60,-25], [80,0]]; // echo(path_length(path)); function path_length(path,closed=false) = len(path)<2? 0 : sum([for (i = [0:1:len(path)-2]) norm(path[i+1]-path[i])])+(closed?norm(path[len(path)-1]-path[0]):0); // Function: path_closest_point() // Usage: // path_closest_point(path, pt); // Description: // Finds the closest path segment, and point on that segment to the given point. // Returns `[SEGNUM, POINT]` // Arguments: // path = The path to find the closest point on. // pt = the point to find the closest point to. // Example(2D): // path = circle(d=100,$fn=6); // pt = [20,10]; // closest = path_closest_point(path, pt); // stroke(path, closed=true); // color("blue") translate(pt) circle(d=3, $fn=12); // color("red") translate(closest[1]) circle(d=3, $fn=12); function path_closest_point(path, pt) = let( pts = [for (seg=idx(path)) segment_closest_point(select(path,seg,seg+1),pt)], dists = [for (p=pts) norm(p-pt)], min_seg = min_index(dists) ) [min_seg, pts[min_seg]]; // Function: path3d_spiral() // Description: // Returns a 3D spiral path. // Usage: // path3d_spiral(turns, h, n, r|d, [cp], [scale]); // Arguments: // h = Height of spiral. // turns = Number of turns in spiral. // n = Number of spiral sides. // r = Radius of spiral. // d = Radius of spiral. // cp = Centerpoint of spiral. Default: `[0,0]` // scale = [X,Y] scaling factors for each axis. Default: `[1,1]` // Example(3D): // trace_polyline(path3d_spiral(turns=2.5, h=100, n=24, r=50), N=1, showpts=true); function path3d_spiral(turns=3, h=100, n=12, r=undef, d=undef, cp=[0,0], scale=[1,1]) = let( rr=get_radius(r=r, d=d, dflt=100), cnt=floor(turns*n), dz=h/cnt ) [ for (i=[0:1:cnt]) [ rr * cos(i*360/n) * scale.x + cp.x, rr * sin(i*360/n) * scale.y + cp.y, i*dz ] ]; // Function: points_along_path3d() // Usage: // points_along_path3d(polyline, path); // Description: // Calculates the vertices needed to create a `polyhedron()` of the // extrusion of `polyline` along `path`. The closed 2D path shold be // centered on the XY plane. The 2D path is extruded perpendicularly // along the 3D path. Produces a list of 3D vertices. Vertex count // is `len(polyline)*len(path)`. Gives all the reoriented vertices // for `polyline` at the first point in `path`, then for the second, // and so on. // Arguments: // polyline = A closed list of 2D path points. // path = A list of 3D path points. function points_along_path3d( polyline, // The 2D polyline to drag along the 3D path. path, // The 3D polyline path to follow. q=Q_Ident(), // Used in recursion n=0 // Used in recursion ) = let( end = len(path)-1, v1 = (n == 0)? [0, 0, 1] : normalize(path[n]-path[n-1]), v2 = (n == end)? normalize(path[n]-path[n-1]) : normalize(path[n+1]-path[n]), crs = cross(v1, v2), axis = norm(crs) <= 0.001? [0, 0, 1] : crs, ang = vector_angle(v1, v2), hang = ang * (n==0? 1.0 : 0.5), hrot = Quat(axis, hang), arot = Quat(axis, ang), roth = Q_Mul(hrot, q), rotm = Q_Mul(arot, q) ) concat( [for (i = [0:1:len(polyline)-1]) Qrot(roth,p=point3d(polyline[i])) + path[n]], (n == end)? [] : points_along_path3d(polyline, path, rotm, n+1) ); // Section: 2D Modules // Module: modulated_circle() // Description: // Creates a 2D polygon circle, modulated by one or more superimposed sine waves. // Arguments: // r = radius of the base circle. // sines = array of [amplitude, frequency] pairs, where the frequency is the number of times the cycle repeats around the circle. // Example(2D): // modulated_circle(r=40, sines=[[3, 11], [1, 31]], $fn=6); module modulated_circle(r=40, sines=[10]) { freqs = len(sines)>0? [for (i=sines) i[1]] : [5]; points = [ for (a = [0 : (360/segs(r)/max(freqs)) : 360]) let(nr=r+sum_of_sines(a,sines)) [nr*cos(a), nr*sin(a)] ]; polygon(points); } // Section: 3D Modules // Module: extrude_from_to() // Description: // Extrudes a 2D shape between the points pt1 and pt2. Takes as children a set of 2D shapes to extrude. // Arguments: // pt1 = starting point of extrusion. // pt2 = ending point of extrusion. // convexity = max number of times a line could intersect a wall of the 2D shape being extruded. // twist = number of degrees to twist the 2D shape over the entire extrusion length. // scale = scale multiplier for end of extrusion compared the start. // slices = Number of slices along the extrusion to break the extrusion into. Useful for refining `twist` extrusions. // Example(FlatSpin): // extrude_from_to([0,0,0], [10,20,30], convexity=4, twist=360, scale=3.0, slices=40) { // xspread(3) circle(3, $fn=32); // } module extrude_from_to(pt1, pt2, convexity=undef, twist=undef, scale=undef, slices=undef) { rtp = xyz_to_spherical(pt2-pt1); translate(pt1) { rotate([0, rtp[2], rtp[1]]) { linear_extrude(height=rtp[0], convexity=convexity, center=false, slices=slices, twist=twist, scale=scale) { children(); } } } } // Module: spiral_sweep() // Description: // Takes a closed 2D polyline path, centered on the XY plane, and // extrudes it along a 3D spiral path of a given radius, height and twist. // Arguments: // polyline = Array of points of a polyline path, to be extruded. // h = height of the spiral to extrude along. // r = radius of the spiral to extrude along. // twist = number of degrees of rotation to spiral up along height. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=BOTTOM`. // Example: // poly = [[-10,0], [-3,-5], [3,-5], [10,0], [0,-30]]; // spiral_sweep(poly, h=200, r=50, twist=1080, $fn=36); module spiral_sweep(polyline, h, r, twist=360, center=undef, anchor=BOTTOM, spin=0, orient=UP) { pline_count = len(polyline); steps = ceil(segs(r)*(twist/360)); poly_points = [ for ( p = [0:1:steps] ) let ( a = twist * (p/steps), dx = r*cos(a), dy = r*sin(a), dz = h * (p/steps), pts = affine3d_apply( polyline, [ affine3d_xrot(90), affine3d_zrot(a), affine3d_translate([dx, dy, dz-h/2]) ] ) ) for (pt = pts) pt ]; poly_faces = concat( [[for (b = [0:1:pline_count-1]) b]], [ for ( p = [0:1:steps-1], b = [0:1:pline_count-1], i = [0:1] ) let ( b2 = (b == pline_count-1)? 0 : b+1, p0 = p * pline_count + b, p1 = p * pline_count + b2, p2 = (p+1) * pline_count + b2, p3 = (p+1) * pline_count + b, pt = (i==0)? [p0, p2, p1] : [p0, p3, p2] ) pt ], [[for (b = [pline_count-1:-1:0]) b+(steps)*pline_count]] ); tri_faces = triangulate_faces(poly_points, poly_faces); orient_and_anchor([r,r,h], orient, anchor, spin=spin, center=center, geometry="cylinder", chain=true) { polyhedron(points=poly_points, faces=tri_faces, convexity=10); children(); } } // Module: path_sweep() // Description: // Takes a closed 2D path `polyline`, centered on the XY plane, and extrudes it perpendicularly along a 3D path `path`, forming a solid. // Arguments: // polyline = Array of points of a polyline path, to be extruded. // path = Array of points of a polyline path, to extrude along. // ang = Angle in degrees to rotate 2D polyline before extrusion. // convexity = max number of surfaces any single ray could pass through. // Example(FlatSpin): // shape = [[0,-10], [5,-3], [5,3], [0,10], [30,0]]; // path = concat( // [for (a=[30:30:180]) [50*cos(a)+50, 50*sin(a), 20*sin(a)]], // [for (a=[330:-30:180]) [50*cos(a)-50, 50*sin(a), 20*sin(a)]] // ); // path_sweep(shape, path, ang=140); module path_sweep(polyline, path, ang=0, convexity=10) { pline_count = len(polyline); path_count = len(path); polyline = rotate_points2d(path2d(polyline), ang); poly_points = points_along_path3d(polyline, path); poly_faces = concat( [[for (b = [0:1:pline_count-1]) b]], [ for ( p = [0:1:path_count-2], b = [0:1:pline_count-1], i = [0:1] ) let ( b2 = (b == pline_count-1)? 0 : b+1, p0 = p * pline_count + b, p1 = p * pline_count + b2, p2 = (p+1) * pline_count + b2, p3 = (p+1) * pline_count + b, pt = (i==0)? [p0, p2, p1] : [p0, p3, p2] ) pt ], [[for (b = [pline_count-1:-1:0]) b+(path_count-1)*pline_count]] ); tri_faces = triangulate_faces(poly_points, poly_faces); polyhedron(points=poly_points, faces=tri_faces, convexity=convexity); } // Module: path_extrude() // Description: // Extrudes 2D children along a 3D polyline path. This may be slow. // Arguments: // path = array of points for the bezier path to extrude along. // convexity = maximum number of walls a ran can pass through. // clipsize = increase if artifacts are left. Default: 1000 // Example(FlatSpin): // path = [ [0, 0, 0], [33, 33, 33], [66, 33, 40], [100, 0, 0], [150,0,0] ]; // path_extrude(path) circle(r=10, $fn=6); module path_extrude(path, convexity=10, clipsize=100) { function polyquats(path, q=Q_Ident(), v=[0,0,1], i=0) = let( v2 = path[i+1] - path[i], ang = vector_angle(v,v2), axis = ang>0.001? normalize(cross(v,v2)) : [0,0,1], newq = Q_Mul(Quat(axis, ang), q), dist = norm(v2) ) i < (len(path)-2)? concat([[dist, newq, ang]], polyquats(path, newq, v2, i+1)) : [[dist, newq, ang]]; epsilon = 0.0001; // Make segments ever so slightly too long so they overlap. ptcount = len(path); pquats = polyquats(path); for (i = [0:1:ptcount-2]) { pt1 = path[i]; pt2 = path[i+1]; dist = pquats[i][0]; q = pquats[i][1]; difference() { translate(pt1) { Qrot(q) { down(clipsize/2/2) { linear_extrude(height=dist+clipsize/2, convexity=convexity) { children(); } } } } translate(pt1) { hq = (i > 0)? Q_Slerp(q, pquats[i-1][1], 0.5) : q; Qrot(hq) down(clipsize/2+epsilon) cube(clipsize, center=true); } translate(pt2) { hq = (i < ptcount-2)? Q_Slerp(q, pquats[i+1][1], 0.5) : q; Qrot(hq) up(clipsize/2+epsilon) cube(clipsize, center=true); } } } } // Module: trace_polyline() // Description: // Renders lines between each point of a polyline path. // Can also optionally show the individual vertex points. // Arguments: // pline = The array of points in the polyline. // showpts = If true, draw vertices and control points. // N = Mark the first and every Nth vertex after in a different color and shape. // size = Diameter of the lines drawn. // color = Color to draw the lines (but not vertices) in. // Example(FlatSpin): // polyline = [for (a=[0:30:210]) 10*[cos(a), sin(a), sin(a)]]; // trace_polyline(polyline, showpts=true, size=0.5, color="lightgreen"); module trace_polyline(pline, showpts=false, N=1, size=1, color="yellow") { sides = segs(size/2); if (showpts) { for (i = [0:1:len(pline)-1]) { translate(pline[i]) { if (i%N == 0) { color("blue") sphere(d=size*2.5, $fn=8); } else { color("red") { cylinder(d=size/2, h=size*3, center=true, $fn=8); xrot(90) cylinder(d=size/2, h=size*3, center=true, $fn=8); yrot(90) cylinder(d=size/2, h=size*3, center=true, $fn=8); } } } } } if (N!=3) { path_sweep(circle(d=size,$fn=sides), path3d(pline)); } else { for (i = [0:1:len(pline)-2]) { if (N!=3 || (i%N) != 1) { color(color) extrude_from_to(pline[i], pline[i+1]) circle(d=size, $fn=sides); } } } } // Module: debug_polygon() // Description: A drop-in replacement for `polygon()` that renders and labels the path points. // Arguments: // points = The array of 2D polygon vertices. // paths = The path connections between the vertices. // convexity = The max number of walls a ray can pass through the given polygon paths. // Example(Big2D): // debug_polygon( // points=concat( // regular_ngon(or=10, n=8), // regular_ngon(or=8, n=8) // ), // paths=[ // [for (i=[0:7]) i], // [for (i=[15:-1:8]) i] // ] // ); module debug_polygon(points, paths=undef, convexity=2, size=1) { pths = is_undef(paths)? [for (i=[0:1:len(points)-1]) i] : is_num(paths[0])? [paths] : paths; echo(points=points); echo(paths=paths); linear_extrude(height=0.01, convexity=convexity, center=true) { polygon(points=points, paths=paths, convexity=convexity); } for (i = [0:1:len(points)-1]) { color("red") { up(0.2) { translate(points[i]) { linear_extrude(height=0.1, convexity=10, center=true) { text(text=str(i), size=size, halign="center", valign="center"); } } } } } for (j = [0:1:len(paths)-1]) { path = paths[j]; translate(points[path[0]]) { color("cyan") up(0.1) cylinder(d=size*1.5, h=0.01, center=false, $fn=12); } translate(points[path[len(path)-1]]) { color("pink") up(0.11) cylinder(d=size*1.5, h=0.01, center=false, $fn=4); } for (i = [0:1:len(path)-1]) { midpt = (points[path[i]] + points[path[(i+1)%len(path)]])/2; color("blue") { up(0.2) { translate(midpt) { linear_extrude(height=0.1, convexity=10, center=true) { text(text=str(chr(65+j),i), size=size/2, halign="center", valign="center"); } } } } } } } // Module: path_spread() // // Description: // Uniformly spreads out copies of children along a path. Copies are located based on path length. If you specify `n` but not spacing then `n` copies will be placed // with one at path[0] of `closed` is true, or spanning the entire path from start to end if `closed` is false. // If you specify `spacing` but not `n` then copies will spread out starting from one at path[0] for `closed=true` or at the path center for open paths. // If you specify `sp` then the copies will start at `sp`. // // Usage: // path_spread(path), [n], [spacing], [sp], [rotate_children], [closed]) ... // // Arguments: // path = the path where children are placed // n = number of copies // spacing = space between copies // sp = if given, copies will start distance sp from the path start and spread beyond that point // // Side Effects: // `$pos` is set to the center of each copy // `$idx` is set to the index number of each copy. In the case of closed paths the first copy is at `path[0]` unless you give `sp`. // `$dir` is set to the direction vector of the path at the point where the copy is placed. // `$normal` is set to the direction of the normal vector to the path direction that is coplanar with the path at this point // // Example(2D): // spiral = [for(theta=[0:360*8]) theta * [cos(theta), sin(theta)]]/100; // stroke(spiral,width=.25); // color("red") path_spread(spiral, n=100) circle(r=1); // Example(2D): // circle = regular_ngon(n=64, or=10); // stroke(circle,width=1,closed=true); // color("green")path_spread(circle, n=7, closed=true) circle(r=1+$idx/3); // Example(2D): // heptagon = regular_ngon(n=7, or=10); // stroke(heptagon, width=1, closed=true); // color("purple") path_spread(heptagon, n=9, closed=true) square([0.5,3],anchor=FRONT); // Example(2D): Direction at the corners is the average of the two adjacent edges // heptagon = regular_ngon(n=7, or=10); // stroke(heptagon, width=1, closed=true); // color("purple") path_spread(heptagon, n=7, closed=true) square([0.5,3],anchor=FRONT); // Example(2D): Don't rotate the children // heptagon = regular_ngon(n=7, or=10); // stroke(heptagon, width=1, closed=true); // color("red") path_spread(heptagon, n=9, closed=true, rotate_children=false) square([0.5,3],anchor=FRONT); // Example(2D): Open path, specify `n` // sinwav = [for(theta=[0:360]) 5*[theta/180, sin(theta)]]; // stroke(sinwav,width=.1); // color("red")path_spread(sinwav, n=5) square([.2,1.5],anchor=FRONT); // Example(2D)): Open path, specify `n` and `spacing` // sinwav = [for(theta=[0:360]) 5*[theta/180, sin(theta)]]; // stroke(sinwav,width=.1); // color("red")path_spread(sinwav, n=5, spacing=1) square([.2,1.5],anchor=FRONT); // Example(2D)): Closed path, specify `n` and `spacing`, copies centered around circle[0] // circle = regular_ngon(n=64,or=10); // stroke(circle,width=.1,closed=true); // color("red")path_spread(circle, n=10, spacing=1, closed=true) square([.2,1.5],anchor=FRONT); // Example(2D): Open path, specify `spacing` // sinwav = [for(theta=[0:360]) 5*[theta/180, sin(theta)]]; // stroke(sinwav,width=.1); // color("red")path_spread(sinwav, spacing=5) square([.2,1.5],anchor=FRONT); // Example(2D): Open path, specify `sp` // sinwav = [for(theta=[0:360]) 5*[theta/180, sin(theta)]]; // stroke(sinwav,width=.1); // color("red")path_spread(sinwav, n=5, sp=18) square([.2,1.5],anchor=FRONT); // Example(2D): // wedge = arc(angle=[0,100], r=10, $fn=64); // difference(){ // polygon(concat([[0,0]],wedge)); // path_spread(wedge,n=5,spacing=3) fwd(.1)square([1,4],anchor=FRONT); // } // Example(Spin): 3d example, with children rotated into the plane of the path // tilted_circle = lift_plane(regular_ngon(n=64, or=12), [0,0,0], [5,0,5], [0,2,3]); // path_sweep(regular_ngon(n=16,or=.1),tilted_circle); // path_spread(tilted_circle, n=15,closed=true) { // color("blue")cyl(h=3,r=.2, anchor=BOTTOM); // z-aligned cylinder // color("red")xcyl(h=10,r=.2, anchor=FRONT+LEFT); // x-aligned cylinder // } // Example(Spin): 3d example, with rotate_children set to false // tilted_circle = lift_plane(regular_ngon(n=64, or=12), [0,0,0], [5,0,5], [0,2,3]); // path_sweep(regular_ngon(n=16,or=.1),tilted_circle); // path_spread(tilted_circle, n=25,rotate_children=false,closed=true) { // color("blue")cyl(h=3,r=.2, anchor=BOTTOM); // z-aligned cylinder // color("red")xcyl(h=10,r=.2, anchor=FRONT+LEFT); // x-aligned cylinder // } module path_spread(path, n, spacing, sp=undef, rotate_children=true, closed=false) { length = path_length(path,closed); distances = is_def(sp)? ( is_def(n) && is_def(spacing)? list_range(s=sp, step=spacing, n=n) : is_def(n)? list_range(s=sp, e=length, n=n) : list_range(s=sp, step=spacing, e=length) ) : is_def(n) && is_undef(spacing)? ( closed? let(range=list_range(s=0,e=length, n=n+1)) slice(range,0,-2) : list_range(s=0, e=length, n=n) ) : ( let( n = is_def(n)? n : floor(length/spacing)+(closed?0:1), ptlist = list_range(s=0,step=spacing,n=n), listcenter = mean(ptlist) ) closed? sort([for(entry=ptlist) posmod(entry-listcenter,length)]) : [for(entry=ptlist) entry + length/2-listcenter ] ); distOK = min(distances)>=0 && max(distances)<=length; assert(distOK,"Cannot fit all of the copies"); cutlist = path_cut(path, distances, closed, direction=true); planar = len(path[0])==2; if (true) for(i=[0:1:len(cutlist)-1]) { $pos = cutlist[i][0]; $idx = i; $dir = rotate_children ? (planar?[1,0]:[1,0,0]) : cutlist[i][2]; $normal = rotate_children? (planar?[0,1]:[0,0,1]) : cutlist[i][3]; translate($pos) { if (rotate_children) { if(planar) { rot(from=[0,1],to=cutlist[i][3]) children(); } else { multmatrix(affine2d_to_3d(transpose([cutlist[i][2],cross(cutlist[i][3],cutlist[i][2]), cutlist[i][3]]))) children(); } } else { children(); } } } } // Function: path_cut() // // Usage // path_cut(path, dists, [closed], [direction]) // // Description: // Cuts a path at a list of distances from the first point in the path. Returns a list of the cut // points and indices of the next point in the path after that point. So for example, a return // value entry of [[2,3], 5] means that the cut point was [2,3] and the next point on the path after // this point is path[5]. If the path is too short then path_cut returns undef. If you set // `direction` to true then `path_cut` will also return the tangent vector to the path and a normal // vector to the path. It tries to find a normal vector that is coplanar to the path near the cut // point. If this fails it will return a normal vector parallel to the xy plane. The output with // direction vectors will be `[point, next_index, tangent, normal]`. // // Arguments: // path = path to cut // dists = distances where the path should be cut (a list) or a scalar single distance // closed = set to true if the curve is closed. Default: false // direction = set to true to return direction vectors. Default: false // // Example(NORENDER): // square=[[0,0],[1,0],[1,1],[0,1]]; // path_cut(square, [.5,1.5,2.5]); // Returns [[[0.5, 0], 1], [[1, 0.5], 2], [[0.5, 1], 3]] // path_cut(square, [0,1,2,3]); // Returns [[[0, 0], 1], [[1, 0], 2], [[1, 1], 3], [[0, 1], 4]] // path_cut(square, [0,0.8,1.6,2.4,3.2], closed=true); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], [[0, 0.8], 4]] // path_cut(square, [0,0.8,1.6,2.4,3.2]); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], undef] function path_cut(path, dists, closed=false, direction=false) = let(long_enough = len(path) >= (closed ? 3 : 2)) assert(long_enough,len(path)<2 ? "Two points needed to define a path" : "Closed path must include three points") !is_list(dists)? path_cut(path, [dists],closed, direction)[0] : let(cuts = _path_cut(path,dists,closed)) !direction ? cuts : let( dir = _path_cuts_dir(path, cuts, closed), normals = _path_cuts_normals(path, cuts, dir, closed) ) zip(cuts, array_group(dir,1), array_group(normals,1)); // Main recursive path cut function function _path_cut(path, dists, closed=false, pind=0, dtotal=0, dind=0, result=[]) = dind == len(dists) ? result : let( lastpt = len(result)>0? select(result,-1)[0] : [], dpartial = len(result)==0? 0 : norm(lastpt-path[pind]), nextpoint = dpartial > dists[dind]-dtotal? [lerp(lastpt,path[pind], (dists[dind]-dtotal)/dpartial),pind] : _path_cut_single(path, dists[dind]-dtotal-dpartial, closed, pind) ) is_undef(nextpoint)? concat(result, replist(undef,len(dists)-dind)) : _path_cut(path, dists, closed, nextpoint[1], dists[dind],dind+1, concat(result, [nextpoint])); // Search for a single cut point in the path function _path_cut_single(path, dist, closed=false, ind=0, eps=1e-7) = ind>=len(path)? undef : ind==len(path)-1 && !closed? (dist dist ? [lerp(path[ind],select(path,ind+1),dist/d), ind+1] : _path_cut_single(path, dist-d,closed, ind+1, eps); // Find normal directions to the path, coplanar to local part of the path // Or return a vector parallel to the x-y plane if the above fails function _path_cuts_normals(path, cuts, dirs, closed=false) = [for(i=[0:len(cuts)-1]) len(path[0])==2? [-dirs[i].y, dirs[i].x] : ( let( plane = len(path)<3 ? undef : let(start = max(min(cuts[i][1],len(path)-1),2)) _path_plane(path, start, start-2) ) plane==undef? normalize([-dirs[i].y, dirs[i].x,0]) : normalize(cross(dirs[i],cross(plane[0],plane[1]))) ) ]; // Scan from the specified point (ind) to find a noncoplanar triple to use // to define the plane of the path. function _path_plane(path, ind, i,closed) = i<(closed?-1:0) ? undef : !collinear(path[ind],path[ind-1], select(path,i))? [select(path,i)-path[ind-1],path[ind]-path[ind-1]] : _path_plane(path, ind, i-1); // Find the direction of the path at the cut points function _path_cuts_dir(path, cuts, closed=false, eps=1e-2) = [for(ind=[0:len(cuts)-1]) let( nextind = cuts[ind][1], nextpath = normalize(select(path, nextind+1)-select(path, nextind)), thispath = normalize(select(path, nextind) - path[nextind-1]), lastpath = normalize(path[nextind-1] - select(path, nextind-2)), nextdir = nextind==len(path) && !closed? lastpath : (nextind<=len(path)-2 || closed) && approx(cuts[ind][0], path[nextind],eps)? normalize(nextpath+thispath) : (nextind>1 || closed) && approx(cuts[ind][0],path[nextind-1],eps)? normalize(thispath+lastpath) : thispath ) nextdir ]; // vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap