/////////////////////////////////////////// // LibFile: quaternions.scad // Support for Quaternions. // Includes: // include // FileGroup: Math // FileSummary: Quaternion based rotations that avoid gimbal lock issues. // FileFootnotes: STD=Included in std.scad /////////////////////////////////////////// // Section: Quaternions // Quaternions are fast methods of storing and calculating arbitrary rotations. // Quaternions contain information on both axis of rotation, and rotation angle. // You can chain multiple rotation together by multiplying quaternions together. // They don't suffer from the gimbal-lock issues that `[X,Y,Z]` rotation angles do. // Quaternions are stored internally as a 4-value vector: // `[X,Y,Z,W]`, where the quaternion formula is `W+Xi+Yj+Zk` // Internal function _quat(a,s,w) = [a[0]*s, a[1]*s, a[2]*s, w]; function _qvec(q) = [q.x,q.y,q.z]; function _qreal(q) = q[3]; function _qset(v,r) = concat( v, r ); // normalizes without checking function _qnorm(q) = q/norm(q); // Function: is_quaternion() // Usage: // if(is_quaternion(q)) a=0; // Description: Return true if q is a valid non-zero quaternion. // Arguments: // q = object to check. function is_quaternion(q) = is_vector(q,4) && ! approx(norm(q),0) ; // Function: quat() // Usage: // quat(ax, ang); // Description: Create a normalized Quaternion from axis and angle of rotation. // Arguments: // ax = Vector of axis of rotation. // ang = Number of degrees to rotate around the axis counter-clockwise, when facing the origin. function quat(ax=[0,0,1], ang=0) = assert( is_vector(ax,3) && is_finite(ang), "Invalid input") let( n = norm(ax) ) approx(n,0) ? _quat([0,0,0], sin(ang/2), cos(ang/2)) : _quat(ax/n, sin(ang/2), cos(ang/2)); // Function: quat_x() // Usage: // quat_x(a); // Description: Create a normalized Quaternion for rotating around the X axis [1,0,0]. // Arguments: // a = Number of degrees to rotate around the axis counter-clockwise, when facing the origin. function quat_x(a=0) = assert( is_finite(a), "Invalid angle" ) quat([1,0,0],a); // Function: quat_y() // Usage: // quat_y(a); // Description: Create a normalized Quaternion for rotating around the Y axis [0,1,0]. // Arguments: // a = Number of degrees to rotate around the axis counter-clockwise, when facing the origin. function quat_y(a=0) = assert( is_finite(a), "Invalid angle" ) quat([0,1,0],a); // Function: quat_z() // Usage: // quat_z(a); // Description: Create a normalized Quaternion for rotating around the Z axis [0,0,1]. // Arguments: // a = Number of degrees to rotate around the axis counter-clockwise, when facing the origin. function quat_z(a=0) = assert( is_finite(a), "Invalid angle" ) quat([0,0,1],a); // Function: quat_xyz() // Usage: // quat_xyz([X,Y,Z]) // Description: // Creates a normalized quaternion from standard [X,Y,Z] rotation angles in degrees. // Arguments: // a = The triplet of rotation angles, [X,Y,Z] function quat_xyz(a=[0,0,0]) = assert( is_vector(a,3), "Invalid angles") let( qx = quat_x(a[0]), qy = quat_y(a[1]), qz = quat_z(a[2]) ) q_mul(qz, q_mul(qy, qx)); // Function: q_from_to() // Usage: // q = q_from_to(v1, v2); // Description: // Returns the normalized quaternion that rotates the non zero 3D vector v1 // to the non zero 3D vector v2. function q_from_to(v1, v2) = assert( is_vector(v1,3) && is_vector(v2,3) && ! approx(norm(v1),0) && ! approx(norm(v2),0) , "Invalid vector(s)") let( ax = cross(v1,v2), n = norm(ax) ) approx(n, 0) ? v1*v2>0 ? q_ident() : quat([ v1.y, -v1.x, 0], 180) : quat(ax, atan2( n , v1*v2 )); // Function: q_ident() // Description: Returns the "Identity" zero-rotation Quaternion. function q_ident() = [0, 0, 0, 1]; // Function: q_add_s() // Usage: // q_add_s(q, s) // Description: // Adds a scalar value `s` to the W part of a quaternion `q`. // The returned quaternion is usually not normalized. function q_add_s(q, s) = assert( is_finite(s), "Invalid scalar" ) q+[0,0,0,s]; // Function: q_sub_s() // Usage: // q_sub_s(q, s) // Description: // Subtracts a scalar value `s` from the W part of a quaternion `q`. // The returned quaternion is usually not normalized. function q_sub_s(q, s) = assert( is_finite(s), "Invalid scalar" ) q-[0,0,0,s]; // Function: q_mul_s() // Usage: // q_mul_s(q, s) // Description: // Multiplies each part of a quaternion `q` by a scalar value `s`. // The returned quaternion is usually not normalized. function q_mul_s(q, s) = assert( is_finite(s), "Invalid scalar" ) q*s; // Function: q_div_s() // Usage: // q_div_s(q, s) // Description: // Divides each part of a quaternion `q` by a scalar value `s`. // The returned quaternion is usually not normalized. function q_div_s(q, s) = assert( is_finite(s) && ! approx(s,0) , "Invalid scalar" ) q/s; // Function: q_add() // Usage: // q_add(a, b) // Description: // Adds each part of two quaternions together. // The returned quaternion is usually not normalized. function q_add(a, b) = assert( is_quaternion(a) && is_quaternion(a), "Invalid quaternion(s)") assert( ! approx(norm(a+b),0), "Quaternions cannot be opposed" ) a+b; // Function: q_sub() // Usage: // q_sub(a, b) // Description: // Subtracts each part of quaternion `b` from quaternion `a`. // The returned quaternion is usually not normalized. function q_sub(a, b) = assert( is_quaternion(a) && is_quaternion(a), "Invalid quaternion(s)") assert( ! approx(a,b), "Quaternions cannot be equal" ) a-b; // Function: q_mul() // Usage: // q_mul(a, b) // Description: // Multiplies quaternion `a` by quaternion `b`. // The returned quaternion is normalized if both `a` and `b` are normalized function q_mul(a, b) = assert( is_quaternion(a) && is_quaternion(b), "Invalid quaternion(s)") [ a[3]*b.x + a.x*b[3] + a.y*b.z - a.z*b.y, a[3]*b.y - a.x*b.z + a.y*b[3] + a.z*b.x, a[3]*b.z + a.x*b.y - a.y*b.x + a.z*b[3], a[3]*b[3] - a.x*b.x - a.y*b.y - a.z*b.z, ]; // Function: q_cumulative() // Usage: // q_cumulative(v); // Description: // Given a list of Quaternions, cumulatively multiplies them, returning a list // of each cumulative Quaternion product. It starts with the first quaternion // given in the list, and applies successive quaternion rotations in list order. // The quaternion in the returned list are normalized if each quaternion in v // is normalized. function q_cumulative(v, _i=0, _acc=[]) = _i==len(v) ? _acc : q_cumulative( v, _i+1, concat( _acc, [_i==0 ? v[_i] : q_mul(v[_i], last(_acc))] ) ); // Function: q_dot() // Usage: // q_dot(a, b) // Description: Calculates the dot product between quaternions `a` and `b`. function q_dot(a, b) = assert( is_quaternion(a) && is_quaternion(b), "Invalid quaternion(s)" ) a*b; // Function: q_neg() // Usage: // q_neg(q) // Description: Returns the negative of quaternion `q`. function q_neg(q) = assert( is_quaternion(q), "Invalid quaternion" ) -q; // Function: q_conj() // Usage: // q_conj(q) // Description: Returns the conjugate of quaternion `q`. function q_conj(q) = assert( is_quaternion(q), "Invalid quaternion" ) [-q.x, -q.y, -q.z, q[3]]; // Function: q_inverse() // Usage: // qc = q_inverse(q) // Description: Returns the multiplication inverse of quaternion `q` that is normalized only if `q` is normalized. function q_inverse(q) = assert( is_quaternion(q), "Invalid quaternion" ) let(q = _qnorm(q) ) [-q.x, -q.y, -q.z, q[3]]; // Function: q_norm() // Usage: // q_norm(q) // Description: // Returns the `norm()` "length" of quaternion `q`. // Normalized quaternions have unitary norm. function q_norm(q) = assert( is_quaternion(q), "Invalid quaternion" ) norm(q); // Function: q_normalize() // Usage: // q_normalize(q) // Description: Normalizes quaternion `q`, so that norm([W,X,Y,Z]) == 1. function q_normalize(q) = assert( is_quaternion(q) , "Invalid quaternion" ) q/norm(q); // Function: q_dist() // Usage: // q_dist(q1, q2) // Description: Returns the "distance" between two quaternions. function q_dist(q1, q2) = assert( is_quaternion(q1) && is_quaternion(q2), "Invalid quaternion(s)" ) norm(q2-q1); // Function: q_slerp() // Usage: // q_slerp(q1, q2, u); // Description: // Returns a quaternion that is a spherical interpolation between two quaternions. // Arguments: // q1 = The first quaternion. (u=0) // q2 = The second quaternion. (u=1) // u = The proportional value, from 0 to 1, of what part of the interpolation to return. // Example(3D): Giving `u` as a Scalar // a = quat_y(-135); // b = quat_xyz([0,-30,30]); // for (u=[0:0.1:1]) // q_rot(q_slerp(a, b, u)) // right(80) cube([10,10,1]); // #sphere(r=80); // Example(3D): Giving `u` as a Range // a = quat_z(-135); // b = quat_xyz([90,0,-45]); // for (q = q_slerp(a, b, [0:0.1:1])) // q_rot(q) right(80) cube([10,10,1]); // #sphere(r=80); function q_slerp(q1, q2, u, _dot) = is_undef(_dot) ? assert(is_finite(u) || is_range(u) || is_vector(u), "Invalid interpolation coefficient(s)") assert(is_quaternion(q1) && is_quaternion(q2), "Invalid quaternion(s)" ) let( _dot = q1*q2, q1 = q1/norm(q1), q2 = _dot<0 ? -q2/norm(q2) : q2/norm(q2), dot = abs(_dot) ) ! is_finite(u) ? [for (uu=u) q_slerp(q1, q2, uu, dot)] : q_slerp(q1, q2, u, dot) : _dot>0.9995 ? _qnorm(q1 + u*(q2-q1)) : let( theta = u*acos(_dot), q3 = _qnorm(q2 - _dot*q1) ) _qnorm(q1*cos(theta) + q3*sin(theta)); // Function: q_matrix3() // Usage: // q_matrix3(q); // Description: // Returns the 3x3 rotation matrix for the given normalized quaternion q. function q_matrix3(q) = let( q = q_normalize(q) ) [ [1-2*q[1]*q[1]-2*q[2]*q[2], 2*q[0]*q[1]-2*q[2]*q[3], 2*q[0]*q[2]+2*q[1]*q[3]], [ 2*q[0]*q[1]+2*q[2]*q[3], 1-2*q[0]*q[0]-2*q[2]*q[2], 2*q[1]*q[2]-2*q[0]*q[3]], [ 2*q[0]*q[2]-2*q[1]*q[3], 2*q[1]*q[2]+2*q[0]*q[3], 1-2*q[0]*q[0]-2*q[1]*q[1]] ]; // Function: q_matrix4() // Usage: // q_matrix4(q); // Description: // Returns the 4x4 rotation matrix for the given normalized quaternion q. function q_matrix4(q) = let( q = q_normalize(q) ) [ [1-2*q[1]*q[1]-2*q[2]*q[2], 2*q[0]*q[1]-2*q[2]*q[3], 2*q[0]*q[2]+2*q[1]*q[3], 0], [ 2*q[0]*q[1]+2*q[2]*q[3], 1-2*q[0]*q[0]-2*q[2]*q[2], 2*q[1]*q[2]-2*q[0]*q[3], 0], [ 2*q[0]*q[2]-2*q[1]*q[3], 2*q[1]*q[2]+2*q[0]*q[3], 1-2*q[0]*q[0]-2*q[1]*q[1], 0], [ 0, 0, 0, 1] ]; // Function: q_axis() // Usage: // q_axis(q) // Description: // Returns the axis of rotation of a normalized quaternion `q`. // The input doesn't need to be normalized. function q_axis(q) = assert( is_quaternion(q) , "Invalid quaternion" ) let( d = norm(_qvec(q)) ) approx(d,0)? [0,0,1] : _qvec(q)/d; // Function: q_angle() // Usage: // a = q_angle(q) // a12 = q_angle(q1,q2); // Description: // If only q1 is given, returns the angle of rotation (in degrees) of that quaternion. // If both q1 and q2 are given, returns the angle (in degrees) between them. // The input quaternions don't need to be normalized. function q_angle(q1,q2) = assert(is_quaternion(q1) && (is_undef(q2) || is_quaternion(q2)), "Invalid quaternion(s)" ) let( n1 = is_undef(q2)? norm(_qvec(q1)): norm(q1) ) is_undef(q2) ? 2 * atan2(n1,_qreal(q1)) : let( q1 = q1/norm(q1), q2 = q2/norm(q2) ) 4 * atan2(norm(q1 - q2), norm(q1 + q2)); // Function&Module: q_rot() // Usage: As Module // q_rot(q) ... // Usage: As Function // pts = q_rot(q,p); // Description: // When called as a module, rotates all children by the rotation stored in quaternion `q`. // When called as a function with a `p` argument, rotates the point or list of points in `p` by the rotation stored in quaternion `q`. // When called as a function without a `p` argument, returns the affine3d rotation matrix for the rotation stored in quaternion `q`. // Example(FlatSpin,VPD=225,VPT=[71,-26,16]): // module shape() translate([80,0,0]) cube([10,10,1]); // q = quat_xyz([90,-15,-45]); // q_rot(q) shape(); // #shape(); // Example(NORENDER): // q = quat_xyz([45,35,10]); // mat4x4 = q_rot(q); // Example(NORENDER): // q = quat_xyz([45,35,10]); // pt = q_rot(q, p=[4,5,6]); // Example(NORENDER): // q = quat_xyz([45,35,10]); // pts = q_rot(q, p=[[2,3,4], [4,5,6], [9,2,3]]); module q_rot(q) { multmatrix(q_matrix4(q)) { children(); } } function q_rot(q,p) = is_undef(p)? q_matrix4(q) : is_vector(p)? q_rot(q,[p])[0] : apply(q_matrix4(q), p); // Module: q_rot_copies() // Usage: // q_rot_copies(quats) ... // Description: // For each quaternion given in the list `quats`, rotates to that orientation and creates a copy // of all children. This is equivalent to `for (q=quats) q_rot(q) ...`. // Arguments: // quats = A list containing all quaternions to rotate to and create copies of all children for. // Example: // a = quat_z(-135); // b = quat_xyz([0,-30,30]); // q_rot_copies(q_slerp(a, b, [0:0.1:1])) // right(80) cube([10,10,1]); // #sphere(r=80); module q_rot_copies(quats) for (q=quats) q_rot(q) children(); // Function: q_rotation() // Usage: // q_rotation(R) // Description: // Returns a normalized quaternion corresponding to the rotation matrix R. // R may be a 3x3 rotation matrix or a homogeneous 4x4 rotation matrix. // The last row and last column of R are ignored for 4x4 matrices. // It doesn't check whether R is in fact a rotation matrix. // If R is not a rotation, the returned quaternion is an unpredictable quaternion . function q_rotation(R) = assert( is_matrix(R,3,3) || is_matrix(R,4,4) , "Matrix is neither 3x3 nor 4x4") let( tr = R[0][0]+R[1][1]+R[2][2] ) // R trace tr>0 ? let( r = 1+tr ) _qnorm( _qset([ R[1][2]-R[2][1], R[2][0]-R[0][2], R[0][1]-R[1][0] ], -r ) ) : let( i = max_index([ R[0][0], R[1][1], R[2][2] ]), r = 1 + 2*R[i][i] -R[0][0] -R[1][1] -R[2][2] ) i==0 ? _qnorm( _qset( [ 4*r, (R[1][0]+R[0][1]), (R[0][2]+R[2][0]) ], (R[2][1]-R[1][2])) ): i==1 ? _qnorm( _qset( [ (R[1][0]+R[0][1]), 4*r, (R[2][1]+R[1][2]) ], (R[0][2]-R[2][0])) ): _qnorm( _qset( [ (R[2][0]+R[0][2]), (R[1][2]+R[2][1]), 4*r ], (R[1][0]-R[0][1])) ) ; // Function&Module: q_rotation_path() // Usage: As a function // path = q_rotation_path(q1, n, q2); // path = q_rotation_path(q1, n); // Usage: As a module // q_rotation_path(q1, n, q2) ... // Description: // If q2 is undef and it is called as a function, the path, with length n+1 (n>=1), will be the // cumulative multiplications of the matrix rotation of q1 by itself. // If q2 is defined and it is called as a function, returns a rotation matrix path of length n+1 (n>=1) // that interpolates two given rotation quaternions. The first matrix of the sequence is the // matrix rotation of q1 and the last one, the matrix rotation of q2. The intermediary matrix // rotations are an uniform interpolation of the path extreme matrices. // When called as a module, applies to its children() each rotation of the sequence computed // by the function. // The input quaternions don't need to be normalized. // Arguments: // q1 = The quaternion of the first rotation. // q2 = The quaternion of the last rotation. // n = An integer defining the path length ( path length = n+1). // Example(3D): as a function // a = quat_y(-135); // b = quat_xyz([0,-30,30]); // for (M=q_rotation_path(a, 10, b)) // multmatrix(M) // right(80) cube([10,10,1]); // #sphere(r=80); // Example(3D): as a module // a = quat_y(-135); // b = quat_xyz([0,-30,30]); // q_rotation_path(a, 10, b) // right(80) cube([10,10,1]); // #sphere(r=80); // Example(3D): as a function // a = quat_y(5); // for (M=q_rotation_path(a, 10)) // multmatrix(M) // right(80) cube([10,10,1]); // #sphere(r=80); // Example(3D): as a module // a = quat_y(5); // q_rotation_path(a, 10) // right(80) cube([10,10,1]); // #sphere(r=80); function q_rotation_path(q1, n=1, q2) = assert( is_quaternion(q1) && (is_undef(q2) || is_quaternion(q2) ), "Invalid quaternion(s)" ) assert( is_finite(n) && n>=1 && n==floor(n), "Invalid integer" ) assert( is_undef(q2) || ! approx(norm(q1+q2),0), "Quaternions cannot be opposed" ) is_undef(q2) ? [for( i=0, dR=q_matrix4(q1), R=dR; i<=n; i=i+1, R=dR*R ) R] : let( q2 = q_normalize( q1*q2<0 ? -q2: q2 ), dq = q_pow( q_mul( q2, q_inverse(q1) ), 1/n ), dR = q_matrix4(dq) ) [for( i=0, R=q_matrix4(q1); i<=n; i=i+1, R=dR*R ) R]; module q_rotation_path(q1, n=1, q2) { for(Mi=q_rotation_path(q1, n, q2)) multmatrix(Mi) children(); } // Function: q_nlerp() // Usage: // q = q_nlerp(q1, q2, u); // Description: // Returns a quaternion that is a normalized linear interpolation between two quaternions // when u is a number. // If u is a list of numbers, computes the interpolations for each value in the // list and returns the interpolated quaternions in a list. // The input quaternions don't need to be normalized. // Arguments: // q1 = The first quaternion. (u=0) // q2 = The second quaternion. (u=1) // u = A value (or a list of values), between 0 and 1, of the proportion(s) of each quaternion in the interpolation. // Example(3D): Giving `u` as a Scalar // a = quat_y(-135); // b = quat_xyz([0,-30,30]); // for (u=[0:0.1:1]) // q_rot(q_nlerp(a, b, u)) // right(80) cube([10,10,1]); // #sphere(r=80); // Example(3D): Giving `u` as a Range // a = quat_z(-135); // b = quat_xyz([90,0,-45]); // for (q = q_nlerp(a, b, [0:0.1:1])) // q_rot(q) right(80) cube([10,10,1]); // #sphere(r=80); function q_nlerp(q1,q2,u) = assert(is_finite(u) || is_range(u) || is_vector(u) , "Invalid interpolation coefficient(s)" ) assert(is_quaternion(q1) && is_quaternion(q2), "Invalid quaternion(s)" ) assert( ! approx(norm(q1+q2),0), "Quaternions cannot be opposed" ) let( q1 = q_normalize(q1), q2 = q_normalize(q2) ) is_num(u) ? _qnorm((1-u)*q1 + u*q2 ) : [for (ui=u) _qnorm((1-ui)*q1 + ui*q2 ) ]; // Function: q_squad() // Usage: // qn = q_squad(q1,q2,q3,q4,u); // Description: // Returns a quaternion that is a cubic spherical interpolation of the quaternions // q1 and q4 taking the other two quaternions, q2 and q3, as parameter of a cubic // on the sphere similar to the control points of a Bezier curve. // If u is a number, usually between 0 and 1, returns the quaternion that results // from the interpolation. // If u is a list of numbers, computes the interpolations for each value in the // list and returns the interpolated quaternions in a list. // The input quaternions don't need to be normalized. // Arguments: // q1 = The start quaternion. (u=0) // q1 = The first intermediate quaternion. // q2 = The second intermediate quaternion. // q4 = The end quaternion. (u=1) // u = A value (or a list of values), of the proportion(s) of each quaternion in the cubic interpolation. // Example(3D): Giving `u` as a Scalar // a = quat_y(-135); // b = quat_xyz([-50,-50,120]); // c = quat_xyz([-50,-40,30]); // d = quat_y(-45); // color("red"){ // q_rot(b) right(80) cube([10,10,1]); // q_rot(c) right(80) cube([10,10,1]); // } // for (u=[0:0.05:1]) // q_rot(q_squad(a, b, c, d, u)) // right(80) cube([10,10,1]); // #sphere(r=80); // Example(3D): Giving `u` as a Range // a = quat_y(-135); // b = quat_xyz([-50,-50,120]); // c = quat_xyz([-50,-40,30]); // d = quat_y(-45); // for (q = q_squad(a, b, c, d, [0:0.05:1])) // q_rot(q) right(80) cube([10,10,1]); // #sphere(r=80); function q_squad(q1,q2,q3,q4,u) = assert(is_finite(u) || is_range(u) || is_vector(u) , "Invalid interpolation coefficient(s)" ) is_num(u) ? q_slerp( q_slerp(q1,q4,u), q_slerp(q2,q3,u), 2*u*(1-u)) : [for(ui=u) q_slerp( q_slerp(q1,q4,ui), q_slerp(q2,q3,ui), 2*ui*(1-ui) ) ]; // Function: q_exp() // Usage: // q2 = q_exp(q); // Description: // Returns the quaternion that is the exponential of the quaternion q in base e // The returned quaternion is usually not normalized. function q_exp(q) = assert( is_vector(q,4), "Input is not a valid quaternion") let( nv = norm(_qvec(q)) ) // q may be equal to zero here! exp(_qreal(q))*quat(_qvec(q),2*nv); // Function: q_ln() // Usage: // q2 = q_ln(q); // Description: // Returns the quaternion that is the natural logarithm of the quaternion q. // The returned quaternion is usually not normalized and may be zero. function q_ln(q) = assert(is_quaternion(q), "Input is not a valid quaternion") let( nq = norm(q), nv = norm(_qvec(q)) ) approx(nv,0) ? _qset([0,0,0] , ln(nq) ) : _qset(_qvec(q)*atan2(nv,_qreal(q))/nv, ln(nq)); // Function: q_pow() // Usage: // q2 = q_pow(q, r); // Description: // Returns the quaternion that is the power of the quaternion q to the real exponent r. // The returned quaternion is normalized if `q` is normalized. function q_pow(q,r=1) = assert( is_quaternion(q) && is_finite(r), "Invalid inputs") let( theta = 2*atan2(norm(_qvec(q)),_qreal(q)) ) quat(_qvec(q), r*theta); // q_exp(r*q_ln(q)); // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap